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ABSTRACT 

This study was carried out to identify the relations between macroinvertebrate communities 

and river basin specific (RBS) pollutants in the Danube River. The investigation was 

performed at 68 sites along 2,500 km of the Danube. Forward selection (FS), canonical 

correspondence analyses (CCA), the Spearman correlation coefficient (SC) and BIO-ENV 

analysis (to detect synergistic effects) were used to identify the relations between the 

macroinvertebrate dataset and selected biological metrics with RBS pollutants. Of the 20 

analysed pollutants (preselected based on NORMAN network methodology), seven (2,4-
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dinitrophenol, chloroxuron, bromacil, dimefuron, amoxicillin, bentazon and fluoranthene) 

were found to significantly correlate with macroinvertebrate communities. BIO-ENV analysis 

revealed 3 subsets of environmental variables that were in high correlation with the biota 

resemblance matrix, consisting mainly of a combination of the above-mentioned pollutants. 

Our results indicate that there are significant correlations between chemical determinants and 

aquatic biota. Moreover, this study contributes to the validation of the methodology used for 

prioritization of RBS pollutants proposed by the NORMAN network. 

 

INTRODUCTION 

The structure of macroinvertebrate communities is strongly influenced by many natural and 

anthropogenic stressors (e.g. hydromorphological and hydrogeological features, the physical 

and the chemical contaminants of the water and sediment, as well as the substrate type and 

interactions with other organisms) (Melo, 2009; Milošević et al., 2016; Rico et al., 2016). 

Changes in community composition are governed by the adaptability and environmental 

preferences of each taxon. Sensitive taxa could be used as bioindicators for altered 

environmental conditions (Melo, 2009; Collier et al., 2012, Milošević et al., 2016). 

Knowledge of the optimal environmental conditions for survival of certain macroinvertebrate 

taxa and the ecological amplitude for the individual environmental factors allowed us to 

include them in assessing the ecological status of lotic systems. 

The Danube is a river with the largest drainage area in Europe. The many densely-populated 

cities along its banks, agricultural activities, transportation and industries exert a profound 

anthropogenic influence on the morphology, hydrology, chemistry, as well as flora and fauna 

of the Danube’s aquatic habitats (Liška et al., 2008, Kolarevic et al., 2011; Liška et al., 

2015). 

Bearing in mind the diversity of chemical pollutants and their harmful effects on aquatic biota 

and human health, but also the limitations in assessing all of them, there is an obvious need to 

choose specific pollutants for monitoring the river basin (Slobodnik et al., 2015; Slobodnik 

and von der Ohe, 2015). The updated Directive 2013/39/EU (EU, 2013) establishes 

environmental quality standards (EQS) for 45 priority substances, which are expressed as the 

annual average (AA) concentrations and the maximum allowable concentrations (MACs).  

A list of 20 specific pollutants for the Danube River Basin was developed by Slobodnik and 

von der Ohe (2015). It is based on the NORMAN methodology (von der Ohe et al., 2011), 

and specific pollutants were identified on the ratio of MEC95 (maximum environmental 

concentration, 95th percentile) to PNEC (predicted no-effect concentration). The purpose of 
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NORMAN activities is to optimize the selection of the most “problematic” pollutants. The 

use of new substances in massive industrial production with possible harmful effects to the 

environment is enormous and we have to find a solution to promptly select the important 

pollutants. 

Numerous studies have analysed the physical and chemical environmental parameters that 

could influence community composition and structure of the aquatic macroinvertebrates 

(Weatherhead and James, 2001; Navarro-Ortega et al., 2015; Kuzmanović et al. 2016; 

Milošević et al., 2016; Rico et al. 2016). However, a small number of studies were devoted to 

the influence of xenobiotic compounds on macroinvertebrates in their natural habitat. Hence, 

there is a need to address the following issues related to the correlation between RBS 

pollutants identified as priority and the macroinvertebrate communities of the Danube river, 

and to detect the subset of RBS pollutants which is the most linkage with a macroinvertebrate 

community. 

