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Abstract: Disturbed redox homeostasis represents a hallmark of cancer phenotypes, affecting 

cellular metabolism and redox signaling. Since reactive oxygen and nitrogen species (ROS/RNS) 

are involved in regulation of proliferation and apoptosis, they may play a double-faced role in 

cancer, entailing protumorigenic and tumor-suppressing effects in early and later stages, 

respectively. In addition, ROS and RNS impact the activity and communication of all tumor 

constituents, mediating their reprogramming from anti- to protumorigenic phenotypes, and vice 

versa. An important role in this dichotomic action is played by the variable amounts of O2 in the 

tumor microenvironment, which dictates the ultimate outcome of the influence of ROS/RNS on 

carcinogenesis. Moreover, ROS/RNS levels remarkably influence the cancer response to therapy. 

The relevance of ROS/RNS signaling in solid tumors is witnessed by the emergence of novel 

targeted treatments of solid tumors with compounds that target ROS/RNS action and production, 

such as tyrosine kinase inhibitors and monoclonal antibodies, which might contribute to the 

complexity of redox regulation in cancer. Prospectively, the dual role of ROS/RNS in the different 

stages of tumorigenesis through different impact on oxidation and nitrosylation may also allow 

development of tailored diagnostic and therapeutic approaches. 
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1. Introduction 

In the highly sophisticated network of biological processes, certain molecules might have a dual 

role, depending on the context and their activity as a part of complex intra- and intercellular 

communication pathways. Some of them, such as reactive species, are involved in the maintenance 

of regular physiological settings, but in pathophysiological conditions they may become pathogenic 

effectors of cell damage and destruction, and contributors to disease development. For example, it is 

well known that impaired redox homeostasis, in association with significant metabolic shift, is one 

of the key determinants of malignant phenotypes.  

Disturbance of homeostasis starting from the single-cell level transmits and amplifies from the 

surrounding area toward the whole organism. Cancer cells have the capacity to expresses different 

metabolic phenotypes, ranging from glycolysis to increased mitochondrial respiration, as an 

adaptive mechanism to immediate or chronic modifications of both extracellular and intracellular 

conditions. According to the fourth principle of the redox code postulated by Jones and Sies (2015), 
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an adaptive redox network is necessary to preserve cellular homeostasis in a changing environment, 

and if functionally impaired, contributes to disease [1].  

Indeed, it has been shown that oxygenation, glucose availability, and growth factors 

significantly affect intracellular reactive oxygen species (ROS) and nitric oxide (NO) levels, which in 

turn contributes to regulation of downstream signaling pathways. By modifying their metabolic 

phenotype, the cancer cells maintain steady-state ROS and reactive nitrogen species (RNS) levels 

within a narrow range, which allows them to increase growth and invasion, while limiting their 

apoptotic propensity [2,3]. Reactive species cannot be regarded as a single entity, since they are 

produced under different conditions and they all possess specific chemical properties [4,5]. They 

primarily comprise reactive oxygen and nitrogen species, but also sulfuric, chlorine, and bromine 

reactive species [5,6].  

These molecules are produced as a result of aerobic metabolism, which is usually beneficial but 

is endowed with potential cellular toxicity at higher concentrations. It is generally accepted that at 

physiologically low concentrations, these molecules regulate a number of intracellular events, such 

as regulation of enzyme activity, post-translational modifications of newly synthesized proteins, 

signal transduction, regulation of gene expression, as well as regulation of apoptosis [6].  

The aim of this review is to highlight the best-characterized aspects of the dichotomic role 

played from the ROS/RNS pathway in the regulation of solid tumors and the possible translation of 

these concepts to the clinical setting. Efforts will also be made to highlight the emergence of 

ROS/RNS tailored theragnostic approaches to be considered during specific stages of the tumor 

development. 

2. The Double-Faced Role of ROS/RNS in Cancer  

In physiological conditions, the role of ROS is preferentially directed towards redox signaling 

rather than oxidative damage to all types of macromolecules, including proteins, lipids, and DNA 

[7,8]. By definition, ROS/RNS comprise both free radicals, containing one or more unpaired 

electrons, such as superoxide (O2•), hydroxyl- (OH•), nitric oxide, alkoxyl (RO•), or peroxyl-(ROO•) 

radicals, along with non-radical ROS, which include hydrogen peroxide (H2O2), organic 

hydroperoxides (ROOH), and hypochloride (HOCl). The most reactive free radical, OH• is highly 

reactive towards DNA and can activate certain oncogenes, such as K-Ras. Superoxide-stimulated 

cellular damage is also due to OH• production via the Haber–Weiss reaction [9].  

Among different ROS, H2O2 has emerged as a major redox metabolite, which is effective in 

redox sensing, signaling, and redox regulation [10,11]. H2O2 is recognized as a second messenger in 

several growth-factor-induced signaling cascades. It modulates the activation of the transcription 

factors activating protein-1 (AP-1), nuclear factor erythroid 2-related factor 2 (Nrf2), cAMP response 

element-binding protein (CREB), hypoxia-inducible factor α (HIF-1α), p53, and nuclear factor-κB 

(NF-κB), as well as signaling for epithelial–mesenchymal transition (EMT) [10]. Increased amounts 

of H2O2 may decide between the promotion or suppression of carcinogenesis in a dichotomic fashion 

[12], depending on the levels and the subcellular location of increased H2O2. While high amounts of 

H2O2 at the cell surface usually induce the activation of the cell cycle, a high H2O2 concentration in 

the mitochondrial compartment might inhibit cell cycle progression. Furthermore, various cancer 

cells are stimulated to undergo cell division at low H2O2 concentrations, while higher concentrations 

result in cell growth inhibition and even cell death. Thus, a predominant increase in O2• (oncogenic 

ROS) supports cell survival and promotes oncogenesis, whereas a shift in favor of H2O2 

(onco-suppressor) induces cell death signaling [13]. Hence, H2O2 can induce either cell proliferation 

or cell death, depending on its levels, with specific thresholds in specific cell types [12]. By using 

H2O2 as a thiol oxidant, specific protein cysteines function as redox switches, making this ROS 

essential for positioning the set point of the redox proteome [14]. 

3. ROS-Induced Genetic and Epigenetic Instability in Cancer Cells 

Elevated ROS can either trigger apoptotic mechanisms or directly impair and damage cellular 

macromolecules (Figure 1). 
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Figure 1. The role of oxidative and nitrosative stress in redox signaling. Disturbed redox homeostasis 

represents a hallmark of malignant phenotypes, affecting redox signaling in cancer cells. Reactive 

oxygen and nitrogen species (ROS/RNS) are effective in redox signaling and regulation by affecting 

the activity of redox-sensitive kinases and phosphatases, enzymes involved in ubiquitin and 

proteasomal degradation, transcription factors, and executor apoptotic molecules. Being involved in 

both regulation of proliferation and apoptosis, ROS/RNS seem to have double-faced roles in cancer. 

