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The variability of morphological traits of Picea omorika /Panč./Purkyne pollen was 

analyzed in two successive years on the pollen sampled from 24 trees in a seed stand at 

the site of Bela Zemlja in the area of Mt. Zlatibor (Serbia). The aim of the research was to 

obtain the index of phenotypic plasticity of the equatorial and polar axes and the 

coefficient of shape of pollen. According to the obtained results, Serbian spruce pollen 

grains are 93.3 µm/53.2 µm in size with their shape being oblate 57.5%. The climate 

characteristics of the study years initiated different responses of the pollen traits for each 

tree. Reaction norms were slightly steep and they crossed as confirmed by the significant 

interaction between the variability factors of the year and the tree. In the year with lower 

temperatures and less precipitation, the mean values of the equatorial axis were higher 

and the polar axis smaller, giving the pollen grain a more oblate form. According to the 

results of the applied model of analysis of variance where the year and the tree, as well as 

the interaction between them, were taken as factors of variability, the values of the pollen 

equatorial axis (length) and the coefficient of shape showed statistically significant 

differences between the years. Genetic variability (interindividual differences) for the 

values of both axes of pollen grains was confirmed by statistically significant differences 

between the trees in a single year. Interindividual differences in the observed 

morphological pollen traits were affected by environmental conditions specific to the year 

of sampling (statistically significant year x tree interaction). All the analyzed traits 
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showed interindividual differences in the values of the plasticity index. The lowest values 

of plasticity were obtained for the equatorial axis (length) of the pollen grain, and they 

were significantly different from the plasticity indexes of the other traits analyzed herein. 

The plasticity of pollen traits has an important role in the controlled selection and 

breeding of species with the aim of obtaining more resistant genotypes with a greater 

ability to adapt to the fluctuations of environmental factors caused by global climate 

change. 
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INTRODUCTION 

The study of the impact of environmental factors is aimed at evaluating the patterns of 

variability of morphological traits of pollen induced by the changes in climate factors on the 

reproductive potential of plants (KNIGHT et al., 2005). Apart from physiological, morphological 

traits of pollen are those that directly affect the pollen germination capacity, fertilization and 

further reproduction and indirectly the growth and development of plants (KIRK, 1993; DE 

LEONARDIS et al., 1995; FERRAUTO et al., 2015), which makes them extremely important in the 

controlled selection of high-quality genotypes  - pollinator trees. The study of morphological 

traits of pollen grains is of great  importance in the systematics and taxonomy of plants (SHAH et 

al., 2005; PANAHI et al., 2012; WRONSKA-PILAREK et al., 2016; JIA et al., 2014; SOARES et al., 

2017), as well as in the analyses carried out to determine the somatic or gametophytic ploidy 

level (DE STORME et al., 2013). The study of pollen morphology (its dimensions, surface area, 

volume, surface structure) is also relevant from the aspect of global climate change (KNIGHT et 

al., 2005). The periods of increasing temperatures and changing amounts of precipitation and 

levels of radiation together with the presence of air pollutants significantly affect the properties 

of pollen (FOSTER and AFONIN, 2005; REZANEJAD, 2012). According to EJSMOND et al. (2011, 

2015), higher temperatures that increase desiccation rates make plants produce larger pollen 

grains and thus compensate for the lack of water. The above-stated authors (EJSMOND et al., 

2011, 2015) propose the use of pollen size and shape in the models of paleoenvironmental 

reconstruction of climate change. Pollen morphology also reflects the increasing levels of 

environmental pollution. The fact that the size and the germination rate of pollen decrease with 

an increase in the levels of pollution makes pollen a reliable environmental indicator (PUKACKI 

and CHALUPKA, 2003; AZZAZY, 2016). 

The above aspects of the study of pollen morphology did not include the plasticity of 

pollen traits as a very important factor of adaptation to spatial and temporal changes of the 

environment. The plasticity of traits is the result of various selective pressures in the 

environment and represents the capacity of the genotype, or the ability to exploit the limited 

resources available for the survival in stressful environments (COUSO and FERNANDEZ, 2012). 

