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Non-diabetic and alloxan-induced diabetic rats were fed with standard laboratory food enriched with 20% virgin
coconut oil for 16 weeks. In non-diabetic animals coconut oil improved insulin sensitivity and ability to control
glycaemia and decreased the serum triglycerides for almost 50% in comparison with controls. Supplementation
with coconut oil caused liver steatosis in both non-diabetic and diabetic animals. However, the severity of
steatosis was lower in diabetic animals compared to non-diabetic animals. Coconut oil had no effects on heart
histology, ascending and abdominal aorta wall thickening and atherosclerotic plaques development neither in

non-diabetic nor in diabetic animals. While alloxan treatment caused Type I diabetes in rats, supplementation
with coconut oil in combination with the alloxan unexpectedly resulted in Type II diabetes. The development of
severe insulin resistance and deterioration in serum lipid profile implied that the use of coconut oil is contra-

indicated in diabetic condition.

1. Introduction

The idea that the type of dietary regime could be linked with the
cardiovascular diseases (CVD) aroused in the mid-20th century
(Blackburn, 2012). Cornelis D. de Langen first noticed that native Ja-
vanese rarely exhibited thrombosis and emboli, probably because of the
local vegetarian diet with low cholesterol and other lipid content (De
Langen, 1935). Similarly, Isidore Snapper observed that CVD were
practically non-existent among low-income individuals in North China
owing to the cereal-vegetable based diet (Snapper, 1941). Based on the
results of the study conducted on Minnesota businessmen, Ancel Keys
argued that hypercholesterolemia was significantly correlated with
CVD development (Keys et al., 1963). This study was the first sys-
tematic cohort study which measured a number of potential risk factors
for their value in predicting heart attacks in healthy participants. It had
no a priori hypotheses, and it focused on a group consisting of a single
socioeconomic class, with an idea to compare men who developed CVD
to those who did not develop it. The investigators found the increasing
risk of developing CVD with higher cholesterol level. Strength of this

study was a long follow-up period; however, the weakness was the
inadequate sample size for CVD endpoints, and the fact that obtained
data could not be generalized to any larger groups than those of high
socioeconomic status who were successful in business and professional
life. In 1957, the American Heart Association proposed that modifying
dietary fat could reduce the incidence of CVD (Page, Stare, Corcoran,
Pollack, & Wilkinson, 1957). The first Dietary Guidelines for Americans
proposing to avoid excess saturated fatty acids (SFA) came in 1980
(Service, 1980). In the following decades, the recommendation to de-
crease dietary SFA became central dogma how to reduce CVD risk
(Jacobson et al., 2015).

However, there is an increasing body of evidence that this issue is
not that straightforward (Bier, 2016). First of all, SFA reduction itself
has a minor effect on CVD risk (Nettleton, Brouwer, Geleijnse, &
Hornstra, 2017). Secondly, not all SFA are atherogenic — the effect of
total SFA intake on CVD risk depends on the type of SFA consumed
(Khosla & Khosla, 2017). Inflammation is also an important factor in
CVD: the initiating event in atherosclerosis development is endothelial
dysfunction that causes vascular inflammation and subsequent plaque

* Corresponding author at: Institute for Physiology and Biochemistry “Ivan Paja”, University of Belgrade, Faculty of Biology, Studentski trg 16, 11000 Belgrade,

Serbia.
E-mail address: sine@bio.bg.ac.rs (S. Purasevié).

https://doi.org/10.1016/j.jff.2019.103601

Received 8 August 2019; Received in revised form 18 September 2019; Accepted 30 September 2019

Available online 31 October 2019

1756-4646/ © 2019 Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).


http://www.sciencedirect.com/science/journal/17564646
https://www.elsevier.com/locate/jff
https://doi.org/10.1016/j.jff.2019.103601
https://doi.org/10.1016/j.jff.2019.103601
mailto:sine@bio.bg.ac.rs
https://doi.org/10.1016/j.jff.2019.103601
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jff.2019.103601&domain=pdf

S. Durasevié, et al.

formation (Jaarin, Norliana, Yusof, Nursyafiza, & Mohd Saad, 2014).
The current nutritional guidelines advising a decrease in animal fat
consumption caused an increase in the use of vegetable fats relatively
high in omega-6 fatty acids. One of the main concerns regarding dietary
omega-6 fats is related to their conversion to pro-inflammatory eico-
sanoids (Alshatwi & Subash-Babu, 2018).

Virgin coconut oil (VCO) contains more than 90% of SFA and less
than 10% of mono-unsaturated fatty acids, with medium chain fatty
acids being the largest fraction (60%) of SFA (Ghani et al., 2018).
Owing to its chemical composition, VCO can be useful for studying the
effects of SFA on the lipid profile disruption. It is well known that
diabetes often presents with a typical dyslipidaemia, and that these
lipid changes may not only be the consequence of diabetes, but they
may also cause disturbances of glucose metabolism (Parhofer, 2015).
Increase in triglycerides level leads to free fatty acids level elevation,
which induces insulin resistance and f-cell dysfunction through dis-
ruption or modulation of the signalling cascade that links insulin re-
ceptors with glucose transporters. In addition, hypertriglyceridemia
may induce subclinical inflammation leading to the insulin resistance
and B-cell dysfunction (Briaud, Harmon, Kelpe, Segu, & Poitout, 2001;
Lee et al., 1994; Rachek, 2014). Considering this, the aim of the study
was to examine the effect of virgin coconut oil as a food supplement on
glucose and lipid homeostasis in non-diabetic and alloxan-induced
diabetic rats.