 

METHODS 

Study area 

The Danube River, with a length of 2826 km and average altitude of 458 m, flows from west 

to east through 10 countries (Germany, Austria, Slovakia, Hungary, Moldova, Croatia, 

Serbia, Bulgaria, Romania and Ukraine). A huge number of cities with more than 200 million 

inhabitants have been built on its banks, thereby altering its hydromorphology and water 

quality, which has a negative impact on aquatic biota. The Danube River links 14 

economically, environmentally and culturally different countries. Agriculture is very 

important, that supplies cities with food but also discharge pesticides in water. At the same 

time, the river is the major source of drinking water in all countries (except Bulgaria) 

(Sommerwerk et al., 2010; Gajić et al., 2015). The Danube River is divided into 10 sectors 

(S) according to Robert et al. (2003): S1 - Upper Course of the Danube; S2 - Western Alpine 

Foothills of the Danube; S3 - Eastern Alpine Foothills of the Danube (S 1-3 is considered as 

upper stretch of the Danube); S4 - Lower Alpine Foothills of the Danube; S5 - Hungarian 

Danube Bend; S6 - Pannonian Plain of the Danube; S7 - Iron Gate (S 4-7 is middle stretch); 

S8 - Western Pontic Danube; S9 - Eastern Wallachian Danube; S10 - Danube Delta (S 8-10 is 

considered as lower stretch). Analyses of the community and environmental factors were 

performed in these sectors. 
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Sampling 

In the summer of 2013, during the Third Joint Danube Survey (JDS 3), samples were taken 

from 68 sites along 2500 km of the Danube River (Fig. 1).  

Samples of macroinvertebrates were collected from the left and right banks of the river (a 

total of 136 samples), using a standard benthological hand net (500-µm mesh size, net frame 

25 x 25 cm) and applying the kick and sweep technique (K&S) (Graf et al., 2015a). All 

available habitats were taken into the consideration during collection of the biological 

material (multihabitat sampling procedure - MHS). Each sample consisted of twenty sub-

samples (pooled together), in order to cover all substrate types and hydraulic conditions. 

Samples were fixed with 4% formaldehyde. The biological material was identified to the 

lowest possible taxonomic level (species in most of the cases) in the laboratory of the 

Institute for Biological Research “Siniša Stanković”, University of Belgrade, and in the 

Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of 

Niš, Serbia and in the Centre for Ecological Research, Danube Research Institute, Hungarian 

Academy of Science. 

At the same time, from all sampling sites water and sediment samples for chemical analyses 

were collected. Water samples for physico-chemical and chemical analyses were taken from 

the middle of the river. Surface sediment samples from left and right bank were mixed and 

wet sieved to obtain 63 µm fraction. These samples were transported to leading national 

laboratories in Germany, Austria, Czech Republic, Slovakia, Croatia, Serbia and Italy, where 

chemical analyses were performed. The details on the study design and sampling methods are 

presented in Liška et al. (2015). 

 

Statistical analyses 

Statistical data processing was performed using the Flora Software package (Karadžić, 2013). 

To analyse the heterogeneity of the macroinvertebrate dataset, detrended correspondence 

analysis (DCA) was employed, while the canonical correspondence analysis (CCA) with 

singular value decomposition (SVD) algorithm was performed to estimate the correlation 

between the macroinvertebrate taxa and chemical water parameters (20 RBS pollutants), 

previously defined by Slobodnik et al. (2015) and by Slobodnik and von der Ohe (2015) 

(Tab. 1). To identify the most influential chemical variables in the water, the forward 

selection (FS) method based on Pearson’s correlation test (P<0.05) and the Monte Carlo 

permutation test (999 permutations, P<0.05) were used. 
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In addition, biological environmental gradient (BIO-ENV) analysis (Clarke and Warwick, 

2001) was performed in order to test the relationship between the community and the 

concentration of chemical pollutants. 