The extent of oxidative damage of macromolecules depends on both ROS intracellular 

concentration and on the pro-oxidant–antioxidant balance, which is altered in numerous disorders, 

including cancer [7,15,16]. Indeed, increased ROS production and consequential oxidative stress 

represent hallmarks of carcinogenesis [6,7].  

Oxidative stress and ROS accumulation might induce genetic and epigenetic instability in 

cancer cells [17] by impairing cellular repair mechanisms, thus causing DNA damage and mutations, 

and by affecting DNA methylation and demethylation, with consequential modification of the 

overall methylome [18,19], as well as indirect modulation of the activity of histone-modifying 

enzymes [20].  

The main targets of oxidative damage are the CpG islands, as the oxidation of the methylated 

cytosine within CpG repeats produces hydroxy-methyl-cytosine (OH-mC), which initiates 

demethylation and may provoke further loss of epigenetic markers in some tumors, with 

consequential emergence of inappropriate transcription. In addition, the oxidation of either 

methyl-cytosine or guanosine (forming 8-oxo-guanosine) within properly methylated CpG islands 

causes a loss of inhibition for binding of transcription factors, leading to loss of epigenetic regulation 

[17–19]. Together with histone lysine methylation, the methylation of CpGs also regulates 

chromatin, whereby extensive methylation is followed by chromatin compaction, generating a 

transcriptionally silent state. By doing so, oxidative stress may also affect the epigenetic regulation at 

the histone, histone modifier, and chromatin structure levels [21]. 
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There are multiple ways in which ROS can contribute to both tumor development and 

progression, including regulation of cellular proliferation, apoptosis, tissue invasion, angiogenesis, 

and metastasis. As recently suggested by Assi (2017), since ROS are involved in both the regulation 

of proliferation and apoptosis, they may play a double-faced role in different stages of the disease, 

entailing pro-oncogenic effects in the early stages and potential tumor suppressor effects in the late 

stages of cancer [21]. 

4. Pleiotropic Role of Nitric Oxide in Cancer 

Nitric oxide (NO) is included as a universal signal in diverse biosystems, and plays a key role in 

communication both inside the cell and between the cell and the environment [22]. This feature was 

developed through evolution and was influenced by many factors. Due to its high chemical 

reactivity, the list of target molecules that may undergo significant biological and functional 

modifications in response to NO is very long [22]. The biological activities of NO are realized 

through cyclin guanosine monophosphate (cGMP)-dependent and cGMP-independent routes. The 

soluble form of guanylyl cyclase is the unique known “receptor” for NO. After the binding of NO to 

heme, which contains the GMP subunit, the enzyme guanylyl cyclase develops a cyclic 

configuration and becomes functionally competent in order to activate cGMP-dependent kinases, 

further transducing numerous signals through a cascade of phosphorylation of different proteins 

[23]. On the other hand, non-canonical cGMP-independent NO signaling is mainly based on 

S-nitrosylation of different target proteins, as well as other organic compounds [24], which is 

realized through NO covalent binding to alkyl sulfur atoms, without the support of enzymes. This 

chemical modification alters the protein function, stability, location, and protein–protein interactions 

[25]. Additionally, NO can be metabolized into other RNS, showing the dominant role of 

peroxynitrites in both physiological and pathophysiological backgrounds [26]. NO-mediated 

transformations of some of these target molecules may further affect gene transcription, making NO 

an indirect regulator of gene function [27]. This complexity clearly limits our ability to predict how 

all signals affected by NO can be translated into integrated and very specific outputs.  

All this is augmented in solid malignancies because of the heterogeneous nature of the tumor 

tissue, which consists of tumor cells in different stage of differentiation or trans-differentiation; the 

presence of stem cells, vascular-like endothelial cells, cancer-associated fibroblast (CAF), normal 

tissue counterparts, and immune cells; and the matrix that connects all these constituents into a 

unique network (Figure 2).  
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Figure 2. Complex intercellular communication between tumor cells and other members of the 

microenvironment in a solid tumor. O2 deficiency due to the compromised blood supply provokes 

the expression of HIF1α- and HIF1α-related genes involved in regulating the synthesis of nitric oxide 

(NO), glycolysis, and angiogenesis, and remodeling of the extracellular matrix. Lactic acid 

accumulation decreases pH in the surrounding area. Additionally, together with different molecules 

secreted by tumor cells, lactic acid affects macrophages (Mfs), dendritic cells (DCs), and cytotoxic 

lymphocytes, and potentiates accumulation of regulatory T cells (Tregs) and myeloid-derived 

suppressor cells (MDSCs). Tumor-associated macrophages (TAMs) express several M2-associated 

protumor functions, including promotion of angiogenesis, further matrix remodeling, and 

suppression of adaptive immunity. Stromal adipocytes and tumor cells have a symbiotic relationship 

mediated by NO. Cytotoxic lymphocytes, as well as MDSCs, in the absence of glucose supply, obtain 

energy from lipid storage by communicating with adipocytes. ECM—extracellular matrix, NK— 

natural killer cells, EC—endothelial cells.  

 

NO can be produced from tumor cells and non-malignant cells in the vicinity of a tumor. The 

connections between chronic inflammation, cancer development, and NO synthesis are well 

documented [28]. On the other hand, the role of this molecule in early stages of tumor progression is 

probably not essential, however it is in the upcoming hyper-proliferative phase [28].  

5. High Steady-State ROS Levels in Tumor Cells 

Recent evidence has suggested that the high steady-state ROS levels in cancer cells may play an 

important role in tumor progression. Indeed, inhibition of either ROS production or increase in 

antioxidant capacity results in diminished proliferation of cancer cells, both in vitro and in vivo 

[6,7,29].  

Different factors involved in tumor progression, including hypoxia, activated Ras, and a variety 

of growth factors—especially epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet 

growth factor (PDGF), and TNF-α—increase intracellular ROS by activating the primarily 
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membrane-bound family of the NADPH oxidase (NOX) enzymes [30,31]. Furthermore, moderate 

mitochondrial ROS can also favor tumor growth and more invasive cells show elevated 

mitochondrial respiration [32–34]. The relevance of mitochondrial ROS for tumor growth and 

migration is consistent with the fact that neutralization of ROS by pharmacological manipulation of 

key antioxidant enzymes, such as catalase (CAT) overexpression or addition of superoxide 

dismutase 2 (SOD2) mimetics, negatively affects both processes [33,35,36]. The fact that a 

dysfunctional electron transport chain may be beneficial in promoting migration and invasion 

[34,37] suggests that the underlying mechanism is due to ROS rather than ATP production. Indeed, 

increased ROS production followed by advanced metastatic potential of cancer cells with a 

dysfunctional electron transport chain has been demonstrated in various studies [34,37,38]. 

The physiological attempt to counteract ROS accumulation in transforming cells is to 

upregulate antioxidant systems. In an effort to oppose the effects of ROS, cancer cells induce the 

expression of different antioxidant enzymes, including glutamate cysteine ligase (GCL), glutathione 

S-transferase (GST), glutathione peroxidase (GPX), SOD, CAT, and thioredoxin (Trx) [39–41]. 