2. Materials and methods
2.1. Animals and treatments

All animal procedures were performed in compliance with the
ARRIVE guidelines and Directive 2010/63/EU. In accordance to
National legislation, all animal procedures were approved by the
Veterinary Directorate of the Ministry of Agriculture, Forestry and
Water Management, License number 323-07-10153/2016-05/1.

Wistar strain (Rattus norvegicus) 3-3.5 months old male rats were
used for the experiment. The animals were acclimated to 22 + 1°C and
maintained under 12 h light/dark period, with ad libitum access to tap
water and food. Rats were randomly divided into four groups and
housed in pairs in cages with six rats per group. The experiment took
16 weeks.

The rats of the control (Con) group were fed on standard commer-
cial rat food (Veterinary Institute, Subotica, Serbia). A single in-
traperitoneal (i.p.) injection of saline (5ml/kg body mass) was ad-
ministered on the first day of the experiment to allow comparability
with other experimental groups (see below).

The rats of non-diabetic virgin coconut oil (VCO) group were fed on
standard commercial rat food enriched with virgin coconut oil
(Granum®, Hajdukovo, Serbia). Based on the manufacturer data, the
most abundant compounds of VCO are caprylic (C8:0) — 6.57%, capric
(C10:0) — 5.78%, lauric (C12:0) — 48.51%, myristic (C14:0) — 19.50%,
palmitic (C16:0) — 9.02%, stearic (C18:0) — 3.57%, and oleic acid
(C18:1-trans-9) — 5.39%. VCO was added in the quantity to achieve the
final concentration of approximately 20% of food and rigorously stirred
for 10 min to allow equal oil distribution. The food was prepared
weekly: based on the measurements for 16 weeks, an average VCO
concentration in food was 21.402 + 0.002%. Additionally, the single
i.p. injection of saline (5ml/kg body mass) was administered on the
first day of the experiment to allow comparability with other experi-
mental groups (see below).

The rats of alloxan-induced diabetic (ALX) group were fed on
standard commercial rat food. The single i.p. injection of alloxan
(150 mg/kg body mass, dissolved in 5 ml of saline) was administered on
the first day of the experiment.

The rats of diabetic virgin coconut oil (ALX + VCO) group were fed
in the same way as the VCO group rats and administered with the same
alloxan treatment as the ALX group rats.
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Body mass, body mass gain, and food and water intake were mea-
sured weekly throughout the experiment. The results were expressed as
a time course of measured values and recalculated into the area under
curve (AUC) values.

2.2. Sample preparation

At the end of experiment the animals were killed by decapitation
using Harvard guillotine, and blood and tissue samples were collected.

Blood was incubated at room temperature for 45 min to allow clot
formation. Clot was removed by centrifugation at 2000g for 10 min in a
refrigerated centrifuge. The resulting supernatant was immediately
transferred into a clean polypropylene tube using a Pasteur pipette
(Tuck et al., 2009).

The serum and the tissue samples were stored at —80 °C until the
analysis.

2.3. Glycaemia measurement

Weekly glycaemia, oral glucose tolerance test (OGTT), and insulin
tolerance test (ITT) were measured using fresh tail capillary blood
samples and handy Wellion CALLA Light blood glucose test strips
system. The results were expressed as a time course of blood glucose
measurements and recalculated into the area under a curve (AUC) va-
lues.

Weekly glycaemia was measured after 16 h of overnight fast (Bowe
et al., 2014), with the last point measured prior to decapitation. Fasting
started at 4 p.m., with glycaemia measurement at 8 a.m. the following
day. Both time points were carefully chosen in respect with rats’ cir-
cadian rhythm, corresponding to the Zeitgeber time (ZT) point 10 and
2. As nocturnal animals, rats consume 80% of their daily food intake
during the period between 5p.m. and 6a.m. (Sidlo, Zaviacic, &
Kvasnicka, 1995), while at ZT 2 they exert very high efficacy in gly-
caemic regulation (la Fleur, Kalsbeek, Wortel, Fekkes, & Buijs, 2001).

OGTT was performed in the last week of experiment under the same
fasting conditions as weekly glycaemia measurement. Glucose was
administered by oral gavage (2 g/kg b.m./10 ml water). Blood samples
were taken previously (time point 0), and +30, +60, +90, and
+120 min after glucose administration.

ITT was performed after 6 h of fasting, two days after OGTT mea-
surement. Animal fasting started at 8 a.m., with glycaemia measure-
ment at 2 p.m. These time points were chosen in order to allow animals
to feed enough overnight to avoid the risk of severe hypoglycaemia
induced by insulin. Insulin (Actrapid; Novo Nordisk) was administered
by an intraperitoneal injection (0.75 units/kg b.m./ml saline). Blood
samples were taken previously (time point 0), and +15, +30, +45,
+60, and +90 min after insulin administration.

