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Mitochondrial DNA variability of Drosophila subobscura Collin from Southeastern 

Serbia was studied with respect to Restriction Site Analysis (RSA) of complete 

mitochondrial genome and the nucleotide sequence of Cytochrome b (Cyt b) gene. The 

aim was to shed more light on the evolutionary forces that shape mtDNA variation of this 

species. Samples were collected from two sites in the foothills of the Balkan Mountains. 

No genetic differentiation was found between groups and most of the variation was 

observed within them. Restriction analysis revealed two main haplotypes and several rare 

ones. The sequencing of Cyt b gene showed larger number of haplotypes, among which, 

one is being the most common. The majority of singletons differed from the most 

frequent haplotype by one nucleotide change. Although some of the observed nucleotide 

differences may affect their host’s fitness, the observed pattern of variation is consistent 

with the seasonal fluctuations in population size. 
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INTRODUCTION 

The Palearctic fruit fly Drosophila subobscura Collin is characterized by homogenous 

geographic pattern of mitochondrial DNA (mtDNA) variation. Across the species range there is 

high prevalence of two almost equally frequent haplotypes (named I and II) that exist together 
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with the population specific rare ones (AFONSO et al., 1990; CASTRO et al., 1999; STAMENKOVIĆ-

RADAK et al., 2012). Due to this pattern, D. subobscura has been proven as a good model species 

for studying evolutionary forces that shape and maintain sympatric mtDNA variation (CASTRO et 

al., 2010; KURBALIJA NOVIČIĆ et al., 2015; JELIĆ et al., 2015). Up to now, great body of evidence 

shows that both adaptively neutral and selective forces shape mtDNA variation of this species. 

The pattern of nucleotide variation with excess of singletons reveals mutational events during 

population expansion (CASTRO et al., 2010; CHRISTIE et al., 2010). Also, laboratory studies have 

shown the effect of mtDNA upon host’s fitness. One of such study compared several sympatric 

haplotypes upon uniform nuclear genetic background (CHRISTIE et al., 2011). While many of the 

rare haplotypes show similar fitness to haplotypes I and II, some of them seem to have a negative 

effect upon their host, implying that negative selection also acts in natural populations.   

The differences in life history traits and mating behavior between the two most frequent 

haplotypes exist only when they are compared based on their own nuclear genetic background 

(CASTRO et al., 2003; CHRISTIE et al., 2004), and disappear if compared on the uniform nuclear 

genetic background (CHRISTIE et al., 2011). In natural populations, there is a trend of seasonal 

haplotype change; while haplotype II is generally more common throughout the year, haplotype I 

is more frequent in spring (CHRISTIE et al., 2010). This pattern indicates adaptive differences in 

the wild populations. Almost equal presence of the two haplotypes across the species range 

suggests the action of some form of balancing selection, with negative frequency dependent 

selection being most likely (KURBALIJA NOVIČIĆ et al., 2015; ARNQVIST et al., 2016). 

In the present paper we further analyze nucleotide variation of mtDNA in natural 

populations of D. subobscura from Southeastern Serbia. Specifically, we complement 

Restriction Site Analysis (RSA) of the entire mtDNA with the analysis of nucleotide variation in 

Cyt b gene, and discuss evolutionary forces responsible for the genetic pattern observed in 

nature.  

MATERIALS AND METHODS 

Samples 

D. subobscura individuals were collected in June 2015 in Southeastern Serbia in the 

foothills of Stara Planina (the Balkan Mountains) (N43o25’ E22o25’). Specimens were sampled 

from two sites approximately 3 km apart: Stara Kalna (SK) and Gabrovnica (G). Isofemale lines 

(IFL) were established, each from a single gravid female (30 from SK, 49 from G). All IFL were 

maintained under constant laboratory conditions, at 19oC, ~60% relative humidity, light of 300 

lx, and photoperiod of 12 h light and 12 h dark. The F1 progeny of IFL was used to determine 

maternal mitochondrial haplotypes by means of Restriction Site Analysis (RSA) and sequencing 

of Cyt b gene.  