Increased activity of GCL, a key regulatory enzyme of glutathione (GSH) synthesis, is the strategy 

used by many tumors to increase the content of this primary cellular antioxidant, which buffers 

ROS. The GST superfamily contains detoxification enzymes, which catalyze the conjugation of GSH 

with a wide variety of xenobiotics, including oxidative stress products. These enzymes are 

considered relevant in both cancer development and progression. Thus, in general, over-expression 

of GST class P1 seems to be a hallmark of proliferating cells in many solid tumors [42]. In addition, 

the increased expression of antioxidant and detoxifying enzymes may correlate with malignant 

potential of different solid tumors [40,43]. This is of particular relevance for cancer cells, in which 

ROS production is important for the alteration of normal cells to cancer cells on one hand, but also 

might promote cancer cell death on the other hand [20,44]. Indeed, inhibition of antioxidant 

pathways compromises the cancer’s ability to handle oxidative stress and results in cell death 

[45,46].  

Regulators of the antioxidant response also control metabolic phenotypes. Apart from 

increasing GSH content, the pentose phosphate pathway, which synthesizes NADPH, is also 

intensified in cancer cells, as a mechanism used to fight oxidative stress resulting inincreased 

survival. Therefore, in contrast to precancerous conditions—in which antioxidant defense is 

decreased and ROS are able to induce DNA damage, mutations, and tumor development—in the 

late stages of carcinogenesis, increased antioxidant activity counteracts excessive oxidative damage, 

thus enabling cancer cells to escape apoptosis [6,7,47]. Indeed, it seems that the vast majority of solid 

tumors have higher steady-state ROS levels [2,48,49].  

This new redox balance enables cancer cells to develop resistance to ROS, further resulting in 

cellular adaptation and proliferation, simultaneously enabling their escape from oxidative damage, 

as suggested by Sosa et al. [6]. 

6. Multiple Roles of ROS/RNS in Cancer Proliferation 

Intensive cell division rates in cancer require intensive anabolic processes, which demand 

extreme ingredient and energy acquirement from degradation of nutrients. Soon after initiation and 

early progression of the tumor, the density of the blood vascular network rapidly becomes too low to 

support the perfusion of the whole tumor. As a consequence, some tumor cells are placed far away 

from existing blood vessels to receive sufficient O2 and glucose supply, resulting in the presence of 

necrotic areas within tumors. In order to adapt to the new oxygen deficiency conditions, tumors 

develop their own blood vessel network, which is structurally and functionally much different than 

in healthy areas [50]. The disordered and poorly hierarchical structure of the tumor blood vessel 

network further causes irregular tumor tissue perfusion and variable oxygenation, with periodical 

replacement of hypoxic and normoxic phases. All these aspects are reflected in dramatic changes in 

cell signal transduction, cell metabolism, gene expression, and overall changes in cell behavior at 

individual and collective levels.  
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Higher metabolic activity and increased energy demands, accompanied with enhanced ROS 

production, further affect the growth process. In the context of high division rate, there is a shift in 

glucose metabolism from glycolysis to the pentose phosphate pathway, which is necessary for 

nucleotide biosynthesis to prevail (128). Additionally, the production of NADPH is required to 

maintain the reduced state of the most abundant non-enzymatic antioxidant, GSH [6].  

Once the cells start their transformation into a more aggressive phenotype, there are multiple 

signaling molecules targeted by ROS, which are activated (such as transcription factor Smad, 

matrix-metalloproteinases (MMPs), hepatocyte growth factor receptor, transforming growth factor 

β-activated kinase, etc.) and further allow the cells to obtain the migratory properties and translocate 

via the bloodstream to different parts of the organism [51–53]. Based on evidence on the specific 

localization of NOX enzymes in membrane protrusion structures (invadopodia), their role in 

facilitating the invasion process has also been proposed [54]. In fact, many of the effects of 

NOX-induced ROS signaling may be mediated by activation of Src kinase, including the activation 

of matrix-degrading MMPs [55]. Therefore, different ROS-associated signaling pathways, including 

integrin-mediated mitogen-activated protein kinase (MAPK) signaling, protein tyrosine 

phosphatases, and p21-activated kinase 1, are involved in the EMT process [6,51,52]. Regarding the 

role of oxidative stress in proliferation, there is a number of signaling cascades that are affected, such 

as kelch-like protein 19 (Keap1) and Nrf2, as the master regulators of the antioxidant response, but 

also Ras, Raf, and numerous MAPK [6,55,56].  

Another important process in tumor growth and metastasis is angiogenesis. Among 

proangiogenic factors produced by tumor cells, vascular endothelial growth factor (VEGF) is 

recognized as the key regulatory protein, which is upregulated in majority of human cancers [57,58]. 

Interestingly, apart from growth factors and cytokines, hypoxic conditions and increased ROS 

production are shown to contribute to this increase [6]. Hypoxic conditions are frequently generated 

in cancer cells due to high levels of proliferation. In order to avoid this, in cancer cells HIF1α and 

HIF2α escape the proteasome-mediated degradation, which normally happens under normoxic 

conditions [59,60]. This accumulation of HIF1α proteins results in downstream overexpression of 

HIF target genes, which regulate angiogenesis, proliferation, cell migration and invasion, glycolysis, 

and survival [61]. 

7. NO-Related Intracellular Hypoxia Provokes Tumor Progression 

A better understanding of the relationship between NO and HIF-1, which is the key mediator of 

the cellular hypoxic response, underlines the importance and involvement of NO, as well as of the 

RNS produced in reactions between NO and ROS. Numerous pathophysiological processes in 

cancer are regulated by the HIF-1–NO interplay (Figure 3) [62]. 
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Figure 3. Oxygen deficiency and HIF-1–NO interplay favors tumor progression and immune escape. 

Decreased oxygen supply potentiates involvement of NO and HIF-1α in the regulation of main 

cellular processes. These conditions preferentially support tumor cell proliferation and protumor 

activities in innate and tumor-specific responses. 

Additionally, while NO regulates the activity of HIF-1, the hypoxic environment remarkably 

affects the synthesis of NO. Two main constitutively expressed intracellular NO producers, namely 

endothelial (eNOS) and neuronal (nNOS) , together with the inducible enzyme (iNOS), catalyze 

L-arginine-dependent NO synthesis in the presence of NAD(P)H and oxygen [63]. Although the 

exact level of oxygen necessary for this reaction is unclear, it is known that the arginine pathway for 

NO synthesis is abrogated in oxygen-depleted environments [64]. Instead of NOS mediated NO 

synthesis, the alternative NOS-independent pathway of NO production becomes dominant under 

these circumstances (Figure 3). This NOS-independent route of NO production is enabled by a few 

heme-containing proteins [28,65], such as hemoglobin, myoglobin, xanthine oxidase, cytochrome 

P450, cytochrome c oxidase, and cytochrome c [65]. It should be noted that although most studies 

confirmed that NO mainly stabilizes HIF-1α, there are some contradictory data, which may be due 

to diverse conditions and experimental settings and the consequence of the highly sensitive and 

complex network involved in NO intracellular activities. The quality of NO and HIF-1 interactions 

varies depending on the concentration, time, and duration of NO exposure, but also the level of 

surrounding oxygen [28,62].  