As an input matrix for BIO-ENV analysis (Clarke and Warwick, 2001), a Euclidean distance 

matrix for 20 RBS pollutants was prepared. Using this matrix, BIO-ENV compares the 

chemical parameters with community structure, presented as Bray-Curtis resemblance 

matrices. As an output, this method, which uses the Spearman rank correlation test, reveals a 

subset of environmental variables that are highly correlated with the biota resemblance 

matrix. 

To identify the pattern of community response to environmental variables, a total of 34 

metrics along the investigated stretch of the Danube were analysed using the ASTERICS 

Software Package, Ver. 3.3.1 (AQEM Consortium, 2002) as follows: the species richness and 

abundance of 15 different taxa groups (as metrics that describe the benthic assemblages in a 

simplified way) were estimated as descriptors that generally define the communities along the 

longitudinal gradient of the river, the data on the total taxa richness (the number of species 

per sample, the number of families and the number of genera) and the community density 

(the relative abundance expressed as the number of individuals in the sample). For further 

analyses, preselection from these 34 metrics was performed. The relative abundance per 

sample, the total number of species, the total number of families and the total number of 

genera (4 metrics) were a priori selected as parameters proven to respond in predictable ways 

to various types and intensities of impacts (Rosenberg and Resh, 1993). Out of the remaining 

30 metrics (richness and abundance of taxa groups), preselection was done based on their 

diversity, occurrence along the river and presence in the majority of Danube sections 

Spearman’s rank correlation coefficient (SC, for P<0.05) was used to identify the relations 

between these metrics and the environmental variables (chemical water compounds). 

 

RESULTS 

A total of 282 macroinvertebrate taxa were identified (Fig. 2). Aquatic insects were found to 

be dominant in the macroinvertebrate communities along the whole Danube stretch. 

Chironomidae (Diptera) was the most diverse family with 86 identified taxa, followed by 

other insect orders, Trichoptera (25 taxa) and Ephemeroptera (13 taxa). Apart from insects, 

other groups such as Oligochaeta (40 taxa), Crustacea (24 taxa), Bivalvia (23 taxa) and 

Gastropoda (21 taxa), were also characterized by high taxa richness. Regarding the number of 

taxa per sampling site, the lowest number (13 taxa) was recorded at site JDS32 (upstream 

Acc
ep

ted
 A

rtic
le



www.jlimnol.it               

from Novi Sad, Serbia), while the highest number of taxa (63) was at site JDS14 (the 

Gabčikovo reservoir, Slovak Republic) (Fig. 1). 

Based on the FS procedure, 7 out of the 20 analysed RBS pollutants were found to be 

significantly correlated (assessed by the Monte Carlo test for p<0.05) with macroinvertebrate 

communities along the Danube River (Tab. 2), based on the analyses of the data on the 

relative abundance of species (density per sample) and measured concentrations of chemical 

compounds per site. 

Since the highest score on the x-axis of DCA was notably higher than 4.SD, which indicated 

high heterogeneity of the macroinvertebrate community, CCA was applied. The CCA results 

of the relative abundance of species at sites and selected RBS pollutants are shown in Fig. 3. 

The first and second axes explain 54% of the total variance. The Monte Carlo permutation 

tests revealed significant species-selected RBS pollutant correlations for the first two axes 

(P<0.05). 

In the middle stretch of the Danube (S4 and S5), benthic communities were clearly 

determined by two variables that represent the pollution originating from chloroxuron and 

bromacil (i.e. herbicides), and by one variable that underlines the influence of amoxicillin 

(i.e. antibiotics).  

The following taxa showed positive correlation with the mentioned pollutants, especially with 

bromacil: Bivalvia (Pisidium supinum Schmidt, 1851, P. henslowanum Sheppard, 1823, P. 

nitidum Jenyns, 1832, P. casertanum Poli, 1791, P. moitessierianum Paladilhe, 1866, P. 

subtruncatum Malm, 1855), Gastropoda (Theodoxus fluviatilis Linnaeus, 1758, Viviparus 

viviparus Linnaeus, 1758), Oligochaeta (Nais barbata Müller, 1773, N. elinguis Müller, 

1774). 