2.4. Serum insulin concentration measurement

Fasting serum insulin was measured commercially at the Institute
for Application of Nuclear Energy (INEP), Belgrade, Serbia, using
radioimmunoassay (RIA) assay kit made by the INEP. The INEP rat
insulin RIA assay utilizes '**I-labelled insulin and an insulin antiserum
made in guinea pigs against rat insulin. Using double antibody/PEG
technique, the INEP rat insulin RIA assay is able to determine the serum
insulin level with detection limit of 0.06 mIU/L. The method is based on
the competition between sample insulin and labelled insulin for binding
insulin antibodies. As a result, the amount of labelled insulin bound to
antibodies decreases as the concentration of sample insulin increases,
which is measured after separating antibody-bound labelled insulin
from free labelled insulin and counting both fractions. The insulin
concentration is calculated from the standard curve made by series of
increasing concentrations of standard unlabelled insulin. All measure-
ments were performed on the Wallac Wizard 1470 automatic gamma
counter.
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Homeostasis Model Assessment Insulin Resistance (HOMA1-IR)
index and Quantitative Insulin Sensitivity Check (QUICKI) are surrogate
measures of insulin resistance that are routinely used in human clinical
studies (Muniyappa, Lee, Chen, & Quon, 2008). However, experimental
results confirmed that both HOMA-IR and QUICKI indexes could be
used as reasonably reliable approximation of direct measures of insulin
resistance in rats and mice (Cacho, Sevillano, de Castro, Herrera, &
Ramos, 2008; Lee et al.,, 2008). Using fasting serum insulin con-
centration and the last day glycaemia measurement (i.e. the glycaemia
measurement prior to animal killing), a HOMA1-IR index [insulin (uU/
1) x glucose (mmol/1)/22.5] and QUICKI index [1/(log(insulin) + log
(glucose))] were calculated in order to estimate glucose homeostasis.

2.5. Serum lipids measurement

Fasting serum concentration of total triglycerides, total cholesterol
and the HDLC were measured using Roche Cobas C501 Chemistry
analyser, using the TRIGL, CHOL2, and HDLC4 reagent cassette. Serum
non-HDLC fraction was calculated as the difference between total and
HDL cholesterol.

2.6. Serum AST, ALT and AP activities measurement

Activities of ALT, AST and AP were measured using Roche Cobas
C501 Chemistry analyser, using ALTL, ASTL, and ALP2L reagent cas-
sette.

2.7. Serum haptoglobin concentration measurement

Serum haptoglobin concentration was measured using the immuno-
turbidimetric test on AU400 Chemistry analyser (Beckman Coulter Inc.,
USA).

2.8. Whole liver homogenate preparation

Livers (200-400 mg) were homogenized in sucrose buffer (250 mM
sucrose, 10 mM Tris-HCI, pH 7.6, 1mM EDTA) supplemented with
1 X phosphatase inhibitor Mix I (Serva). The homogenate was cen-
trifuged at 100,000g for 90 min at 4 °C and stored at —80 °C in aliquots
until use.

2.9. Liver nuclear extracts preparation

Livers were homogenized in the buffer containing 2M sucrose,
10 mM HEPES pH 7.6, 25mM KCl, 5mM MgCI2, 1 mM EDTA, 1 mM
spermidine, 1 mM PMSF, 1 mM DTT and 10% glycerol. After filtering
the homogenate through two layers of cheesecloth, the nuclei were
pelleted by centrifugation at 72,000g in a SW 28 rotor (Beckman L7-55)
for 30 min at 4 °C. The pelleted nuclei were resuspended in lysis buffer
(10mM HEPES pH 7.6, 100mM KCl, 3mM MgCI2, 0.1 mM EDTA,
1mM DTT, 0.1 mM PMSF, 10% glycerol). To precipitate chromatin,
(NH4)2SO4 pH 7.9 was added slowly with constant stirring to a final
concentration of 0.36 M. Chromatin was sedimented by centrifugation
(82,000g, Beckman Ti 50 rotor, 60 min, 4 °C). Nucleoproteins were
precipitated from the supernatant after the addition of crystallized
(NH,4),SO4 to the final concentration of 2.6 M and sedimented by cen-
trifugation at 82,000g in a Ti 50 rotor for 30 min at 4 °C. Nuclear ex-
tracts were dialyzed overnight against 25 mM Hepes pH 7.6, 40 mM
KCl, 0.1 mM EDTA, 1 mM DTT and 10% glycerol, resuspended in dia-
lysis buffer and frozen in small aliquots at —80 °C.

2.10. Western immunoblot analysis
Protein samples of serum (1 pl), whole liver homogenates (20 pg),

and nuclear extracts (25 ug) were separated by 12% SDS-PAGE and
transferred onto polyvinylidene difluoride (PVDF) membranes
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(Hybond-P, Amersham Pharmacia Biotech), which were blocked in
solution (0.2% Tween 20, 50 mM Tris-HCl pH 7.6, 150 mM NaCl)
containing 5% non-fat condensed milk. After protein transfer, PVDF
membranes were incubated with a primary antibody for 1.5h at room
temperature.