The main molecular mechanism of NO-mediated HIF-1 protection from proteasomal 

degradation is nitrosylation of certain cysteine residues [66]. Moreover, NO stabilizes HIF-1α by 

S-nitrosylation of Ras-Cys118, affecting phosphoinositide-3-kinase–protein kinase B (PI3K/Akt) 

signaling. This further amplifies NO availability by promoting NOS expression [67]. In addition to 

nitrosylation, as a leading post-translational regulatory mechanism of HIF-1 availability, the 

transcription factor activity can be modulated by acetylation, which is indirectly dependent on NO 

[48]. Altogether, in hypoxic conditions, which is typical for solid cancers, nitrosylation is among 

those key post-translational modifications that are responsible for regulation of signaling events in 

the cells. Hence, NO may be a pivotal molecule for cancer cell signal transduction in high-grade and 

aggressive forms of solid cancers with regions of chronic or cyclic hypoxia. The cellular NO pool is 

continuously recycled using NO produced both by NOS-independent and NOS-dependent 

pathways. 

Tumor-promoting features of S-nitrosylation, as a main post-translational modification 

triggered by NO, are not limited only to proteins involved in different pathways engaged to enable 

tumor proliferation. An appropriate, rational, and safe mode of energy uptake and consumption is 

extended to lipid storage in tumor tissues or the surrounding area, supporting tumor growth. It was 

found that abnormal S-nitrosylation in the presence of a high intracellular concentration of NO 

increases the adipogenesis and amplifies the number of adipocytes, which serve as tumor lipid 

storage sites [68,69]. It is extremely important to underline the metabolic crosstalk between the 

stromal adipose cells and tumor cells, as upon the uptake of arginine released from adipose cells the 

cancer cells start to produce NO, using it for vital functions and division. The metabolic product of 

this synthesis, citrulline, is subsequently consumed by adipose cells, increasing the lipid storage. 

This loop illustrates the perfect NO-mediated symbiotic relationship between cancer and stromal 

adipocytes [69] (Figure 2). 

In contrast to these pro-oncogenic roles of NO under conditions of unstable oxygen supply in 

tumor tissue, there are also NO-mediated activities based on the same mechanism that exhibit tumor 

suppressing properties. The presence of NO can prevent ROS elimination by GSH, as S-nitrosylation 

of GSH results in generation of inactive S-nitrosoglutathione with consequential accumulation of 

ROS in highly glycolytic and hypoxic cells, where it promotes apoptotic cell death [70]. In addition to 

this, higher concentrations of NO and peroxynitrite produced in interplay of NO and ROS can 

directly kill tumor cells. This observation has propelled numerous therapeutic approaches, entailing 

use of exogenous NO donors as chemotherapeutic agents. Hence, we and others have generated and 

studied different NO derivatives of aspirin, antiretroviral protease inhibitors (saquinavir, lopinavir, 
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and ritonavir) [29,71–78], and histone deacetylase 1 (HDAC1) inhibitor [79]. Although in vitro and in 

vivo preclinical data have convergently shown a substantially higher chemotherapeutic potency of 

the NO-hybridized compound as compared to the parental drug, none of these NO-hybridized 

molecules have been advanced to the clinical stage for the treatment of cancer. It is also worth noting 

that double-hybridized molecules are emerging, including compounds with simultaneous capacity 

to release NO and the other pleiotropic endogenous gas H2S, which are attracting further interest 

due to the possible modulation of endogenous gases as chemotherapeutic tools [80]. Additional 

studies on this series of compounds are needed to ascertain their feasible translation in clinical 

settings. However, critical issues relating to the targeted delivery, dynamics, and concentration of 

released NO that are related to the complex and pleiotropic nature of NO in cell physiology needs to 

be clarified to significantly advance the use of NO donors, and possibly combined NO and H2S 

donors, in clinical settings [29,71–78,80–86]. As a bystander product of cellular metabolism, NO has 

also been described as being very important in metabolic crosstalk between cancer cells and other 

members of the cancer microenvironment. Disturbed oxidative phosphorylation and abrogated 

mitochondrial respiration in relation to NO reaction with complex IV of the electron transport chain 

leads to a metabolic hypoxia state [87]. NO can promote tumor aggressiveness and development of a 

chemotherapy-resistant phenotype, simulating hypoxic conditions (even in the presence of oxygen), 

promoting glycolysis, and diminishing mitochondrial respiration (Figure 4) [88]. 

 

Figure 4. NO–HIF-1 input in tumor progression and therapeutic achievement. NO together with 

HIF-1 influences the main processes involved in the conversion of less-aggressive toward 

high-aggressive phenotype. HIF-1 regulates the expression of genes responsible for stem phenotype 

establishment, remodeling of the extracellular matrix (ECM), angiogenesis, and NO synthesis, while 

NO influences HIF-1 stability. 

NO-related intracellular hypoxia provokes tumor progression through multiple pathways, 

including through increasing the glycolitic process and augmented consumption of glutamate in the 

TCA cycle. Aerobic glycolysis leads to decreased pH in the microenvironment as a consequence of 

lactate accumulation from the creation of an acidic environment, which downregulates activated T 

cells [89]. The same condition provokes angiogenesis, as well as M2 polarization of macrophages 

[90]. In low-differentiated, high-grade tumors, the M2 phenotype of macrophages is at least partly 

responsible for an insufficient chemotherapeutic response (Figure 2) [91]. In addition to the 

cytoprotective role resulting from the establishment of the intracellular antiapoptotic profile, NO 
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indirectly limits chemotherapeutic efficacy in poorly differentiated tumors, at least partly through 

macrophage polarization toward M2. These relations between NO and tumor cell metabolism are 

preferentially found in invasive, high-grade tumors. Concordantly, and primarily through its tight 

interaction with endothelial HIF-1, NO is recognized as an important regulator of oncogenic 

pathways controlling tumor spreading, including S-nitrosylation of adherent junction complexes, 

promotion of EMT, invasion and dissemination through changes in tumor cell adhesion to 

endothelial cells, intra- and extravasation, as well as endothelial cell permeability [92,93] (Figure 5). 

 

Figure 5. Role of vascular-derived HIF-1α and NO production in tumor dissemination. Endothelial 

HIF-1 α triggers the expression of iNOS, and through NO production affects the entering of tumor 

cells into circulation, as well as their dissemination into distant sites. ECM—extracellular matrix, 

ROS—reactive oxygen species, IL—interleukin, MMP—matrix metalloproteinases, VEGF—vascular 

endothelial growth factor,   TGF-— transforming growth factor beta, IFN-— interferon-  

8. ROS and RNS Effects in the Tumor Microenvironment 

The presence of inflammatory cells in cancer tissue shows their attempts to eliminate the 

transformed cells. Although this can result in eradication of certain tumors, it may also 

paradoxically result in promotion of tumor growth. As byproducts of cellular metabolism, ROS are 

crucial weapons of the innate immune response in the first line of elimination of pathogen and 

neoplastic cells. The moment at which the cancer cells establish ROS-resistant phenotypes and 

utilize them for their own maintenance and propagation is influenced by numerous factors [94]. 