During the anther development, environmental conditions affect the size of pollen grains, which 

means that the values of pollen traits are not determined only by genetics. The variability of 

genotypes in response to changing environments or the genotype-environment interaction points 

to the existence of the plasticity of pollen traits, which is important from the aspect of both 

ecology and evolution. Genotypes with the greater plasticity of pollen traits are more likely to 

mitigate the heterogeneity of environmental conditions, and such mother plants provide pollen 

for the next generation, which represents a new dimension between the natural selection and 

variability observed at the population level (DELPH et al., 1997). Evolutionary biology is based 
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on the concept of phenotypic plasticity, or the capacity of a genotype (the reaction norm) to 

produce a range of phenotypes under different environmental conditions (VALLADARES et al., 

2000; and references therein). The phenotypic plasticity is the difference in plant trait values 

along the environmental gradient (JI et al., 2017). The present study is the first attempt 

(according to the literature) to quantify the phenotypic plasticity of the morphological traits of 

Picea omorika pollen analyzing the pollen of the same genotype (tree) in two successive years 

with different climate characteristics. 

Serbian spruce (Picea omorika /Panč./Purkyne) is tertiary relict flora and a Balkan 

endemic species. This species used to be widely distributed across Europe, but today it is 

restricted to small isolated communities occupying a narrow region of Serbia and Bosnia and 

Herzegovina (BATOS and NIKOLIĆ, 2013). Serbian spruce has been studied from several aspects: 

the analysis of site conditions and the structure of small populations (DINIĆ, 1997, ALEKSIĆ and 

GEBUREK, 2014), paleopalynology (ČOLIĆ, 1986), breeding (ISAJEV, 1987), embryogenesis 

(BUDIMIR, 2003), genetic structure (MILOVANOVIĆ et al., 2007; NASRI et al., 2008), biology of 

flowering and fruiting (BATOS, 2013), etc. However, there are few published studies on 

morphology and viability of Serbian spruce pollen, especially the influence of environmental 

factors on the pollen traits (BATOS and NIKOLIĆ, 2013). 

Serbian spruce pollen is anemophilous, i.e. adapted to wind pollination, which is typical 

of coniferous species (Figure 1). As with most coniferous species of the genera Abies, Cedrus, 

Picea and Pinus, pollen grains of Serbian spruce have two air-filled bladders developed laterally 

from the body of the pollen grain, unlike the species of Larix, Tsuga or Pseudotsuga genera 

which lack the bladders. In the dry state, the pollen of Serbian spruce is light yellow to brown 

with adjoining but not fully fused air-filled bladders which move apart when hydrated. Pollen of 

broadleaved species has no air bladders, and besides the differences in the pollen structure, 

coniferous species have significantly larger pollen than broadleaved species (ERDTMAN, 1952). 

Among conifers, firs have very large pollen grains (POPNIKOLA, 1970; ARISTA and TALAVERA, 

1994) compared to the smaller pollen of pines (PHIPPS et al., 1995), while oaks (Quercus sp.) 

belong to broadleaved species that have significantly larger pollen compared to the very small 

pollen of willows (Salix sp.) (ERDTMAN, 1952). According to ERDTMAN`s (1952) classification of 

the size and shape of pollen (P/E), Serbian spruce is a species with large oblate pollen (Table 1). 

 

A    B  

Figure 1. Scanning Electron Micrographs (SEM) of Picea omorika /Panč./Purkyne pollen structure.  

               A (magnification x100) and  B (magnification x1400) polar and equatorial axis of pollen grain. 

https://www.semanticscholar.org/author/Jelena-M-Aleksi%C4%87/1816418
https://www.semanticscholar.org/author/Thomas-Geburek/5660808
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Table 1. Size of pollen grains of woody species. 