The following primary antibodies were used for the Western blot-
ting: goat polyclonal anti-HMGBI1 for serum analysis (K-12; Santa Cruz
Biotechnology); rabbit polyclonal antibodies specific to HMGB1
(ab18256; Abcam), NF-kB p65 (C-20, Santa Cruz Biotechnology), Nrf2
(ab31163, Abcam), B-actin (ab8227; Abcam) and rabbit monoclonal
anti-Hp antibody (ab131236, Abcam) for the analysis of liver homo-
genates and nuclear fractions. The blots were probed with horseradish
peroxidase-conjugated secondary antibody purchased from Santa Cruz
Biotechnology — bovine anti-rabbit IgG pr (sc 2379), bovine anti-goat
IgG (sc 2378); Abcam - goat anti-rabbit IgG (ab 97051). The im-
munoreactive bands were identified by the ECL detection system (Santa
Cruz Biotechnology). The bands were visualized and quantified with
TotalLab (Phoretix) electrophoresis software (ver. 1.1). For reprobing,
the membranes were incubated in 2% SDS, 100 mM fB-mercaptoethanol,
and 62.5 mM Tris-HCI pH 6.8 for 35 min at 50 °C, and then rinsed three
times, blocked, and probed again with another antibody. All im-
munoblot analyses were obtained from at least three independent ex-
periments.

2.11. COMET assay

Preparation of single-cell suspensions — For the comet test, a single-cell
liver suspension was prepared (Wilson, Pascoe, Parry, & Dixon, 1998).
Liver parts were excised and chopped separately 10 times in 0.2 ml of
HBSS using two fresh scalpel blades in a scissor-like movement on a
Petri dish. The livers were then washed off gently into a 15ml cen-
trifuge tube with a further 2.8 ml HBSS and 0.03ml of 0.1% trypsin.
The suspension was gently rocked for 10 min at room temperature, after
which 10 ml of HBSS was added and the suspension was passed through
a 40 um sieve to remove any large fragments that remained. After
centrifugation (800g for 5 min), the supernatant was discarded and the
pellet was carefully resuspended in 1 ml of HBSS. Cell viability was
measured by trypan blue dye exclusion method (Altman, Randers, &
Rao, 1993), and cell density was adjusted to 3 x 10° cell/ml.

Comet test — The assay was performed as described by Tice et al.
(2000). Microscopic slides were pre-coated with 1% normal melting
point (NMP) agarose and air-dried for 24 h at room temperature. Cell
suspension (30 pl) was mixed with 70 pl of 1% LMP (low melting point)
and added to the slides previously coated with of 1% NMP agarose. The
slides were covered with glass coverslips and placed at 4 °C for 5 min.
After the coverslips were gently removed, the slides were submerged
into ice-cold lysing solution (2.5M NaOH, 0.1 M EDTA, 0.01 M Tris,
1%TritonX100, pH10) and placed at 4 °C for at least 1 h. After lysis, the
slides were placed in a horizontal gel-electrophoresis chamber and
loaded with freshly made ice cold electrophoresis solution (300 mM
NaOH, 1 mM EDTA, pH 13) for 20 min at 4 °C to allow DNA unwinding
and expression of alkali-labile sites. The samples were then electro-
phoresed for 20 min at 25 V and 300 mA at 4 °C. Finally, the slides were
neutralized with 0.4 M Tris buffer (pH 7.5), stained with 20 pl ethidium
bromide (5 pg/ml) and analysed using fluorescence microscope (Leica)
and image analysis software (Comet IV, Perceptive Instruments). Fifty
nuclei were analysed per experimental point (in triplicate), and the
percentage of the fluorescence in the comet tail was used as a measure
of DNA damage.

2.12. Histology analysis

Liver, heart, ascending aorta and abdominal aorta samples were
collected and fixated in 4% formaldehyde solution. After fixation, the
samples were dehydrated in a series of increasing ethanol solutions
(70%, 96%, and 100%) followed by an immersion in a clearing agent
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(xylene). The tissue samples were then embedded with paraffin wax
and cut into serial 4 pm thick sections. Every tenth section was mounted
on glass slides and stained with haematoxylin and eosin (H&E) by a
standard procedure. From each animal, 2-3 H&E stained sections for
each tissue were analysed by two independent histologists using the
Leica DM4000 B LED microscope with digital camera Leica DFC295 and
Leica Application Suite (LAS, v4.4.0) software system and Olympus
BX41 light microscope and Olympus C5060A-ADU digital camera
C5060-ADU) with analySIS 5.0 software (Soft Imaging System,
Olympus). The microscopes, cameras and software were used to obtain
digital photographs of histological sections.

Changes in the thickness of the tunica media of ascending and ab-
dominal aorta were investigated by measuring the distance between the
first and the last elastic lamina, i.e. internal and external elastic lamina,
using ImageJ software (version 1.48; NIH, Bethesda, USA; free down-
load from http://rsbweb.nih.gov/ij). Two sections per animal for each
aorta were used to measure their thickness. The measurement was done
so that each section was measured in three different places within the
aortic circle, making a total of six measurements per each animal.

2.13. Statistical analysis

Where appropriate, the results were expressed graphically as the
time-course curves, which were subsequently recalculated into area
under a curve (AUC) values. The single time-point measurements were
presented as the mean =+ standard error of mean, and the AUC values
were presented as the percentage of controls. The level of statistical
significance was defined as p < 0.05. The data were checked for nor-
mality using Lilliefors and Kolmogorov-Smirnov tests. Differences in
investigated parameters between the groups were calculated using One-
way ANOVA. When significant differences were found, pairwise com-
parisons were performed using Holm-Sidak post hoc tests. Statistical
package SIGMAPLOT was used for all the analyses and graphical pre-
sentations.