Increasing evidence indicates that one of the leading processes involved in malignant cell 

adaptation to intracellular ROS is autophagy. This self-digestion process of removal of damaged 

organelles enables reuse of building molecules and promotes survival of cells in tumor tissue. 

Importantly, it was recently found that autophagy may support tumor growth, not only through 

recycling of diminished structures, but also as a recipient of information transduced by release of 

extracellular ROS in the tumor microenvironment [94]. Therefore, anti- and prosurvival roles of ROS 

in the tumor microenvironment can be copied into the dual roles of autophagy, defined by the type, 

concentration, and place of ROS generation. It was discovered that ROS can link tumor-associated 

fibroblasts (TAFs) and tumor cells through autophagy, providing a protumorigenic environment. 

Indeed, in a breast cancer xenograft model, HIF-1α-triggered autophagy in stromal cells is 

responsible for tumor progression [95]. With respect to intensive intrinsic autophagy, TAFs are 

preferentially resistant to ROS. Interestingly, communication between malignant cells and their 

neighborhood is partly realized through autophagy, as well as selective degradation of 

mitochondria by autophagy, known as mitophagy. This interplay is also very important as a source 
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of anabolic blocks, as highly proliferative tumor tissue in hypoxic conditions is exhausted. Finally, 

the produced ROS further augments the malignant phenotype of TAF [96,97]. Consequently, TAFs 

further stimulate tumor growth and prevent immune response against cancer through the release of 

MMPs and several cytokines. Tumor growth is further stimulated by nearby senescent cells, which 

release proinflammatory cytokines and proteases into the tumor microenvironment [6] (Figure 6). 

 

 

Figure 6. The roles of ROS/RNS in tumor tissue network interplay. In addition to affecting cancer 

cells, ROS/RNS impact the activity and communication of all constituents in the tumor tissue 

network, mediating their reprogramming from anti- to protumorigenic phenotypes and vice versa. 

After being released from tumor cells, ROS/RNS affect the tumor microenvironment, inducing 

release of cytokines, matrix metalloproteinases (MMPs), and signaling molecules from 

cancer-associated fibroblasts (TAFs), CD4+/CD8+ T cells, and tumor-associated macrophages 

(TAMs). In this way, the tumor microenvironment contributes to tumor progression in response to 

increased ROS/RNS levels. 

An acidic environment also stimulates the process of autophagy. This scenario is consistent 

with the expression of autophagy-related proteins in pre-invasive and invasive breast cancer [98]. 

Furthermore, acidosis and hypoxia strongly affect the accumulation, as well as the function of 

immune cells. Production of IFN-ƴ, IL-2, TNF-α, granzyme B, and perforin by NK cells, T cells, and 

monocytes is dramatically decreased, enabling establishment of anti-inflammatory and 

immunosuppressive environments [89,99]. Since proinflammatory cytokines are responsible for iron 

sequestration in macrophages and their ROS-mediated cytotoxic action, the perturbation of this 

process results in reduced capacity of immune cells to limit tumor growth. Thus, TAMs in the tumor 

microenvironment acquire protumorigenic and iron-donating phenotypes [100]. In addition to the 

importance of iron for tumor cell proliferation, its presence in the tumor microenvironment affects 

the H2O2-mediated antitumor immune response. Replacing of H2O2 via the OH· generating Fenton 

reaction results in extracellularly produced OH,· which due to its high reactivity, is unable to reach 

sensitive intracellular targets of tumor cells, abrogating this branch of cytotoxic activities of immune 

response [101].  

Immune cells in the tumor microenvironment are also affected by all of these aspects, especially 

by abnormal blood supply, glucose restriction, and the acidic environment. Tumor-infiltrated 

lymphocytes (TILs) compete for glucose in the tumor niche, where they starve as a consequence of 

domination of tumor cell glucose uptake [102]. This glucose restriction can be overwhelmed by fatty 
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acid catabolism of CD8+ TILs [103]. In competition for the lipid sources in the tumor mass with 

different potential consumers, such as TILs, tumor-associated myeloid-derived suppressor cells 

(MDSCs) enhance fatty acid uptake and oxidation in parallel with upregulated iNOS-mediated NO 

production and peroxinitrite generation, ultimately diminishing T cell proliferation [104]. Finally, 

both the function and survival of pivotal cells in nonspecific antitumor immune response, such as 

macrophages and tumor-dendritic cells, are critically connected with NO production. When NO 

production is augmented, oxidative phosphorylation and mitochondrial respiration are abolished in 

a manner similar to that observed in tumor cells. In macrophages, this restriction results in 

decreased IL-10-mediated immunosuppression and more stable M1 phenotype maintenance [105]. 

Concerning dendritic cells, metabolic hypoxia promoted by NO is essential for their activation and 

shaping of their immune function [106]. Under hypoxic conditions, the ability of dendritic cells to 

maturate and present antigen is abrogated. Additionally, they negatively regulate T cell function. All 

of these features are ascribed to tumor-derived VEGF [107], which is also closely connected with 

accumulation of myeloid-derived suppressor cells (MDSCs) and subsequent angiogenesis and 

dissemination. 

In summary, diverse environmental factors, which contribute to increased ROS production at 

both the primary and metastatic sites, may affect tumor progression. Redox-sensitive signaling 

molecules involved in this adaptive process include HIF-1, ERK1/2, p53, and peroxisome 

proliferator-activated receptor-gamma coactivator-1 (PGC-1). Of these, HIF-1 and ERK1/2 are 

primarily activated in response to hypoxia, followed by increased ROS production [108]. HIF1α 

regulates the expression of genes involved in aerobic glycolysis (GLUT1, heksokinase 2), 

angiogenesis (VEGF), and the epithelial mesenchymal transition process (ZEB-1, MMP9). The 

opposite cancer metabolic phenotype is mediated by PGC-1, a central regulator of energy 

metabolism, which belongs to the family of transcriptional coactivators known as PPAR γ 

coactivators, and which is involved in synchronization between environmental stimuli and 

mitochondrial biogenesis and metabolic flux. Moreover, negative reciprocal regulation between 

HIF-1 and PGC-1 has been demonstrated in various investigations [49,109]. Thus, it has been shown 

that HIF1-mediated suppression of PGC-1α is critical for metabolic reprogramming in 

VHL-deficient clear cell renal cell carcinoma [109]. In defining appropriate metabolic response to 

ROS, the energy sensor AMP-activated protein kinase (AMPK) might represent one of the key 

molecular switches [110]. In that context, AMPK might determine the specific metabolic phenotype, 

from induction of oxidative phosphorylation by PGC-1 activation, glycolysis as a result of HIF-1 

stimulation, or a more dormant phenotype by inhibiting the pleiotropic growth regulator, mTOR 

[111].  