Species References 
Length 

(m) 

Diameter 

(m) 

Abies alba 

Abies concolor 

Abies grandis  

Popnikola, N. 1970 

156.5 

143.5 

132.1 

107.4 

97.4 

98.8 

Abies pinsapo  Arista, M., Talavera, S.  1994  90.9 

Larix sp. Said, C., Villar, M., Zandonella, P. 1991 60.0  

Carpinus sp. 
Akhondnezhad, S., Nejadsattari, T., Sattarian, 

A., Asri, Y., Bagheriieh Najjar, M.B.  
2011 24.9-35.2 23.1-28.2 

Castanea sp. 
Liu, Y., Zetter, R., Ferguson, D.K., Mohr, 

B.A.R. 
2007 14.2 11.7 

Fagus, sp. 
Liu, Y., Zetter, R., Ferguson, D.K., Mohr, 

B.A.R. 
2007 32.4 35.5 

Juglans regia  Mert, C. 2010 33.3-37.5  

Picea glauca 

Picea mariana 

Picea rubens 

Lindbladh, M., O Konnor, R., Jacobson, L.G.  2002 

98.9 

84.6 

89.7 

54.9 

46.6 

46.5 

Picea omorika Grbović, B.  1998 93.9 51.8 

Picea omorika Erdtman, G. 1943 57.0-116.0 57.0-87.0 

Picea sp. 

Picea omorika 
Jia, Z.R.,  Wang, J.H.,  Zhang, S.G. 2014 

84.3-118.8 

87.1 
 

Picea omorika Jovančević, M. 1962 81.0 56.0 

Picea orientalis 

Picea sitchensis 
Ho, R.H., Sziklai, O. 1972 

85.3 

108.2 

56.4 

72.0 

Pinus sp. Phipps, J.C., Osborn, M.J., Stokey, A.R.  1995 50.0-70.0 27.0-43.0 

Pinus heldreichii Ilvessalo-Pfaffli, S.M., Pejoski, B.  1975 60.0-62.0  

Pinus sylvestris 
Daničić, V., Isajev, V., Mataruga, M., 

Cvjetković, B. 
2012 54.4 35.6 

Quercus sp. Erdtman, G. 1952 25.0-50.0  

Quercus petraea 

Quercus pubescens 

Quercus robur 

Wronska-Pilarek, D.,  Danielewicz, W.,  

Bocianowski, J., Malinski, T.,  Janyszek, M. 
2016 

31.4 

31.8 

30.8 

30.1 

30.3 

29.3 

Quercus robur Batos, B.  2014 39.0 21.7 

Quercus robur  

subsp. edunculiflora 

Panahi, P., Pourmajidian, M.R.. Fallah., A .,  

Pourhashemi, M. 
2012 29.7 29.1 

Quercus robur 

Quercus petraea 
Rushton, B.S. 1976 

26.74 

29.37 
 

Salix sp. Erdtman, G. 1952 10.0-25.0  

Tsuga mertensiana Ho, R.H., Sziklai, O. 1972 70.0 61.0 

 

The aim of this study was to evaluate the effects of environmental factors in two 

successive years of observation on the variability of the analyzed traits of Serbian spruce pollen 

grains. Our study included the assessment of the phenotypic plasticity of the length (equatorial 
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axis), the width (polar axis) and the coefficient shape of pollen grain, as well as the estimation of 

genetic variability, i.e. interindividual differences between trees in each study year, which would 

form a solid basis for the development of appropriate breeding programs and maintenance of 

good-quality production. 

 

 

Figure 2. The location of the seed stand at the site of Bela Zemlja (Zlatibor Mountain) and the position of 

the marked Picea omorika trees from which pollen was collected. 

 

 

MATERIALS AND METHODS 

Climate data 

The study of the effects of environmental factors - climate (including  temperature and 

amounts of precipitation per year and for the period immediately prior to pollen maturation. i.e. 

January-May) used the data of Zlatibor hydrometeorological station of the Republic 

Hydrometeorological Service of Serbia for the pollen collection years (www.hidmet. gov.rs ) 

(Figure 3). 