 

mtDNA Restriction Site Analysis (RSA) 

A method described by MARTINEZ et al. (1992) was used to obtain an enriched fraction of 

mtDNA. The obtained mtDNA was digested with five restriction enzymes (EcoRI, EcoRV, 

HindIII, HaeIII, and HpaII), selected for their ability to detect mtDNA polymorphisms (AFONSO 

et al., 1990; CASTRO et al., 1999; JELIĆ et al., 2012). FastDigest restriction enzymes were used 

(ThermoScientific, Waltham, Massachusetts, USA) according to the manufacturer’s 

recommendations. The mtDNA was digested with each enzyme separately. Digested DNA 

fragments were separated on horizontal 0.8-1.2% agarose gels with ethidium bromide in final 

concentration of 0.1 μg/mL. λ DNA digested with HindIII and λ DNA double digested with 
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HindIII-EcoRI were used as size standards. After electrophoresis, gels were photographed using 

a Bio-Rad Gel Doc 1000 (Bio-Rad Laboratories, Hercules, California, USA). When rare 

restriction patterns appeared, double digestions were used to determine the exact location of the 

restriction sites. The restriction patterns obtained, using a given enzyme and the haplotypes were 

named according to the notation of LATORRE et al., (1992), CASTRO et al., (1999) and 

STAMENKOVIĆ-RADAK et al., (2012). RSA analysis was conducted on the entire set of IFL. 

 

Sequencing of Cyt b gene 

A 893-bp fragment corresponding to Cyt b gene of mtDNA was PCR amplified and 

sequenced from the mtDNA of the randomly chosen set of 41 IFL (20 from SK and 21 from G). 

Previous RSA analyses (AFONSO et al., 1990; OLIVER et al., 2002; CHRISTIE et al., 2010; CASTRO 

et al., 2010) showed abundance of restriction sites in this gene. For PCR and sequencing reaction 

Cyt b-F 5’-TTAT GGTT GATT ATTA CGAA-3’ and Cyt b-R 5’- CAAA ACAT ATGC TTAT 

TCAA-3’ primers were used (GAO et al., 2007). The PCR cycling conditions consisted of an 

initial denaturation step at 94oC for 3 min, 35 cycles: at 94oC for 50 s, 51.5oC for 1 min and 72oC 

for 1 min; with a final extension at 72oC for 3 min. PCR products were purified using the 

QIAquick PCR Purification kit (QIAGEN, Hilden, Germany). Sequencing reactions were 

performed with both primers (Macrogen inc. Amsterdam, The Netherlands). The sequences were 

aligned using the software BioEdit v.7.2.5 (HALL, 1999).  

 

Presence of Wolbachia 

To exclude cytoplasmic incompatibility promoted by the presence of Wolbachia, a PCR 

test using 16S-6 primer set was conducted according to SIMÕES et al., (2011). This primer pair is 

highly sensitive in detecting majority of supergroups of Wolbachia, and gives no falsely positive 

results. Test was conducted on total genomic DNA for each IFL. During mtDNA extraction, 

before the final step of alkaline lysis, 15 μL of the total genomic DNA was saved for the purpose 

of this test. Two different Drosophila samples containing Wolbachia were used as positive 

controls: D. tristis captured from SK, and D. melanogaster stock no. 5 (Bloomington Stock 

Centre).  

 

Statistical analysis 

Nucleotide and haplotype diversity was calculated. Tajima’s D (TAJIMA, 1989), Fu’s Fs 

(FU, 1997), Fu and Li’s D-F (FU and LI, 1993) and Fay and Wu’s H (FAY and WU, 2000) tests 

were used to test departure from neutrality for the mtDNA haplotype distribution in populations. 

McDonald-Kreitman test (MCDONALD and KREITMAN, 1991) was implemented to compare ratio 

of non-synonymous to synonymous change within and between species. Changes in population 

size were examined by calculating the observed and expected pairwise differences (mismatch 

distribution) (ROGERS and HARPENDING, 1992). Tests were conducted for SK and G separately, 

and for the total sample set. The analysis of molecular variance (AMOVA) was implemented in 

order to partition variation between and within two samples. The above parameters and tests 

were conducted using DNASP v.5.0 (LIBRADO and ROZAS, 2009) and Arlequin v.3.5.1.2 

(EXCOFFIER and LISCHER, 2010). Estimation of gene genealogies from Cyt b gene was obtained 

using PopART software which was then used to construct TCS phylogenetic network (LEIGH and 

BRAYANT, 2015); sequences were collapsed into haplotypes based on statistical parsimony 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Sim%C3%B5es%20PM%5BAuthor%5D&cauthor=true&cauthor_uid=21481216
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(CLEMENT et al., 2002).  D. madeirensis (GenBank: EF216274.1) sequence from the NCBI site 

(www.ncbi.nlm.nih.gov) was used as an out-group.  