While moderate levels of ROS increase PGC-1 and oxidative phosphorylation, the effect of high 

ROS, together with altered environmental conditions such as starvation, might cause an inadequate 

metabolic response, and consequently increase autophagy [112]. In this context, autophagy 

contributes to inhibition of tumor growth and reduction of ROS production [113]. Moreover, in 

comparison to both primary and metastatic tumors, the aerobic metabolic phenotype is 

characterized by having a majority of circulating tumor cells [114]. Therefore, both glycolysis and 

upregulated antioxidants favor cancer cell survival under extreme conditions. It seems that the 

interplay between ROS, HIF-1, and Nrf2 has a pivotal role in this process [6][49]. 

Molecules that also contribute to angiogenesis via production of ROS and redox signaling 

pathway activation, including HIF1α induction, are NOX molecules, especially Nox1, Nox4, and 

Nox5 [115]. Thus, in highly proliferative cancer cells, regulation of ROS production seems to be 

crucial, especially considering the presence of oncogenic mutations, which promote aberrant 

metabolism and gene expression, simultaneously leading to increased ROS rates.  

9. NO in Initial and Acquired Resistance to Therapy  

Current molecular targeted cancer treatments, in addition to affecting tumor cells, affect 

different constituents of the tumor microenvironment, such as immune, vascular, endothelial, and 

stromal cells, with the aim of switching all protumorigenic activities toward productive antitumor 
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responses. Standard nonselective cytotoxic therapy is often used in conjunction with tailored 

molecular approaches [116]. For decades, the apoptosis of tumor cells has been seen as a desirable 

outcome of chemotherapeutic treatment, and development of resistance to chemotherapy has been 

associated with the development of an apoptotic-resistant phenotype. Since NO can suppress 

proteolytic activation, as well as the function of activated caspases through S-nitrosylation of cisteine 

residues in active enzyme sites, it can affect both receptor-dependent and -independent apoptosis in 

both normal and malignant phenotypes [15,117,118]. It is well documented that the intrinsic feature 

of malignant cells required to produce NO, mostly by constitutive expression of iNOS, is related to 

poor prognosis. Liao et al. recently reported a highly significant association between iNOS 

expression and disease outcome following overall, cause-specific, and disease-free survival [119]. 

According to results obtained through meta-analysis, all parameters were remarkably worse in 

patients with solid tumors expressing iNOS. Continuously released NO in cancer cells becomes 

necessary to maintain viability. The cytoprotective role of this molecule in the malignant cells is at 

least partly related to its ability to inactivate caspases. On the other hand, some data indicate that 

proinflammatory cytokines are able to promote suicidal iNOS expression in malignant cells, such as 

mouse fibrosarcoma L929 or rat astrocytoma C6. In these types of cell lines, endogenous NO 

provokes suicidal cellular activity, which is neutralized by specific iNOS inhibitors (Figure 7A) [120]. 

 

Figure 7. Conflicting outcomes of iNOS-produced NO in tumor cells. (A) Proinflammatory cytokines 

trigger the expression of iNOS in tumor cells, promoting NO-mediated cell suicidal activities. (B) 

Hypoxia-driven expression of iNOS-mediated tumor cell proliferation and re-education of the 

immune cells in the tumor microenvironment. 

Several studies performed in recent years have suggested the importance of the signal 

responsible for the gene expression of iNOS. This point should be the most informative in predicting 

tumor cell survival. Namely, if iNOS expression is triggered by proinflammatory cytokines, 

tumor-cell-generated NO would serve as a host defender and executor of the program initiated by 

the immune system (Figure 7A). 

Considering the heterogeneity of solid tumors, the source of NO production, together with its 

concentration and dynamic nature, appears to be of great relevance. Each type of cell in the tumor 

microenvironment can produce NO. If tumor cells constitutively express iNOS, NO production will 

most often support the cells own vitality and progression (Figure 7B). On the other hand, NO 

produced by immune cells in the tumor microenvironment represents one of the most powerful 

weapons for killing tumor cells. Endothelial NO is characterized by its basic task—to dilate the 

vessels. Taking advantages of these features, Xu et al. created tailored switchable NO-releasing 
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nanoparticles (IPH-NO) comprised of photosensitizer (IR780), paclitaxel (PTX), and NO 

donor-S-nitrosated human serum albumin [121]. The photosensitizer increased tumor vascular 

permeability, promoting drug accumulation. Fast release of huge amounts of NO upon 

near-infrared light irradiation subsequently induced tumor cell death. IPH-NO also inhibited 

metastasis through EMT blockade. The final effect of the NO-mediated activity mentioned above 

will be defined by all factors in the tumor mass, including the specificity of tumor perfusion and the 

abnormal vascular network. When produced from tumor cells, NO promotes polarization of 

macrophages toward protumorigenic phenotype M2 (Figure 7B). In parallel, when NO is produced 

by macrophages by themselves, they retain their cytocidal profile (M1) [105]. 

New concepts indicate that activated and efficient caspases are not explicitly a sign of good 

therapeutic response and sensitivity to apoptosis [122]. Paradoxically, tumors with deficient caspase 

3 seem to have better prognosis in comparison to those with conserved caspase 3 functions [85,123]. 

This may be related to the fact that caspases possess other functions in addition to regulation of cell 

death, including the maintenance of homeostasis in multicellular organisms. Caspases are equally 

employed by the death signals and signals involved in regeneration. They are the main messengers 

delegated to inform the neighbors that a dying cell needs to be replaced by a newborn cell, triggering 

the proliferation of progenitor cells [123]. Therefore, in high-grade tumors, poorly differentiated cells 

will divide in response to apoptosis in the surrounding area, explaining tumor repopulation after 

cytotoxic therapies. In this context, the ability of NO to affect caspases can reflect apoptosis-induced 

proliferation, decreasing the overall tumor progression, especially in response to certain cytocidal 

treatments. An alternative approach that bypasses the effects of compensatory proliferation and 

tumor repopulation and includes NO is the induction of the phenotype conversion of poorly 

differentiated cancer cells into more mature, less malignant forms [71,72,78]. NO-hybridized HIV 

inhibitors, namely lopinavir, saquinavir, and ritonavir, were able to decrease the malignant potential 

of glioma and melanoma cells through induction of differentiation, trans-differentiation, and 

senescence [72,77,78]. 

Although NO can mediate the development of chemotherapeutic resistance, extensive data 

confirm its potential to re-establish malignant cell sensitivity to immune-cell-mediated antitumor 

activities, as well as to make them sensitive to chemotherapy [75]. Elimination of Yin Yang 1 

(YY1)-mediated repression of Fas and Death receptor 5 (DR5) genes is one of the main routes of 

immune sensitization triggered by conventional NO donating drugs. This can also be achieved with 

hybrid molecules modified by NO covalent attachment, such as the HIV inhibitor saquinavir [75]. 