Pollen was sampled from 24 trees growing in a seed stand at the site of Bela Zemlja (lat. 

43º 81' N, long. 19º 79' E) on Mount Zlatibor, Serbia (Figure 2) in two successive years (1991 

and 1992). The stand of 0.5 ha in size is located on the site of Quercetum farnetto - cerris at an 

altitude of 680 m. It was established using seed material originating from natural habitats of this 

species on Mt. Tara (Serbia) (ISAJEV, 1987). 

Twigs with half-matured microstrobiles were sampled from the south-facing outer sides of 

the crown at a height of 3-5 m. Sampling was carried out in May in two successive years. Pollen 



126                                                                                                             GENETIKA, Vol. 51, No1, 121-136, 2019 

maturation was completed under laboratory conditions using the method of ‘aquatic cultures’. 

Anthers ruptured and the pollen was released within 48 hours. The collected pollen was dried in 

a pollen drier at +30ºC/48 h, purified using a set of mesh sieves with the final sieve size of 0.2 

mm, and stored in a fridge at +5ºC in a desiccator with CaCl2 until it was to be used.  

The measurement of pollen grains was done using hydrated pollen (immediately after 

soaking the pollen into a drop of distilled water). A sample of 25 pollen grains x 24 trees x 2 

years (a total of 1200 pollen grains measured) was used to measure the following two pollen 

dimensions: length (E) - equatorial axis (μm) and width (P) - polar axis (μm) (Fig. 1A and B). 

The measurement was performed using the ocular micrometer of the LAICA GALEN III 

microscope system with a 40x objective and a 10x eyepiece, with the Topica TP-5001 camera 

and computer. 

 

Coefficient of shape 

The value of the coefficient of shape was calculated according to the formula (ERDTMAN, 

1952): 

pollen grain coefficient of shape = 100*P/E 

The plasticity index 

The plasticity index (IPi) for each of the analyzed trees (i) was obtained using the formula 

(VALLADARES et al., 2000; COUSO and FERNANDEZ, 2012): 

IPi =(VARmax-VARmin)/ VARmax 

for the morphological traits of pollen (VAR) values of polar and equatorial axes, as well as the 

pollen grain coefficient of shape. VARmax has a higher value in one year compared to the other 

year of observation. 

 

Statistical analysis 

The results of the research are presented using descriptive statistics, testing differences 

between mean values (t-test results). A nested ANOVA model with the following sources of 

phenotypic variation was used: the year (estimation of environmental variability), the tree 

(estimation of genetic variability - interindividual variability, nested in the year of observation) 

and the year x tree interaction (estimation of the plasticity of morphological traits of pollen). The 

model uses the year as a fixed factor and the tree as a random factor of phenotypic variability. 

Differences in the values of the plasticity index were tested using the F-test of equality of 

variances. SAS statistical package (SAS INSTITUTE, INC. 2011) was used for the statistical 

analysis of data. 

RESULTS 

The study of environmental conditions refers to the analysis of basic climate data for the 

years of pollen collection. The data on temperature and amount of precipitation point to obvious 

differences between the years of pollen collection. The mean annual temperature and 

precipitation in the first year (6.6ºC and 73.1 mm, respectively) were lower compared to the 

second year (8.0ºC and 83.0 mm, respectively). Also, the same pattern was obtained in the 

calculations for the months prior to the pollen maturation (January - May): in the first year, the 

values of temperature and precipitation were also lower (2.3ºC and 61.1 mm, respectively), 

compared to the second year (3.5ºC and 71.5 mm, respectively) (Figure 3). 