3. Results and discussion

The use of alloxan is one of the most frequent approaches to che-
mical diabetes induction in a wide variety of animal species
(Radenkovic, Stojanovic, & Prostran, 2016). It causes destruction of rat
B-pancreatic cells in dosage between 150 mg/kg and 200 mg/kg, with
the intraperitoneal route of administration as the safest way to avoid
toxic effects and to reduce overall mortality (Federiuk, Casey, Quinn,
Wood, & Ward, 2004). As can be seen from our results, alloxan treat-
ment led to a body mass decrease (Fig. 1A), accompanied with an in-
crease in food (Fig. 1C,E) and water intake (Fig. 1D,E). As a result, body
mass gain of normally fed diabetic rats was decreased in comparison
with control animals (Fig. 1B,E). These changes were especially pro-
minent during the first 4-5 weeks after alloxan application, indicating
an intense diabetes progression. At the end of this period, body mass
gain and food and water intake were stabilized and remained inside
tight boundaries until the end of the experiment.

However, adding coconut oil to the diet of diabetic animals reduced
these changes (Fig. 1), shortening the period during which body mass
gain and food and water intake became stabilized for 50% (4-5 weeks
in ALX animals versus two weeks in ALX + VCO animals). As a result,
ALX + VCO group of animals had higher body mass gain and lower
food and water intake compared to ALX animals. The same effect was
also present in non-diabetic animals — VCO rat group had higher body
mass gain and lower food and water intake compared to controls
(Fig. 1B-E). We assume that coconut oil decreases food and water intake
and increases body mass gain in both non-diabetic and diabetic animals
because it is energetically highly efficient food, with a high content of
fatty acids which can be metabolized into metabolic water (Mellanby,
1942; Rutkowska, Sadowska, Cichon, & Bauchinger, 2016).

In non-diabetic animals, VCO lowered weekly glycaemia in
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comparison with normally fed controls (Fig. 2A,B,G). This effect was
present only during the first nine weeks of the experiment. The lowest
circulating glucose values were recorded after the second week of the
experiment. However, blood glucose was slowly rising over the fol-
lowing seven weeks, ultimately reaching the control values (Fig. 2B).
We suppose that the key factor was the quantity of coconut oil ingested
by animals — with the progress of experiment animals consumed less
food, including coconut oil in it, so its hypoglycaemic effects became
weaker. In non-diabetic animals coconut oil also lowered OGTT
(Fig. 2C,D,G) and ITT (Fig. 2E,F,G) glycaemia, but did not change
fasting serum insulin concentration (Fig. 2G). The changes in OGTT and
ITT glycaemic response confirmed better insulin sensitivity and the
ability to control glycaemia in animals supplemented with coconut oil
compared to normally fed controls (Fig. 2G). The coconut oil hy-
poglycaemic effect could be accounted for by its high content of the
lauric acid, which has insulinotropic properties (Garfinkel, Lee, Opara,
& Akwari, 1992; Iranloye, Oludare, & Olubiyi, 2013), and polyphenols,
which enhance sensitivity to insulin and reduce insulin resistance
(Narayanankutty et al., 2016; Siddalingaswamy, Rayaorth, & Khanum,
2011). We have also previously shown that supplementation with VCO
increases faecal abundance of probiotic bacteria, such as Lactobacillus,
Allobaculum and Bifidobacterium species (Djurasevic et al., 2018) in a
manner similar to that of metformin (Wu et al., 2017). Although it is
not clear how alterations in gut microbiota may promote beneficial
effects in glucose homeostasis, a potential mechanism includes an in-
creased production of short-chain fatty acids (De Vadder et al., 2016;
Koh, De Vadder, Kovatcheva-Datchary, & Backhed, 2016). Although it
is not clear how alterations in gut microbiota may promote beneficial
effects in glucose homeostasis, a potential mechanism includes an in-
creased production of short-chain fatty acids (De Vadder et al., 2016;
Koh et al., 2016). Short-chain fatty acids (SCFAs) are produced in the
colon and the caecum of the host under the anaerobic fermentation of
non-digestible dietary fibres, with the acetate, propionate, and butyrate
representing 95% of the whole SCFAs content. SCFAs significantly af-
fect glucose homeostasis through improved gut barrier function, re-
duced inflammation, and improved insulin sensitivity. Deficiency in
SCFAs synthesis has been associated with diabetes pathophysiology. It
was shown that supplementation with the dietary fibres increased
amount of plasma propionate, which causes a reduction in post-pran-
dial insulin release and improved glucose homeostasis through im-
proved pancreatic f3-cell function. Acetate and butyrate, on the other
hand, may also play a role in maintaining -cell function, by modula-
tion of cytotoxic T cells action (Chambers, Preston, Frost, & Morrison,
2018). It should be noted the OGTT curve in VCO animals had an
unusual shape — a slow glycaemia increase after glucose ingestion,
followed with no consequent glycaemia fall (Fig. 2D). This type of curve
could be a sign of early insulin resistance (Tschritter et al., 2003), or a
sign of a decreased glucose absorption insufficient to trigger insulin
release (Sulaiman & Ooi, 2014). Since ITT confirmed that VCO does not
cause insulin resistance, we presume that OGTT curve implicates some
kind of coconut oil interference with intestinal absorption of glucose
(Kwon et al., 2007; Proenca et al., 2017).