 

RESULTS  

Each of the five enzymes gave two alternative restriction patterns (Figure 1), which 

formed six haplotypes, in total. Patterns which were not priory observed and published are 

designated by the next available alphabet letter. All recorded haplotypes were present in SK, 

while only three of those are found in G. In both samples the prevalence of haplotypes I and II 

was recorded. They were of equal frequency in SK, while haplotype I was more frequent in G. 

Haplotype frequencies and haplotype diversity are presented in Table 1. One (VI) and three (III, 

IV and V) rare haplotypes are derived from haplotypes I and II, respectively. All rare haplotypes 

differ by one restriction site change compared to the haplotypes I and II. The network connecting 

the six haplotypes is shown in Figure 2. The Tajima’s D was negative in SK, positive in G, and 

negative if total sample is considered, but none was statistically significant (Table 1). The 

AMOVA shows that there is little variation between flies from two localities (FST=-0.01518, 

p= 0.58358), while the majority of variation exists within samples.  

 

 
 

Figure 1. Scheme of the restriction patterns of D. subobscura mtDNA obtained with five restriction 

enzymes. Fragment sizes are indicated in kilobase pairs. Capital letters denote restriction patterns. 

 

http://www.ncbi.nlm.nih.gov/
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Figure 2. Network of six haplotypes of the SK (depicted in white) and G (depicted in gray) samples of D. 

subobscura obtained by RSA. The haplotypes are connected in a way that minimizes the total 

number of site changes. Number within circles corresponds to the number of IFL with the specific 

haplotype. e3 restriction site of HaeIII makes difference between the two main haplotypes. 

 

 

Table 1. Percentage of D. subobscura IFL with different haplotypes, restriction patterns of the haplotypes, 

parameters of diversity and Tajima’s D test  

    Haplotype Frequency (%) Restriction patterns 

Haplotypes SK G Total EcoRI EcoRV HaeIII HindIII HpaII 

I 43.33 53.06 49.37 A A A A A 

II 43.33 44.90 44.30 A A C A A 

III 3.33 / 1.27 D A C A A 

IV 3.33 2.04 2.53 A A C A I 

V 3.33 / 1.27 A F C A A 

VI 3.33 / 1.27 A A A K A 

no. of IFL 30 49 79 

     haplotype 0.6414 0.5272 0.566 

     diversity ±0,054 ±0,026 ±0,027 

     
Tajima’s D -1.039 0.403 -0.832 

      

The analysis of 893-bp mtDNA fragment of the Cyt b gene showed presence of 14 

haplotypes, one very frequent, C1, and 13 singletons (Table 2). In total 16 polymorphic sites 

were found in 41 individuals sequenced. Ten and six nucleotide changes were observed in G and 

SK, respectively. The network connecting haplotypes is shown in Figure 3. Majority of rare 

haplotypes are connected with the most frequent one with only one mutational change. The 

exceptions are haplotypes C8 and C5 with two and three mutational steps, respectively. The out-
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group species D. madeirensis is separated from D. subobscura cluster by 27 mutational steps. 

With respect to the polymorphic restriction sites, site 446 corresponds to the EcoRV target that 

distinguishes haplotype II from haplotype V by a T-C change. Rare haplotypes III and V also 

have additional substitutions in Cyt b gene. Twelve substitutions are synonymous, and all non-

synonymous substitutions are from location G (Table 3). Table 4. shows nucleotide and 

haplotype diversity of Cyt b gene. 