According to the obtained results, pollen grains of Serbian spruce have the following 

dimensions: length (equatorial axis) = 93.3 μm, width (polar axis) = 53.2 μm and the coefficient 
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of shape = 57.5% (mean values for both years). The mean values of the equatorial axis of pollen 

were higher in the first year which had less precipitation and lower temperatures both on the 

annual level and in the months prior to pollen maturation (January-May) (Figure 3), while the 

polar axis and the coefficient of shape had smaller values (statistically significant according to T-

test for the comparison of the mean values between years (Figure 4). The reaction norms of the 

analyzed morphological traits of pollen grains in two successive years, presented for each 

individual tree, were slightly steep and they crossed each other pointing to the existence of 

plasticity (Figure 4). 
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Figure 3. Data on temperature and amount of precipitation during the years of pollen collection (1991 and 

1992) – Hydrometeorological station Zlatibor (northern latitude 43º 44'; eastern longitude 19º 

43') (www.hidmet.gov.rs). 

 

 

The distribution of the size and shape of pollen was made using the sample of all 

measured pollen grains from both years of collection. The largest percentage of pollen grains 

have a length in the range from  90 to 99 μm both in the first and in the second year (53.0% and 

43.0%, respectively); the width of pollen ranges from  40-49 μm (51.8%) in the first year and 50-

59 μm (39.0%) in the second year (Figure 5). Distribution of the size and shape of pollen was 

further related to the total number of analyzed trees. The highest percentage of trees both in the 

first (72.0%) and in the second year (83.3%) have pollen with the length (equatorial axis) in the 

range from 90 to 99 μm and width (polar axis) in the range from 50 to 59 μm (84.0% and 95.8% 

in the first and second year respectively). The highest percentage of trees in both years of 

research had the coefficient of pollen shape ranging from 50% to 59%, (66.6% and 48.0% 

respectively) (Figure 6). 

In both years of research, some trees were always in the group with the largest pollen, 

among which tree marked 11 had the largest pollen amounting to 102.0 vs. 56.7 and 104.8 vs. 

60.1 (first and second years respectively). 
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Figure 4. Reaction norms of Picea omorika morphological pollen traits in two successive years of 

observation (1st and 2nd year of observation; 1991 and 1992 respectively). 
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Figure 5. The distribution of pollen according to the value ranges for the equatorial (length) and polar 

(width) axes and Picea omorika pollen grains coefficient of shape (1st and 2nd year of 

observation; 1991 and 1992 respectively). 

 

 

The results of the applied model of the analysis of variance confirmed that the climate 

factors of the study years (environmental variability) had statistically significant effects on the 

values of the equatorial axis of pollen grains (year effect P < 0.05). Interindividual variability 

(genetics) was statistically significant for all analyzed morphological traits of pollen (tree effect 

P < 0.05). The year x tree interaction was statistically significant for the width (polar axis) and 

the coefficient of shape of pollen grains, indicating that the differences between the trees 

depended on the climate factors in each of the study years (Table 2). 
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Figure 6. The distribution of trees according to the value ranges for the polar and equatorial axes and the 

coefficient of shape of Picea omorika pollen grains (1st and 2nd year of observation; 1991 and 1992 

respectively). 

 

 

Table 2. The analyses of variance (ANOVAs) were performed separately for each of the pollen 

morphological traits, with year and tree and their interaction as sources of variation (the year 

was a fixed and the tree was a random factor).  

 
 

Pollen polar axis (width) 

(µm) 
Pollen equatorial axis (length) (µm) 

Pollen grains coefficient of 

shape (%) 

Source of 

variation 
     df      MS F value MS F value MS F value 

Year 1 454.66 2.13 3289.82 60.06**** 0.067 46.82**** 

Tree 23 698.82 3.28*** 149.61 2.76*** 0.002 1.38 

Year x 

Tree 
23 213.79 2.55**** 54.29 1.29 0.002 1.58* 

Error 1150 83.65  42.17    

* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 
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Interindividual variability of the plasticity index was obtained for each of the analyzed 

morphological traits of pollen (Figure 7). The mean value of the plasticity index for all trees was 

the highest for the coefficient of shape (0.09) compared to the values of the plasticity index for 

the equatorial and polar axes (0.04 vs. 0.06). The coefficients of variation (CV%) of the 

plasticity index for the equatorial and polar axes and for the coefficient of shape of pollen grains 

were smaller and approximately the same for all properties (0.55, 0.59 and 0.61, respectively). 