Benthic communities in the lower stretch of the Danube were exposed to high concentrations 

of 2,4-dinitrophenol (DNP) (a chemical with multiple uses in pesticides, dyes and wood 

preservatives, and in a weight-loss drug), bentazon, dimefuron, (herbicides) and fluoranthene 

(a polycyclic aromatic hydrocarbon or PAH). Bivalvia (Corbicula fluminea Müller, 1774, 

Pseudanodonta complanata Rossmässler, 1835), Chironomidae (Tanytarsus spp.), 

Oligochaeta (Propappus volki Michaelsen, 1916) stood out as taxa that were positively 

correlated with bentazon.  

Based on the analysed datasets, we found that the following species were positively 

correlated with DNP in water: Gastropoda (Lithoglyphus naticoides Pfeiffer, 1828, Physella 

acuta Draparnaud, 1805), Crustacea (Chelicorophium curvispinum Sars, 1895, 

Dikerogammarus haemobaphes Eichwald, 1841), Oligochaeta (N. communis Piguet, 1906), 
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Chironomidae (Polypedilum (Tripodura) scalaenum Schrank, 1803), Odonata (Gomphus 

flavipes Charpentier, 1825, G. vulgatissimus Linnaeus, 1758).  

On the other hand, analyses revealed that some of the recorded taxa were positively 

correlated with fluoranthene in water; these included Bivalvia (Dreissena sp., D. bugensis 

Andrusov, 1897, Sinanodonta woodiana Lea, 1834, P. amnicum Müller, 1774, Sphaerium 

corneum Linnaeus, 1758), Gastropoda (T. danubialis Pfeiffer, 1828, V. acerosus 

Bourguignat, 1862), Crustacea (Dikerogammarus sp., D. bispinosus Martynov, 1925, D. 

villosus Sowinski, 1894, Chelicorophium sp.), Oligochaeta (Tubifex tubifex Müller, 1774, 

Limnodrilus udekemianus Claparede, 1862). Some taxa displayed positive correlation to both 

DNP and fluoranthene: Bivalvia (Unio pictorum Linnaeus, 1758, U. tumidus Philipsson, 

1788, Corbicula fluminalis Müller, 1774, S. rivicola Lamarck, 1818), Oligochaeta (L. 

hoffmeisteri Claparede, 1862, L. claparedeanus Ratzel, 1868, Branchiura sowerbyi Beddard, 

1892). 

The BIO-ENV derived three RBS pollutant combinations that significantly (p=0.01) 

determine community structure (Tab. 3). The first model provided the combination of 5 RBS 

pollutants (DNP, chloroxuron, diazinon, bentazon, benzo(a)pyrene), which significantly 

correlated (Spearman’s rank correlation coefficient, Rho=0.289; P=0.01) with the spatial 

variability of the macroinvertebrate community. The results of BIO-ENV indicate that these 

three combinations of pollutants exhibit synergistic effect on the communities. 

We also studied the relation of the biological metrics and parameters that were found to be 

relevant for the investigated river, based on previously described procedures. The aim was to 

choose effective indicators, which could be used for screening for the presence of substances 

identified as the most important for the Danube River. The use of biological traits could 

reduce the efforts needed for the assessment, since in some cases for their calculation there is 

no need for identification to the species level (e.g. abundance-related metrics and taxa 

richness expressed as the total number of genera, or families). 

Thus, out of the 34 calculated biological metrics, 18 were used for supplementary analyses. 

The relative abundance per sample, the total number of species, the total number of families 

and the total number of genera, as well as the richness and abundance of insect orders, 

Diptera, Odonata and Trichoptera, Oligochaeta, Gastropoda, Bivalvia and Crustacea were 

chosen (Tab. 4). 