 

Table 2.  Nucleotide sequences of the D. subobscura Cyt b gene. Seq., sequence; T., Total; D.m, D. 

madeirensis; s, synonymous change; n, non-synonymous change 

 
 

 

 

Table 3.  Non-synonymous substitutions in the D. subobscura Cyt b gene 

V, P, R, Q, M, I, L correspond to valine, proline, arginine, glutamine, methionine, isoleucine and leucine, respectively 

 

Haplotype Polymorphic sites SK G  Total 

  

  

1 2 2   

 

  

  3 7 5 3 6   

 

  

  4 7 3 8 0       

C1 V V V P R 20 18 38 

C6 . . . . Q / 1 1 

C8 M . I . . / 1 1 

C9 . . . L . / 1 1 

D. madeirensis . M I . .   

 

  

no. of IFL           20 21 41 
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Figure 3. Network of 14 D. subobscura Cyt b haplotypes, with D. madeirensis as an out-group. One 

nucleotide that coincides with the polymorphic restriction site of EcoRV is indicated. The size of 

the circles correspond to the number of the IFL with the specific haplotype. Origin of IFL is 

indicated in white (SK) and gray (G).  

 

 

 

Table 4. Nucleotide and haplotype diversity of D. subobscura in the analyzed fragment of Cyt b gene 

 

 

 

 

 

 

 

 

 

 

  Nucleotide diversity Haplotype diversity 

sample 

location π SD Hd SD 

SK 0.00067 0.00032 0.368 0.135 

G 0.00107 0.00026 0.686 0.115 

Total 0.00087 0.00022 0.539 0.096 
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The Tajima, Fu, Fu and Li, and Fay and Wu’s tests gave negative values (Table 5). The 

Tajima’s D, Fu’s Fs, and Fay and Wu’s H values were statistically significant for both samples, 

and for total sample; Fu and LI’s D values were not significant in any case, and F was 

statistically significant only for the whole sample set. Generally, the highest significantly 

negative values are observed in the total sample, while G always had higher absolute values and 

lower p values compared to SK. The results of McDonald-Kreitman test are presented in Table 6. 

Due to the absence of non-synonymous changes in SK, the observed neutrality index was zero, 

and G test not applicable. In G and in total sample, neutrality index was positive and above 1. 

Significance was observed only for G, but not for the total sample. Our results show that the ratio 

of non-silent to silent variation is greater within species than between species.  

 

Table 5. Results of Tajima, Fu, Fu & Li and Fay & Wu tests for the analyzed region of Cyt b gene in D. 

subobscura (for Fu & Li and Fay & Wu tests D. madeirensis served as an out-group) 

 

Test: Tajima Fu Fu & Li  Fay & Wu 

 sample 

location 
D p Fs p D p F p H p 

SK -2.056 ** -2.473 ** -1.014   -1.563    -5.116 ** 

G -2.269 *** -8.709 *** -1.220   -1.848    -8.595 *** 

Total -2.534 *** -15.359 *** -1.944   -2.583 * -14.839 *** 

*, p<0.05; **, p<0.02; ***, p<0.001 

 

Table 6. Results of McDonald-Kreitman test between D. subobscura sequences and D. madeirensis for the 

analyzed region of Cyt b gene  

N, neutrality index; F, p, Fisher's exact test P-value (two tailed); G (W), G(Y), G test with Williams' and Yates' 

correction respectively; na, not applicable, * P<0.05   

 

 

The distribution of the observed and expected pairwise differences in the total sample and 

two locations separately is presented in Figure 4. In the total sample set, there is a perfect 

correspondence to the model of population expansion. If the two samples are observed separately 

the fit is not so accurate. SK is characterized with the slight bimodality. The additional small 

peak is observed at the position of three pairwise differences and is the result of the presence of 

sequence C5 which is connected to the most frequent haplotype C1 by three nucleotide changes. 

G shows unimodal mismatch distribution, but the fit is not as accurate as for the total sample 

which is a consequence of the excess of singletons that differ from C1 by one nucleotide change.  

 

Sample 

location 
N F, p G  (W) p G (Y) p 

SK 0 1 na na na na 

G 14.667 0.021413* 5.661 0.01735* 4.033 0.04463* 

Total 6.333 0.149266 2.787 0.09505 1.546 0.21371 
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Figure 4. Fequencies of the observed and expected pairwise differences in the sample.  Exp, expected 

values; Obs, observed values 

 

 

As for the RSA analysis, the AMOVA with Cyt b sequence also showed that the majority 

of variation exists within the two sample sites, with little variation between them (FST=-0.00055, 

p= 0.84555). 

All IFL were negative for the presence of Wolbachia. Other signs of cytoplasmic 

incompatibility, such as distortions in sex ratio, or embryo mortality in crosses between strains 

were not observed. 