In diabetic animals coconut oil did not change weekly glycaemia
(Fig. 2A,G), OGTT (Fig. 2C,G) and ITT (Fig. 2E,G) in comparison with
normally fed diabetic rats. However, it increased fasting serum insulin
concentration up to the control level (Fig. 2G). As a result, there was a
switch between diabetes Type 1 in ALX animals, caused by a 60% de-
crease in insulin secretion, into diabetes Type 2 in ALX + VCO animals,
caused by insulin resistance. Accordingly, HOMA1-IR and QUICKI in-
dexes confirmed a decrease in insulin sensitivity and the ability to
control glycaemia in rats of both ALX and ALX + VCO groups, with the
latter having almost three times higher HOMA1-IR index, and around
15% lower QUCKI index in comparison with normally fed diabetic rats
(Fig. 2G).

It is unclear why coconut oil developed insulin resistance only in
diabetic animals. There are two pathways by which alloxan causes
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Fig. 1. Time-course curves of (A) weekly body mass (g), (B) body mass gain (g/100 g b.m./week), (C) food intake (g/kg b.m./day), and (D) water intake (ml/kg b.m./
day) in rats of control (Con), virgin coconut oil (VCO), alloxan (ALX) and alloxan + virgin coconut oil (ALX + VCO) groups. Data are given as mean =* standard
error. (Part E) The area under a curve values (presented as % of control) of body mass gain, food intake and water intake. Minimal significant level: p < 0.05.

Significantly different: 2in respect to Con; Pin respect to VCO; in respect to ALX.

diabetes (Lenzen, 2008). In the presence of intracellular thiols alloxan
generates different reactive oxygen species, including hydroxyl radi-
cals, ultimately resulting in beta cell destruction and insulin-dependent
diabetes. But alloxan also selectively inhibits glucose-induced insulin
secretion through the oxidation of glucokinase thiol groups, thus im-
pairing glucose-sensing ability of beta cells. Given the importance of
ROS role in both pathways, it is clear that preserved insulin secretion in
rats of ALX + VCO group is a proof of protective antioxidant potential
of coconut oil, just as we have previously shown (Durasevi¢ et al.,
2019). This VCO protective role could also explain a shortening of the
period during which body mass gain and food and water intake become
stabilized in ALX + VCO group compared with normally fed diabetic
animals.

However, if coconut oil protects beta cells from oxidative stress
caused by alloxan and restores normal insulin secretion, how could
insulin resistance develop under the same circumstances? There have
been many hypotheses concerning the link between high-fat diet and
insulin resistance. They include inhibition of GLUT4 (Wolf, 2008) and

attenuation of insulin signalling pathways (Blachnio-Zabielska, Grycel,
Chacinska, & Zabielski, 2016) by intracellular accumulation of lipids in
skeletal muscle and liver; low adiponectin serum level involved in
promotion of the insulin resistance (Medina-Urrutia et al., 2015), or
inflammation caused by high-fat diet (Sears & Perry, 2015).

In order to assess inflammation, we examined the changes in ex-
pression of haptoglobin and HMGB1 protein in the liver and serum, as
well as the relationship between nuclear expression of NF-kB p65 and
Nrf2 in liver cells (Fig. 3). Our results showed that coconut oil, while
having no effects on Hp in non-diabetic animals, decreased serum and
liver levels of this protein in diabetic animals (Fig. 3A). As haptoglobin
is an acute-phase protein, any inflammatory process may increase its
serum or liver level. Based on our results, it is clear that diabetes in-
duces both local (hepatic) and systemic (serum) inflammatory response,
and that VCO acts anti-inflammatory by lowering serum and liver
haptoglobin levels previously increased by diabetes.

Diabetes also increased serum and liver levels of HMGB1 protein
(Fig. 3B). Unlike haptoglobin, coconut oil further increases HMGB1
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Con VCO ALX ALX+VCO
Weekly glycaemia 100.00+1.62 93.21+1.67" 514.71+19.22% 561.86+9.26™
OGTT 100.00+2.33 87.95+1.79* 395.29+4.77* 390.50+10.09*
ITT 100.00+1.26 84.86+3.03" 602.63+6.65™ 591.93+10.61™
Insulin 21.421+0.88 22.21£1.90 7.93+0.61™ 23.02+0.86°
Last day glycaemia 4.33+0.08 4.38+0.11 23.69+1.36™ 22.23+0.59"
HOMA1-IR 4.12+0.18 4.37+0.43 8.26+0.69" 22.76+1.13%
QUICKI 0.510+0.005 0.508+0.005 0.443+0.005™ 0.370+0.003¢