A total of 360 relations (matrix: 18 selected matrices x 20 analysed RBS pollutants) were 

analysed by SC. For 89 iterations, the rank order correlation was found to be significant 

(P<0.05), with 29 iterations with a negative, and 60 iterations with a positive correlation of 
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pairs. The variables found not significant by the FS were excluded, and finally 12 relations 

were selected (five pollutants and 12 biological metrics) (Tab. 5). Thus, based on a step-by-

step elimination, the linkages between metric and RBS pollutants were identified. 

 

DISCUSSION 

Having in mind that huge amounts of different chemicals are released into the environment, 

and that there are time and budget limitations for their assessment, there is an obvious need to 

single out chemicals that are essential for monitoring (von der Ohe et al., 2011). It is also, 

necessary to develop more effective biomonitoring tools. The present study was performed in 

order to identify which chemicals (RBS pollutants) have the highest correlation with 

macroinvertebrate assemblages in the Danube River. The interactions of macroinvertebrate 

communities and river-specific pollutants (contaminants that were found to be important for 

the Danube River Basin according to Slobodnik and von der Ohe, 2015) were analysed. Our 

aim was to identify noteworthy relations in order to validate the selection of RBS pollutants 

identified as important based on the MEC95/PNEC ratio (Slobodnik and von der Ohe, 2015), 

as well as to identify macroinvertebrates that could be further used in evaluation as effective 

indicators for particular pollutants or group of pollutants. 

Using different analyses, this study confirmed that patterns of macroinvertebrate 

communities can be used as a tool for the prioritization of environmental variables in terms of 

their relationship with xenobiotics. A better understanding of the interactions between 

different pollutants and macroinvertebrate communities will improve our ability to predict 

how communities respond and recover from the effects of xenobiotics and whether they can 

serve as a tool for assessing the effectiveness of remediation measures. 

Based on the obtained results, a variety of taxa, such as species belonging to Oligochaeta 

(Annelida), Chironomidae (Insecta: Diptera) and Mollusca, were present in occurrences of 

different pollutants. The presence of organic compounds in aquatic ecosystems could cause 

changes in community structure (Schäfer et al., 2007). Likewise, the macroinvertebrate 

communities found in the eastern and lower Alpine foothills, as well as along the Hungarian 

stretch of the Danube, were characterized by the predominance of insects (mostly Diptera: 

Chironomidae) and aquatic worms (Annelida: Oligochaeta). These sites were exposed to 

increased concentrations of the pesticides (herbicides), bentazon, chloroxuron, bromacil and 

dimefuron. Pesticides have many possible sources and are generally considered as pollutants 

that possess the potential to decrease the relative abundance as well as number of sensitive 

taxa in macroinvertebrate communities (Schäfer et al., 2007). Pesticides can affect all groups 
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of aquatic organisms, such as microorganisms (DeLorenzo et al., 2001; Schäfer et al., 2007), 

macroinvertebrates (Castillo et al., 2006; Kuzmanović et al. 2016; Maund et al., 1997), plants 

(Suresh Kumar and Han, 2011) and fish (Grande et al., 1994; Slaninová et al., 2009; Eqani et 

al., 2013). 

Using the relation between macroinvertebrate assemblages and RBS pollutants in the 

Danube, this study confirmed the importance of herbicides and DNP, as well as the 

importance of the antibiotic amoxicillin and the PAH fluoranthene. Among the dinitrophenol 

class of compounds, DNP is a widely used synthetic chemical as a component of agricultural 

pesticides, wood preservers, dyes, explosives and a weight-loss agent (Miranda et al., 2006). 

The entire ecosystems and aquatic organisms could be disrupted by those commercially 

available herbicides. 

The high abundance of Chironomidae and Oligochaeta species is typical for the entire 

navigable stretch (lower stretches) of the Danube River (Literáthy et al., 2002; Csányi and 

Paunović, 2006; Graf et al., 2015a,b). This distribution suggests that chironomids and 

oligochaetes are more tolerant to organic compounds in comparison to other 

macroinvertebrate groups. The tolerance of oligochaetes has been extensively discussed in 

many studies and this group is generally used to describe the human impact on the 

environment (Rodriguez and Reynoldson, 2011). Numerous data demonstrates the sensitivity 

of oligochaetes to pesticides, PAHs and other compounds, as well as their capability to repair 

communities by increasing the number of taxa and abundance faster than the other 

macroinvertebrate groups (Rodriguez and Reynoldson, 2011). It was reported that herbicides 

reduced the food supply for benthic grazers as they inhibit the growth of aufwuchs; 

moreover, they can lead to starvation, followed by reduction of growth, energy storage, 

slowing down population development (Rybicki et al., 2012). 