 

DISCUSSION 

This study describes the variability of mtDNA in D. subobscura implementing two 

different methods. The RSA gives overview of the variability of the entire mitochondrial 

genome, while the analysis of the Cyt b gene provides information for just a fragment of it. RSA 

can be considered quite robust technique since it is limited only to the restriction site sequences 

and cannot provide data on the exact nucleotide changes in the polymorphic restriction sites. 

However, this approach was able to make a difference between the two haplogroups of D. 

subobscura (haplotype I and its derivatives from haplotype II and its derivatives). On the other 

hand, sequencing of just one fragment of mtDNA, such as Cyt b gene, provides genetic data with 

higher resolution: the exact nucleotide changes are defined and, in the case of non-synonymous 

substitutions, amino acid replacements. Regardless the different scale and power of the two 

approaches, the information they provided in this study of mtDNA variability in D. subobscura 

is highly concordant. Both show excess of singletons with prevalence of single stepwise changes 

from one (Cyt b) or two (RSA) main haplotypes. 

The haplotype frequency spectrum obtained by RSA is in the agreement to the earlier 

studies conducted across the species range (AFONSO et al., 1990; LATORRE et al., 1992; CASTRO 

et al., 1999; STAMENKOVIĆ-RADAK et al., 2012) considering the prevalence of the haplotypes I 

and II, and joint frequency of the rare haplotypes. Samples taken from the two sites did not show 

genetic differentiation and shared one rare haplotype, which may be the result of their proximity 
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and high rate of gene flow observed in this species (AYALA et al., 1989). Haplotype diversity 

(0.566 for the total sample set) resembles the other populations from the central part of the 

Balkan Peninsula where values between 0.436 and 0.559 have been observed with the same set 

of restriction endonucleases (STAMENKOVIĆ-RADAK et al., 2012).  

Prior to the results of sequencing of Cyt b gene reported here, another population genetic 

study of the protein coding mitochondrial ND5 gene has been conducted in D. subobscura 

populations originating from southwestern part of population range, namely the Balearic Islands, 

and the Iberian Peninsula (CASTRO et al., 2010). Apart from the two prevalent haplotypes of the 

ND5 gene in contrast to only one in Cyt b, the general pattern of nucleotide diversity is quite 

similar: there is an excess of singletons that are different from the main haplotype mostly by one 

nucleotide change. Nucleotide diversity of Cyt b gene (range 0.00067-0.00107; 0.00087 for the 

total sample) is of the similar magnitude compared to the ND5 gene (range 0.00092-0.00266; 

0.00221 for the total sample), however lower and more similar in value to the continental, 

Iberian population of La Canyada. BALLARD and KREITMAN (1994) have analyzed nucleotide 

diversity in Cyt b gene in tree species of Drosophila: D. melanogaster (0.0009), D. simulans 

(0.0003) and D. yakuba (0.0014). Values observed for D. subobscura are of similar magnitude as 

those recorded for the above mentioned species. 

The observed excess of singletons both in RSA and in Cyt b is responsible for the 

negative values of parameters that measure departure of haplotype distribution from neutrality. 

The power of RSA to detect polymorphism was lower giving rise to non-significant departure of 

Tajima’s D from zero, compared to the Cyt b analysis. Nevertheless the Tajima’s D was 

generally negative, as also the indices of the Fu’s, Fu and Li’s and Fay and Wu’s tests for Cyt b 

sequences.  

 

As for the McDonald-Kreitman test, positive values of neutrality indices in G and in total 

sample indicate an excess of non-silent polymorphism compared to divergence. Non-

synonymous substitutions are exclusively present in G where significant departure from 

neutrality is observed.  The analysis of different mtDNA gene in mice and humans generally 

gave excess of amino acid polymorphism, relative to divergence (NACHMAN et al., 1994; 
NACHMAN et al., 1996; TEMPLETON, 1996). The same is observed in Drosophila (KANEKO et al., 

1993; BALLARD and KREITMAN, RAND et al., 1994), especially for Cyt b gene (BALLARD and 

KREITMAN, 1994).  

 Two mutually nonexclusive scenarios could have caused the observed pattern of 

nucleotide variation and the statistical results that measure departure from the neutral evolution 

model. The first is purifying selection that has driven the most frequent haplotype close to 

fixation. The second is population expansion after the population has gone through a bottleneck. 