The values of the plasticity index were the smallest for the equatorial axis of the pollen grain, 

and according to the F-test statistically significantly different compared to other traits (all <0.05) 

(Figure 7). 
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0.2
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Figure 7. Values of polar (width) and equatorial axis (length) plasticity index and pollen grains coefficient 

of shape of the analyzed Picea omorika trees. 

 

DISCUSSION 

As global climate change alters the environment in which an organism exists, plasticity is 

one of the mechanisms that assistance organisms adapt to newly created conditions. According 

to current knowledge, phenotypic plasticity is determined by genetics and heredity and as such 

makes the important potential for the evolution of species. Plasticity is primarily a characteristic 

of a particular trait, which makes the knowledge of the extent of genotypic plasticity (their norm 

of reaction) necessary in breeding programs (NICOTRA et al., 2010). 

In the life cycle of plants, male fertility, production of viable pollen in heterogeneous 

environmental conditions is crucial for the plant sexual reproduction. According to the obtained 

results, plasticity is trait-specific. The plasticity index was the smallest for the equatorial axis of 

P. omorika pollen grains, while the values of the plasticity index for the polar axis and the 

coefficient of pollen shape were statistically several times higher. Interindividual variability was 

obtained for all the analyzed morphological traits of pollen grains, which indicates that 

genotypes (trees) had different capacities of response to changing environmental conditions in 

two successive years. The literature also states that the tree (genotype) is an important factor in 

the variability of pollen dimensions (BATOS, 2014). A high and variable degree of plasticity of 
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pollen traits and the existence of the genotype-environment interaction enable the continuity of 

the genetic variability of pollen traits (DELPH et al., 1997). The results of the applied model of 

the analysis of variance proved the effects of environmental factors on the length or the 

equatorial axis of pollen grains. All the traits showed statistically significant variability between 

genotypes i.e. trees (genetic variability) as well as plasticity, i.e. statistically significant 

interaction (except for the length). 

The reason for the low environmental response (lower values of the plasticity index,  

below 0.20; Figure 7) probably lies in the fact that the study years had similar climate conditions, 

so these preliminary results show that this kind of experiment should be carried out for a longer 

period of time. It is also important to include a greater number of traits. Apart from fertility 

traits, for instance, eco-physiological traits should be included. They would give a better insight 

into the adaptation of organisms to newly formed suboptimal environments. 

The obtained values of pollen dimensions are in accordance with the literature data and 

classify Serbian spruce as a species with large pollen. Variability of pollen grain dimensions was 

confirmed not only between the analyzed trees (genotypes) but also within the samples of pollen 

harvested from the same tree (intraindividual variability). According to POPNIKOLA (1970), these 

differences are caused by different positioning of flowers in the tree crown, different nutritional 

conditions and the position of the anther in the inflorescence (the largest pollen is from the upper 

north and west facing part of the crown). In order to minimize this effect, microstrobiles were 

sampled only from one side of the crown, as indicated in the methods section. 

Regarding the effects of the environment on pollen traits, the literature provides different 

data. This is mainly due to the synergy of a number factors and the inability to study their 

individual effects separately. VARIS et al. (2011) did not reach a clear conclusion about the 

effects of the pollen origin (provenance) and the temperature on the pollen size, germination and 

pollen tube growth of Scots pine (Pinus sylvestris L.) in Finland. The above-stated authors found 

that the pollen from northern populations was more hydrated and larger in size, while the pollen 

from southern populations had better germination rates and pollen tube growth. They also 

pointed to significant differences between genotypes. GRIENER et al. (2015) analyzed the size of 

Nothofagus pollen using 157 samples from a large area of the southern hemisphere and 458 

Antarctic samples from the Eocene, Oligocene and Miocene periods. They concluded that during 

the geological epochs of the tertiary period, climate change and reduced moisture brought about 

an increase in the size of pollen, which is why they propose the use of pollen size in the 

reconstruction of changing climate conditions in the distant past. 