Fig. 2. Time-course curves (mmol/1) of weekly glycaemia, oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) in rats of control (Con), virgin coconut
oil (VCO), alloxan (ALX) and alloxan + virgin coconut oil (ALX + VCO) groups. Panels A,C,E — data for all animal groups; B,D,F — inset for Con and VCO rat groups
only. Data are given as mean *+ standard error. Part G) The area under a curve values of weekly glycaemia, OGTT and ITT (presented as % of control); the serum
insulin concentration (pU/1) and glycaemia on the last day of the experiment (mmol/1), and HOMA1-IR and QUICKI indexes (data are given as mean = standard
error). Minimal significant level: p < 0.05. Significantly different: ®in respect to Con; "in respect to VCO; in respect to ALX.
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Fig. 3. Representative immunoblots of protein expression levels: (A) haptoglobin (Hp) in serum and whole liver homogenates, (B) HMGBL1 in serum and whole liver
homogenates, (C) NFkB p65 and Nrf2 level in liver nuclear extracts in rats of control (Con), virgin coconut oil (VCO), alloxan (ALX) and alloxan + virgin coconut oil
(ALX + VCO) groups. [} actin was used as a loading control. Data are given as mean + standard error. Minimal significant level: p < 0.05. Significantly different:
%in respect to Con; bin respect to VCO; “in respect to ALX.
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content in the liver of diabetic animals, without affecting its serum
concentration (Fig. 3B). The same effect was present in non-diabetic
animals — in VCO animals liver level of HMGBI1 protein was increased in
comparison with controls, while serum level was unchanged (Fig. 3B).
HMGBI1 protein is an inflammatory mediator and a necrotic marker. It
contributes to inflammation through the activation of signalling path-
ways leading to nuclear translocation of NF-kB p65 and nuclear export
of Nrf2 (Jovanovic Stojanov et al., 2018). In our experiment, the in-
creased level of serum and liver HMGB1 affected only normally fed
diabetic animals, rising the nuclear content of NF-kB p65, and de-
creasing the nuclear content of Nrf2 (Fig. 3C). It seems that coconut oil
supplementation counteracted these effects: increased liver HMGB1
level had no effects on the NF-kB p65 and Nrf2 nuclear content in the
liver of VCO group of animals, while in the ALX + VCO rat group the
nuclear content of NF-kB p65 was even decreased, and the nuclear
content of Nrf2 restored (Fig. 3C). These results proved that diabetes
causes inflammation on both local and systemic levels, while VCO acts
as an anti-inflammatory agent. In relation to the above, inflammation
cannot explain VCO-induced insulin resistance in diabetic animals, or at
least inflammation evaluated by the level of Hp, HMGB1, NF-kB p65,
and Nrf2.

Coconut oil and alloxan independently increased liver enzyme ac-
tivities in the serum, and increased DNA damage in liver cells (Table 1).
In case of animals fed by coconut oil, this can be explained by liver
steatosis development (Saadati et al., 2019), since all liver samples from
VCO group showed microvesicular steatosis characterized by small and
diffusely dispersed lipid vacuoles in the hepatocyte cytoplasm (Fig. 4B).
Liver fat accumulation is known to be induced by VCO (de Moura e Dias
et al., 2018), probably due to its high content of medium chain fatty
acids which after absorption in the small intestine are transferred di-
rectly by portal vein into the liver, and not into lymphatic fluid (You,
Ling, Qu, & Bistrian, 2008). This is especially important in case of our
experiment, since the average oil consumption in the VCO and
ALX + VCO rat groups was 11.015 = 0.259 and 17.487 + 0.285 g/kg
b.m./day, which, calculated for a man weighing 60kg (Blanchard &
Smoliga, 2015), represents a huge amount of oil: 124.471 * 2.926 and
197.598 = 3.225 g/day, respectively.

In case of ALX animals, the liver enzyme activities increase in the
serum, and DNA damage increase in liver cells can probably be ex-
plained by increased inflammation, since liver samples obtained from
normally fed diabetic animals did not show any significant pathohis-
tological findings (Fig. 4C). Assuming that these changes are caused by
inflammation, it can be expected that adding coconut oil to the diet of
diabetic animals will reduce it. This actually is the case — the liver
enzyme activities in the serum, and increased DNA damage in liver cells
were reduced in ALX + VCO animals in comparison to ALX rat group
(Table 1). This is another proof that VCO acts as an anti-inflammatory
agent, as we already showed through Hp, HMGB1, NF-kB p65, and Nrf2

Table 1
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analysis. Surprisingly, adding coconut oil to the diet of diabetic animals
caused almost no liver fat accumulation — micro- and macrovesicular
steatosis was found only in one liver sample from ALX + VCO rat group
(Fig. 4D). The explanation why liver steatosis is almost absent in dia-
betic animals fed by coconut oil could be the fact that in diabetes most
energy needs are met through lipid catabolism. Paradoxically, diabetes
reduces VCO-induced liver steatosis through increased fat burning.

In non-diabetic animals, coconut oil had no impact on the majority
of the serum lipid profile parameters. The exception were triglycerides,
whose concentration was almost 50% lower in comparison with con-
trols, causing a significant drop in atherogenic index (Table 1). The
drop in triglyceride concentration in the serum of rats supplemented
with VCO is probably the result of liver steatosis, which causes fat ac-
cumulation in the liver, and subsequent fat reduction in serum.

Diabetes itself decreased serum HDLC concentration, and increased
serum triglycerides and non-HDLC concentration, causing a rise in the
atherogenic index and the TC:HDLC ratio in ALX animals in comparison
with controls (Table 1). However, adding coconut oil to diabetic ani-
mals caused further increases in serum triglycerides, total cholesterol,
high density cholesterol, and non-high density cholesterol concentra-
tions, leading to a drop in the TC:HDLC ratio and an increase in the
atherogenic index in comparison to ALX animals (Table 1). These
changes clearly indicate intensive lipid catabolism in diabetic animals
fed by VCO, supporting our hypothesis about the influence of diabetes
on the reduction of liver steatosis in ALX + VCO animals.