Even though FS and CCA revealed the connection between species and analysed xenobiotics, 

in many cases this relation did not provide a logical frame for using certain species as reliable 

indicators. The reason for this is the cooperative (combined and/or synergistic) influence of 

many environmental variables, including both natural and the anthropogenic factors, multiple 

stressors, as well as their characteristic distribution within the space. Another reason is 

related to the distribution of the macroinvertebrate assemblages, as many species occur 

rarely, with a low abundance, due to the combined influence of many environmental 

variables, including multiple stressors. In order to minimize the influence of the longitudinal 

river gradient on the results, only taxa that were widely distributed along the entire analysed 

river stretch were taken into the consideration. Thus, Ephemeroptera were excluded from the 
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analyses, since this insect order is only characteristic for the upper stretch of the Danube 

River. 

Our results indicate that the number of Diptera and Trichoptera taxa and their abundance 

decreased significantly with increasing levels of bentazon in the environment. Likewise, 

Akerblom (2004) noted that the survival rates and abundance of some species of Trichoptera 

decreased with increasing concentrations of pesticides. On the other hand, insects belonging 

to the Chironomidae (Diptera) family appeared to respond differently to pesticides. Wallace 

et al., (1989) and Friberg et al. (2003) found that in the presence of pesticides the number of 

Chironomidae increased, while in contrast, Dieter et al. (1996) showed that pesticides caused 

a decrease in their abundance, which is in correlation with our results. 

The increase in dimefuron concentration led to a reduction in the abundance and diversity of 

Oligochaeta and the abundance of Crustacea. This relation between Crustacea and the 

pesticide is in accordance with previous findings (Dieter et al., 1996; Liess and Schulz, 1999; 

Friberg et al., 2003). 

In the context of certain herbicides (bromacil) and antibiotics (amoxicillin) and their 

correlation with selected metrics, Spearman correlation analyses showed a strong positive 

correlation between these two datasets. Even though our results suggest that there were some 

correlations between antibiotics (amoxicillin) and macroinvertebrates, there is still 

insufficient information regarding this subject, especially in natural habitats, and thus it is 

hard to make a conclusion. Some studies on the pharmaceutical effects on invertebrates (e.g. 

Hydra vulgaris, Gammarus pulex) have been undertaken (Watts et al., 2001; Pascoe et al., 

2003). Further investigations into the potential toxicity of pharmaceuticals on freshwater 

macroinvertebrates are needed. 

In general, our study confirms that statistically significant correlations exist between the 

pollutants preselected by the NORMAN procedure as RBS pollutants for the Danube River 

and macroinvertebrates. However, the relation between macroinvertebrate communities and 

pressures in an aquatic environment is more complex. Rico et al. (2016) reported that 

chemical pollution in isolation has a relatively low contribution to macroinvertebrate 

communities in comparison with habitat characteristics and physicochemical conditions, 

especially in the case of large rivers. The actual impact of different chemical compounds on 

aquatic biota remains to be elucidated, particularly in a multi-stressor environment (Navarro-

Ortega et al., 2015), which is often the situation in the case of water bodies situated in 

densely-populated areas.  
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CONCLUSIONS 

Our results indicate that combinations of the examined RBS pollutants express synergistic 

effect on communities. Out of 20 preselected Danube RBS, chloroxuron, bentazon, DNP, 

dimefuron, amoxicillin, bromacil and fluoranthene have the highest correlation with 

macroinvertebrate communities. At sites exposed to increased concentrations of pesticides, 

insects (mostly Chironomidae), aquatic worms (Oligochaeta) and Mollusca were increased in 

abundance and number of taxa, while the number of sensitive taxa was decreased. 