Interestingly, NO-modified saquinavir strongly upregulated the functional DR5 receptor, even if the 

effect was not directly related to the amount of NO released from the molecule. Moreover, the same 

group of drugs promoted inhibition of NF-kB, leading to decreased expression of antiapoptotic 

genes and subsequent sensitization to apoptosis. Bonavida et al. found that NO interactions with the 

members of the antiapoptotic loop, consisting of NF-κB/Snail/YY1/RKIP/PTEN, in malignant cells is 

mainly responsible for their sensitization to the cytotoxic activities of immune cells, as well as 

re-establishment of susceptibility to chemotherapy [124]. 

10. ROS/RNS-Mediated Mechanisms of Targeted Cancer Therapy 

Despite the fact that progression of solid tumors is frequently associated with disturbed redox 

homeostasis, potential effects of targeted cancer therapy, which also achieves a ROS-mediated 

mechanism of action, have rarely been systematically studied. Indeed, there is emerging evidence 

that at least some of these compounds, in addition to their primary specific antitumor roles, might 

also disrupt cellular redox homeostasis, usually in favor of oxidative distress, sometimes enabling 

even more reduced milieu. Still, it remains unknown how these redox perturbations impact tumor 

cell death, especially regarding the resistance of solid tumors. Based on the concept applied in the 

first review, which addressed ROS-mediated mechanisms of action of tyrosine kinase inhibitors and 

monoclonal antibodies, we reviewed the latest literature data on the most clinically relevant agents 

against epidermal growth factor receptor (EGFR), VEGFR, and human epidermal growth factor 
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receptor (HER), for which substantial evidence exists that their application is associated with 

disruption of redox homeostasis [125] (Table 1).  

Table 1. Reactive species-mediated effects of receptor-targeted therapy. 

Target Drug Name 
Implicated 

ROS 
Suggested Mechanism 

Putative Redox 

Biomarkers 
References 

VEGFR 

Axitinib Not specified Not specified 
Oxidative DNA 

damage byproducts  
[126] 

Sunitinib ↓NO 
Increased GSH 

down regulated NOS 
- [127,128] 

Sorafenib 
↑H2O2, O2-, 

NO 

Mitochondrial dysfunction 

and GSH depletion 

Advanced 

oxidation protein 

products 

[129] 

EGFR 

Crizotinib ↑O2- 
Prx upregulation associated 

with drug resistance 
- [130] 

Afatinib Not specified 
Oxidative stress associated 

with drug resistance 
- [131] 

Erlotinib Not specified 
Induced ROS-mediated 

apoptosis 
- [132] 

Gefitinib Not specified 
Prx II upregulation associated 

with drug resistance 
- [133] 

HER1/HER2 Lapatinib Not specified 

Upregulated SOD1/ SOD2 

and GSH associated with 

drug resistance 

- [134] 

HER2 

dimerization 
Trastuzumab Not specified 

Increased Trx-1 associated 

with drug resistance 

Restoration of 

plasma antioxidant 

activity 

[135] 

PDGFRα, KIT, 

ABL, CSF-1 

receptor 

Imatinib Not specified ROS-dependent apoptosis - [126] 

BRAF V600E Vemurafenib 
↑ NO and O2- 

production 

Depolarization of 

mitochondrial membrane, 

induced PGC1α 

- [136][137] 

JNK = c-Jun N-terminal kinase; Prx II = peroxiredoxin II; HER = human epidermal growth factor 

receptor; PDGFR = platelet-derived growth factor receptor; KIT (CD117) = proto-oncogene, receptor 

tyrosine kinase; ABL = non-receptor tyrosine kinase; CSF-1 = colony-stimulating factor-1; PDGFR = 

platelet-derived growth factor receptor; EGFR = epidermal growth factor receptor; PGC-1 = 

peroxisome proliferator-activated receptor-gamma coactivator-1; Trx = thioredoxin; GSH = 

glutathione; VEGFR = vascular endothelial growth factor receptor. ↓ decreased, ↑ increased. 

10.1. Free-Radical-Mediated Effects of Therapy Targeting VEGFR 

Drugs targeting VEGFR are tyrosine kinase inhibitors (TKIs) that exhibit different kinase 

specificity [138]. Indeed, it has been shown that although different drugs sometimes share target 

specificity, they might differentially affect cancer redox homeostasis. Thus, multikinase inhibitors, 

such as sunitinib and sorafenib, inhibit proliferation and angiogenesis by blocking vascular 

endothelial growth factor receptors (VEGFR-2 and VEGFR-3), platelet-derived growth factor 

receptor-beta (PDGFR β), and RAF kinase, simultaneously influencing the redox state in opposite 

directions [139]. Antioxidant effects of sunitinib are accomplished by both upregulation of GSH 

content and inhibition of neuronal NOS activity [127,140]. On the contrary, when applied in 

combination with chloroquine, sunitinib leads to an increase in RNS and apoptosis via iNOS [141]. It 

is important to note that Nrf2–ARE signaling promotes the progression of solid tumors, while its 

inhibition enhances the sensitivity to sunitinib by arresting cells in the G0/G1 phase and increasing 

apoptosis in the tumor cell line [142]. On the other hand, sorafenib exhibits pro-oxidant effects by 

reducing the GSH pool [139]. Upregulated mitochondrial ROS production is mediated by 

mitochondrial dysfunction and an increase in superoxide anions [143]. In addition, in patients with 

hepatocellular carcinoma HCC treated with sorafenib, increased levels of advanced oxidation 

protein products were found, affecting their survival. Indeed, oxidative stress and apoptosis 
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induced by sorafenib are influenced by fibroblast growth factor 19 (FGF19) and its receptor. It has 

been shown that FGF19, when overexpressed, inhibits the effect of sorafenib on ROS generation and 

apoptosis in HCC. On the other hand, loss of FGF19 or its receptor leads to a remarkable increase in 

sorafenib-induced ROS generation and apoptosis. Importantly, targeting of the FGF19–receptor axis 

by ponatinib, a third-generation inhibitor of chronic myeloid leukemia, overcomes the HCC 

resistance of sorafenib by enhancing ROS-associated apoptosis in sorafenib-treated HCC [144]. The 

other VEGFR-targeted drug, axitinab, induces oxidative DNA damage and exhibits 

immunomodulatory effects, leading to mitotic catastrophe and a cellular senescence program 

[42,145]. 

10.2. Free-Radical-Mediated Effects of EGFR-Targeted Therapy 

The effects of several other TKIs, such as gefitinib, erlotinib, and afatinib, which are designed to 

target mutated epidermal growth factor receptor (EGFR) [8], are also associated with impaired redox 

homeostasis. Erlitinib is capable of inducing ROS-mediated apoptosis via activation of the c-Jun 

N-terminal kinase (JNK) pathway, which consequently leads to EGFR inhibition, which is blocked in 

the presence of N-acetyl cysteine [132,146]. Similarly, gefitinib has also been demonstrated to 

produce a dose-dependent increase in oxidative stress, which has been associated with induced 

EMT [147,148]. On the contrary, in gefitinib-resistant cells, elevated expression of the antioxidant 

enzyme peroxiredoxin II resulted in downregulation of ROS and attenuated apoptosis [133]. For that 

reason, peroxiredoxin II is as a potential target for overcoming gefitinib resistance.  