An array of nucleotide substitutions has been observed in Cyt b in this work. As in the work of 

CHRISTIE et al., (2011) some of them could have possibly impaired their host’s fitness. The 

results of McDonald-Kreitman test is in agreement with this notion especially for sequences 

sampled from site G. RAND and KANN (1996; 1998) have interpreted this excess of amino acid 

replacement in light of nearly neutral model (OHTA, 1992a; 1992b) that predicts accumulation of 

mildly deleterious alleles that persist for short time within a population and do not contribute to 

divergence (NACHMAN, 1998; RAND and KANN, 1998; WEINREICH and RAND, 2000; MEIKLEJOHN 

et al., 2007). Also, the Fay and Wu’s test which is less sensitive in detecting population 

expansion gave significant values implying that some of the observed singletons indeed 
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compromise fitness in natural populations. However, the results of the observed and expected 

pairwise differences indicate that the evolution of a population as a whole is largely influenced 

by changes in population size. EYRE-WALKER (2002) showed that recent increase in effective 

population size can generate artifactual evidence of positive selection if substitutions are slightly 

deleterious and if there is no selection upon synonymous codon use.  

CASTRO et al., (2010) have discussed the time scale of the past non-adaptive evolutionary 

events that could have influenced mtDNA variation in D. subobscura. In the analysis of ND5 

gene fragment this previous research found three sequences with six, seven and eight nucleotide 

change compared to S2, which is one of the two main haplotypes. All three haplotypes were in 

the rut of ND5 haplotype network. These sequences could be ancient relicts that have survived to 

date in the Southern Europe after glaciation. The analyzed island populations were to some 

extent protected from gene flow allowing these variants to be preserved. Populations from our 

research may have survived more severe reduction in population size during last glaciation, 

leading to absence of these relict haplotypes. Among the haplotypes reported here, the highest 

number of nucleotide changes (three), compared to the most frequent sequence C1, had 

haplotype C5. The Balkan Peninsula with its specific habitats may have contained glacial refugia 

for D. subobscura, but this effect cannot be observed in the present sequences possibly due to 

high migration rates in fruit fly (AYALA et al., 1989; STAMENKOVIĆ-RADAK et al., 2012). The 

singletons found in this study are derived from the main haplotype by one nucleotide change in 

most of the cases and are of recent origin. Both CASTRO et al., (2010) and CHRISTIE et al., (2010) 

pointed to the seasonal bottlenecks in cold winters and dry summers which are followed by 

population expansion, as main reason why D. subobscura populations have not reached the 

equilibrium for mtDNA haplotypes. The pattern of the observed nucleotide variation in Cyt b 

gene that is observed is our research is in agreement with the hypothesis of seasonal contractions 

and expansions of the census in D. subobscura.  

The data presented in this study indicate possible presence of the Cyt b variants with 

mildly deleterious effect on fitness in D. subobscura, but also point to the seasonal fluctuations 

in population size influencing the observed mtDNA pattern in this species.  
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Izvod 

Analizirana je varijabilnost prisustva restrikcionih mesta celokupne mitohondrijske DNK i 

nukleotidne sekvence Cyt b gena kod Drosophila subobscura iz jugoistočne Srbije. Cilj je bio 

rasvetljavanje uloge evolucionih činilaca u oblikovanju varijabilnosti mitohondrijskog genoma 

ove vrste. Uzorci su skupljeni sa dva lokaliteta u podnožju Stare planine. Nisu dobijene značajne 

genetičke razlike među njima, odnosno najveći udeo variranja je bio prisutan u okviru lokaliteta. 

Prema prisustvu restrikcionih mesta utvrđeno je prisustvo dva česta haplotipa i nekoliko retkih.  

Analizom nukleotidne sekvence Cyt b gena uočen je veći broj haplotipova, od kojih je jedan bio 

visoke učestalosti. Većina retkih haplotipova se razlikuju od čestih u prisustvu samo jedne 

nukleotidne promene. Iako je moguće da neke od nukleotidnih razlika između haplotipova utiču 

na razlike u adaptivnoj vrednosti, uočena varijabilnost mitohodrijske DNK prati obrazac 

sezonske fluktuacije veličine populacija. 
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