Additionally, the BIO-ENV model confirmed that the combination of 5 RBS pollutants 

(DNP, chloroxuron, diazinon, bentazon, benzo(a)pyrene) is the most important variable 

structuring faunal communities in the Danube River. We are aware that the relationship 

between community and chemical stressors in an aquatic environment is complex and that 

this study can only provide an indication of the relation. It is necessary to combine several 

indicators to increase confidence in the bioassessment at the community level, which would 

be usable in water management. It is also important to combine field and laboratory 

experiments in order to identify the complex relations of stressors and the environment. 

Optimization of such an approach is extremely important, since the production of new 

potential stressors from the industrial sector (newly emerging substances) is enormous 

(Navarro-Ortega et al., 2015). 

This study is an important step in the biological valorisation of RBS pollutants that were 

previously recognized as key stressors according to the MEC95/PNEC ratio (Slobodnik and 

von der Ohe, 2015). Our work provides additional evidence in supporting the procedure of 

RBS pollutants selection and thus contributes to a more effective management of chemical 

compounds. 
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Tab. 1. List of 20 prioritized RBS pollutants for the Danube River according to Slobodnik et 
al. (2015), with the number of sites where they were detected, the minimum and maximum 
recorded concentrations and the standard deviation. 

No. Substance (µg/L) 
No. of sites 
substance 
detected 

Min Max St. dev. 

1 2,4-Dinitrophenol (DNP) 68 0.01 0.04 0.007583024 

2 Perfluorooctansulfonate 

(PFOS) 

63 0.002404459 0.02623 0.004235189 

3 Chloroxuron 65 0.0014 0.04 0.006666883 

4 Desethylterbutylazine 54 0.0031 0.014 0.002144425 

5 2-hydroxy atrazine 53 0.002 0.02 0.002711988 

6 Bromacil 31 0.0231236 0.186626 0.03574977 

7 Dimefuron 58 0.0005157 0.0412553 0.008546081 

8 Bisphenol A 30 0.0055565 1.339275 0.309721162 

9 Benzo(g,h,i)perylene 65 0.0007 0.029 0.003856138 

10 Diazinon 21 0.001 0.004 0.000815239 

11 Indeno(1,2,3-c,d)pyrene 15 0.0000034 0.0037 0.001206503 

12 Linuron 32 0.0001 1.4225 0.449419718 

13 Amoxicillin 33 0.0014602 0.1331076 0.024708156 

14 Metazachlor 30 0.0005 0.0155 0.004063954 

15 17beta-estradiol 8 0.0019 0.0227 0.006775943 

16 Benzo(a)pyrene 3 0.0024 0.0000024 0.001356309 

17 Diclofenac 51 0.000892128 0.068804665 0.012758548 

18 Bentazon 61 0.003 0.02 0.002485741 

19 Fipronil 1 0.02 0.02 0 

20 Fluoranthene 58 0.002 0.0204 0.002809182 
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Tab. 2. The results of the Forward Selection method (Monte Carlo Permutation Test for 
P<0.05) - the relative abundance of species at sites (individuals per K&S sample) and 
selected RBS pollutants (µg/L). 
 

RBS pollutant Substance type Variable Eigenvalue Probability (P) 

Chloroxuron Herbicide Chlx 0.2345 0 

Bentazon Herbicide BENT 0.2339 0.014 

2,4-Dinitrophenol Multiple use DNP 0.2011 0.028 

Dimefuron Herbicide Dime 0.1781 0.01 

Amoxicillin Antibiotic AMOX 0.1777 0.016 

Bromacil Herbicide Brcil 0.1613 0.018 

Fluoranthene PAH FLAN 0.144 0.046 
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Tab. 3. BIO-ENV analysis reveals the first three best RBS pollutant combinations for the 
macroinvertebrate community data matrix with values of Spearman’s rank correlations (Rho) 
and P. 