According to JATO et al. (2002), pollen traits are particularly affected by temperatures and 

moisture in the months immediately prior to pollen maturation, when buds awaken from 

dormancy and pass into the growing phase. In our study, the analysis of temperature and 

precipitation at both the annual level and the months before the maturation of the pollen shows 

that in the year with higher temperatures and increased precipitation (the warmer but humid 

year) pollen was smaller (smaller value of the length-equatorial axis). The width of pollen grains 

or the polar axis had a different pattern of values: it attained higher values in the year with higher 

temperatures and increased precipitation and pollen grains were more spheroid in shape (Figure 

4). According to EJSMOND et al. (2011; 2015), higher temperatures that increase desiccation rates 

make plants produce larger pollen grains and thus compensate for the lack of water. The results 

obtained herein lead us to the hypothesis on the effects of hydration on the shape of pollen. For 

more specific conclusions, it is necessary to continue the research for a longer period of time. 
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Literature provides controversial data regarding the correlation between the pollen size 

and its vitality. Some researchers do not have a clear position (VARIS et al., 2011 and references 

within), while others confirm the positive correlation between the size of pollen grains and the 

vitality of pollen (DOYLE et al., 2002; KELLY et al., 2002; ATLAGIĆ et al., 2009). 

The direct correlation between the size and the vitality of pollen propose the size as a 

criterion in the selection of pollen in cases of controlled hybridization and selection of desirable 

genes when a quick assessment of the quality of pollen is required. In this sense, the results 

obtained from the study of marked trees that were always in the group with the largest pollen are 

very useful and a make a good basis for the future individual selection and other breeding 

methods. 

According to the current literature findings, this is the first research on the plasticity index 

of pollen traits. These preliminary results justify future research of the plasticity not only of 

morphological traits of pollen but also of the vitality and energy of germination (the length of 

pollen tube) of one and several species in relation to the environmental factors. Furthermore, this 

kind of research can have an ecological aspect as part of the environmental monitoring pollution 

and climate change impacts. The monitoring of the pollen plasticity is important for the 

understanding of the scope of adaptation to the emerging changes in the environment in 

evolutionary aspect. The results presented are part of a multi-year experiment carried out on 

Picea omorika pollen grains. This experiment was conducted more than two decades ago (1991 

and 1992) and it is a part of climate change monitoring for the Serbian spruce (Picea omorika 

/Panč./Purkyne) pollen morphological traits. In the coming years, it is planned to re-sample 

pollen from the same trees and locations in order to monitor the impact of global climate change 

in a long time scale. The results presented here are related to a part of analyzes carried out, while 

other analyzes are in preparation for publication.  The results of this research can contribute to 

individual selection and breeding, as well as to the preservation of this important coniferous 

species - endemic and tertiary relict of the Balkan Peninsula. 
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Izvod 

Indeks plastičnosti morfoloških osobina polena Picea omorika /Panč./Purkyne analiziran je na 

uzorku 24 stabla iz semenske sastojine na lokalitetu Bela Zemlja (planina Zlatibor, Republika 

Srbija) u dve sukcesine godine. Prema dobijenim rezultatima polenovo zrno omorike ima 

dimenzije 93.3 µm/53.2 µm i spljoštenog je oblika (57.5%). Klimatski uslovi analiziranih godina 

su inicirale različit odgovor osobina polena za svako stablo. Interindividualne razlike u vrednosti 

indeksa plastičnosti su zabeležene za sve analizirane osobine (ekvatorijana osa, polarna osa, 

koeficijent oblika). Norme reakcije su bile blago strme i ukrštale se što je i potvrđeno značajnom 

interakcijom faktora varijabilnosti godine i stabla. Plastičnost osobina polena ima značaja u 

kontrolisanoj selekciji i oplemenjivanju vrste u cilju dobijanja genotipova sa većom otpornošću i 

adaptacijom na fluktuacije sredinskih faktora izazvanih globalnim klimatskim promenama.  
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