The histological analysis of the heart showed no significant patho-
histological alteration, indicating a preserved morphology of the heart
tissue (Fig. 5A1-D1). The ascending (Fig. 5A2-D2) and abdominal
(Fig. 5A3-D3) aorta showed a normal histological structure in all an-
imal groups, without statistical differences in the thickness of medial
layer (Fig. 5E). No inflammatory changes were noticed in intimal,
medial and adventitial layers, and there were no signs of atherosclerotic
development in sub-endothelial part of the blood vessels. These results
show that observed changes in inflammation and serum lipids, espe-
cially atherogenic index, have not lead to pathological changes in the
heart and blood vessels.

4. Conclusion

According to the presented results, it can be concluded that coconut
oil exerts distinct effects on glucose and lipid homeostasis in non-dia-
betic and alloxan-induced diabetic rats. In non-diabetic animals these
effects are mostly protective — there is an improvement in insulin sen-
sitivity and the ability to control glycaemia, followed with an almost
50% decline in triglyceride serum. It seems that in diabetic rats coconut
oil acts as an anti-inflammatory agent, as it was evaluated by the re-
duction in liver and serum haptoglobin level, liver NF-kB p65 level,
serum ALT and AST concentrations, and liver cells DNA damage in

Activities of serum aspartate aminotransferase (AST, U/1), alanine aminotransferase (ALT, U/1) and alkaline phosphatase (AP, U/1), liver comet test (% of DNA in
comet tail), fasting serum concentration of triglycerides (TG, mmol/1), total cholesterol (TC, mmol/1), high density cholesterol (HDLC, mmol/1), and non-high density
cholesterol (non-HDLC, mmol/1), the TC:HDLC ratio and the Atherogenic index (AI) in rats of control (Con), virgin coconut oil (VCO), alloxan (ALX) and al-
loxan + virgin coconut oil (ALX + VCO) groups. Data are given as mean + standard error. Minimal significant level: p < 0.05. Significantly different: ®in respect to

Con; ®in respect to VCO; ‘in respect to ALX.

Con VCO ALX ALX + VCO

AST 155.63 * 5.56 240.50 + 9.52% 225.25 + 9.23% 145.50 + 2.80°°

ALT 44.88 + 2.40 59.38 + 2.73% 114.83 * 3.43%° 88.00 + 2.75%¢

AP 60.88 + 2.48 102.88 + 2.97° 739.25 + 21.05%° 695.83 + 27.57%P
COMET 1.744 + 0.123 5.706 + 0.352% 13.181 = 0.690*® 8.873 + 0.570°>
TG 1.370 + 0.028 0.680 * 0.016* 1.890 + 0.048%" 3.997 + 0.140°"¢
TC 1.850 + 0.022 1.829 + 0.041 1.898 + 0.027 3.188 + 0.041°"¢
HDLC 1.294 + 0.0192 1.339 + 0.023 1.033 + 0.046°" 1.880 + 0.029%"¢
non-HDLC 0.556 + 0.010 0.490 + 0.028 0.865 + 0.046%" 1.308 + 0.039%"¢
TC:HDLC ratio 1.431 + 0.010 1.366 + 0.021 1.854 + 0.080°" 1.697 + 0.026°%¢
Al 0.025 + 0.009 —-0.295 + 0.010% 0.264 + 0.025% 0.321 * 0.011%¢
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comparison with normally fed diabetic rats. VCO supplementation
presents no risk factor for the development of cardiovascular diseases,
since it has no impact on heart histology and the ascending and ab-
dominal aorta wall thickening and atherosclerotic plaque development
in non-diabetic and diabetic animals. However, in diabetic animals
coconut oil causes strong insulin resistance and deteriorates serum lipid

Journal of Functional Foods 64 (2020) 103601

Fig. 4. Liver section stained with haematoxylin
and eosin from control (A), virgin coconut oil
(B), alloxan (C) and alloxan + virgin coconut oil
(D) treated rats. A — normal histological structure
of the hepatic lobule in control animals; B —
diffuse microvesicular and macrovesicular stea-
tosis present in hepatocytes of the animals from
VCO group; lipid accumulation was mostly lo-
cated in the peripheral hepatocytes; C — ALX
group with mononuclear and eosinophilic in-
filtration in the portal spaces. D — ALX + VCO
group with mononuclear and eosinophilic in-
filtration in the portal spaces and steatosis.

profile in every sense, making it clear that the use of coconut oil is
contraindicated in case of diabetes. The question is to what extent co-
conut oil doses used in this experiment are applicable in terms of
human use. In this respect, the aim of future research will be to explain
the molecular mechanism of VCO-induced insulin resistance in dia-
betes, and to examine if smaller doses of VCO would have the same

E
Con VCO ALX ALX+VCO
Ascending aorta 125.07+4.35 137.73+£5.84 129.12+5.44 118.68+7.02
Abdominal aorta 87.79+1.99 91.62+1.72 88.60+2.49 84.4442.02

Fig. 5. Longitudinal section of the left ventricle heart muscle (1), and histological analysis of the ascending (2) and abdominal (3) aorta from control (A), virgin
coconut oil (B), alloxan (C) and alloxan + virgin coconut oil (D) treated rats. (E) The tunica media thickness of the ascending and abdominal aorta (um). Data are

given as mean *+ standard error.
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effects.
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