 P Rho Best RBS pollutants combination 

1 0.01 0.289 2,4-dinitrophenol (DNP), chloroxuron, diazinone, 

bentazon, benzo(a)pyrene 

2 0.01 0.280 Chloroxuron, diazinone, bentazon, benzo(a)pyrene 

3 0.01 0.280 Chloroxuron, diazinone, bentazon, benzo(a)pyrene, 2-

hydroxy atrazine 

 

Tab. 4. Selected metrics along the Danube River, expressed as the average, maximum and 
minimum values, and the standard deviation (St. dev). 

Metrics Abbreviations Average Max Min St. dev 

Total abundance Abu 1394.11 6381 18 1574.97 

Total no. of taxa NT 24.60 50 2 10.95 

Total no. of families NoF 11.29 23 1 4.50 

Total no. of genera NoG 20.11 42 2 8.78 

No. of taxa - Diptera DipT 7.54 21 0 5.65 

No. of taxa - Odonata OdT 0.36 2 0 0.62 

No. of taxa - Trichoptera TriT 0.85 5 0 1.36 

No. of taxa - Oligochaeta OliT 3.91 8 0 2.24 

No. of taxa - Gastropoda GasT 2.33 6 0 1.83 

No. of taxa - Bivalvia BivT 3.28 11 0 2.56 

No. of taxa - Crustacea CruT 5.56 11 0 2.79 

Total abundance - Diptera Dip_Ab 203.07 4019 0 614.12 

Total abundance - Odonata Odo_Ab 1.86 57 0 8.74 

Total abundance - Trichoptera Tri_Ab 12.62 877 0 120.50 

Total abundance - Oligochaeta Oli_Abund 355.56 4165 0 798.45 

Total abundance - Gastropoda Gastr_Abund 266.95 3120 0 577.23 

Total abundance - Bivalvia Biv_Abund 260.82 2324 0 529.79 

Total abundance - Crustacea Crus_Abund 289.57 4704 0 720.21 
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Tab. 5. Results of relations between metrics and selected pollutants after step-by-step 
elimination. Abbreviations for selected metrics were given in Tab. 4. 
 

  Spearman t(N-2) P-level 

TriT & Bentazon -0.382971 -414.578 0.000071 

Tri_Ab & Bentazon -0.371013 -399.528 0.000124 

DipT & Bentazon -0.257950 -266.985 0.008857 

Dip_Ab & Bentazon -0.205747 -210.245 0.038025 

NT & Bentazon -0.196637 -200.553 0.047608 

OliT & Dimefuron -0.229551 -235.849 0.020294 

CrusAbund & Dimefuron -0.211300 -216.181 0.033019 

OliAbund & Dimefuron -0.198227 -202.240 0.045805 

CruT & 2,4-Dinitrophenol -0.246140 -253.953 0.012640 

Gastr_Abund & Fluoranten -0.197674 -201.653 0.046426 

Odo_Ab & Chloroxuron -0.373276 -402.359 0.000112 

OdT & Chloroxuron -0.309885 -325.929 0.001527 
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Fig. 1. Localities along the 10 sectors of the Danube River: Sector 1 (S1) - locality 1; Sector 2 
(S2) - localities 2-5; Sector 3 (S3) - 6-8; Sector 4 (S4) - 9-18; Sector 5 (S5) - 19-27; Sector 6 
(S6) - 28-42; Sector 7 (S7) - 43-45; Sector 8 (S8) - 46-60; Sector 9 (S9) - 61-65; Sector 10 
(S10) - 66-68. 
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Fig. 2. The mean abundance of macroinvertebrates along the Danube River. 
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Fig. 3. CCA plot with the singular value decomposition (SVD) algorithm in relation to 
macroinvertebrates and selected RBS pollutants (variables) along the Danube River (Monte 
Carlo test, P<0.05) - a) plot of sites and variables; b) bi-plot (sites and species) and variables. 
Numbers 2-10 identify the sectors according to Danube Typology (Robert et al., 2003; 
Sommerwerk and Hein, 2009). 
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