The strong synergistic antiproliferative and proapoptotic effects of EGFR TKIs and the histone 

deacetylase inhibitor vorinostat seems to result from induced changes in redox homeostasis. 

Administration of vorinostat with erlotinib or gefitinib leads to c-Myc downregulation and 

simultaneous Keap1 upregulation. Furthermore, it was hypothesized that Keap1 mutations leading 

to inactivation could be used as predictive factors of EGFR TKI resistance [149,150]. Similarly, 

erlotinib also induces cytotoxicity via NOX4-induced H2O2 generation, which seems to be reversible 

after N-acetyl cysteine treatment [151]. The least-studied EGFR-targeted TKI, afatinib, has been 

associated with increased ROS production, which leads to the development of its resistance [131]. 

Taken together, development of more specific molecular targets to overcome resistance needs to be 

confirmed in prospective clinical trials in order to optimally stratify patients for these costly and 

potentially toxic treatments.  

10.3. Free-Radical-Mediated Effects of HER-Targeted Therapy 

HER-targeted therapy can be designed either to affect HER1 and HER2 tyrosine kinase 

receptors or HER2 dimerization. The only TKI approved for treatment in HER2-overexpressing 

breast cancer patients is lapatinib. Increased ROS levels are observed upon treatment with lapatinib 

and its analogue, GW583340. As expected, decreased ROS production, together with increased 

antioxidant capacity (SOD1, SOD2, and GSH), was detected in lapatinib-resistant breast cancer cells. 

Additionally, a SOD mimic overcame resistance in GW583340-sensitive cells [134]. In patients with 

resistance to lapatinib, treatment with the covalent JNK inhibitor synergistically causes cell death by 

reducing transcriptional activity of NFkB, AP1, and Nrf2. Being the master regulators of antioxidant 

response, their decreased activity induces a 10-fold increase in reactive oxygen species that is 

cytotoxic to cancer cells and is rescued by the addition of exogenous antioxidants [152]. 

Trastuzumab is a monoclonal antibody designed to inhibit HER2 dimerization and is approved as a 

novel neoadjuvant therapy for HER2-positive breast cancer, as well as metastatic breast and gastric 

cancers. It induces cytotoxicity, inhibiting MAPK and PI3K/Akt pathways [153]. In order to enhance 

the cytotoxicity potential of trastuzumab, the other HER2 dimerization inhibitor pertuzumab is 

generated [154], which is indicated to enhance the antiHER efficacy in combination with 

trastuzumab, both in neoadjuvant and metastatic settings. The combined treatment with these two 

drugs leads to inhibition of the transcription factor nuclear factor erythroid-derived 2-like 2 

(NFE2L2). The most challenging issue regarding trastuzumab treatment is development of 

resistance, probably due to loss of function of PTEN, a tumor suppressor, resulting from increased 
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Trx1 levels. By binding to PTEN, Trx-1 enables full Akt signaling and affects cell growth, which was 

confirmed in trastuzumab-resistant cells that regained drug sensitivity after treatment with the Trx-1 

inhibitor 1-methylpropyl 2-imidazolyl disulphide (PX-12) [135]. Therefore, in vivo studies with 

PX-12 aiming to overcome trastuzumab resistance seem reasonable.  

10.4. Free-Radical-Mediated Effects of PDGFRα, KIT, ABL, and CSF-1 Receptor-Targeted Therapy 

It has been shown that imatinib targets platelet-derived growth factor receptor-α (PDGFR-α), 

KIT (CD117), as well as nonreceptor tyrosine kinase (ABL) and colony-stimulating factor-1 receptor 

(CSF-1) [126]. Although the majority of the data explaining ROS-mediated mechanisms of imatinib 

are obtained from leukemia, ROS-dependent apoptosis has also been reported in melanoma cell 

lines [102].  

10.5. Free-Radical-Mediated Effects of BRAF-Targeted Therapy 

Vemurafenib is designed to target gene-encoding proto-oncogene B-Raf (especially in BRAF 

V600E melanoma), and thus suppresses the RAS/MEK/ERK signaling pathway. Apart from this 

specific mechanism of action, vemurafenib stimulates NO and O2· production and induces 

depolarization of mitochondrial membranes, affecting respiration [37,136]. Furthermore, it appears 

that vemurafenib has other notable and partly ROS-dependent therapeutic effects, independent of 

BRAF V600E inhibition. Indeed, vemurafenib decreases the metastatic potential of melanoma by 

inducing the oxidative stress regulator PGC1α and by further lowering expression of numerous 

integrins [155].  

11. Conclusions 

Cancer represents a sort of ontogenetic and phylogenetic regression at the cellular and tissue 

levels, respectively. During this process, all constituents of the tumor mass actively contribute to its 

development, progression, and dissemination. Shifting from aerobic to near-anaerobic states, the 

roles of ROS/RNS in regulation of the main physiological processes related to tumor expansion and 

spreading become more profound and might affect therapy response. New targeted treatments of 

solid tumors, such as tyrosine kinase inhibitors and monoclonal antibodies, which have attracted 

much attention in the past decade, have also been shown to modulate the ROS/RNS balance by 

increasing the oxidative stress up to a level that overwhelms the antioxidant capacity of cancer cells. 

Moreover, these treatments influence reactive oxygen and nitrogen species, which function as 

second messengers, and in this way affect redox signaling. Such agents are designed to target 

VEGFR, EGFR, HER, BRAF, and PDGFR. Still, in contrast to beneficial effects, some of these agents 

might increase the antioxidant capacity of cancer cells by upregulating GSH levels, contributing to 

cancer cell growth and survival. In the future, special attention should be given to the possibility that 

oxidative and nitrosative stress biomarkers might serve in predicting the therapeutic effects and 

drug resistance development of these novel targeted treatments. 
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CAT = catalase cGMP = cyclin guanosine monophosphate 

CREB = cAMP response element-binding 

protein 
CSF-1 = colony-stimulating factor-1 

DC = dendritic cell DR5 = Death receptor 5 

EGF = epidermal growth factor  EGFR = epidermal growth factor receptor  

EMT = epithelial-mesenchymal transition FGF = fibroblast growth factor 

GCL = glutamate cysteine ligase  GPX = glutathione peroxidase  

GSH = glutathione GST = glutathione S-transferase  

HER = human epidermal growth factor 

receptor  
HDAC = Histone deacetylase 

HIF-1 = hypoxia-inducible factor 1 JNK = c-Jun N-terminal kinase  

Keap1 = kelch-like protein 19  KIT (CD117) = proto-oncogene, receptor tyrosine kinase 

MAPK = mitogen activated protein kinase  MDSC = myeloid-derived suppressor cell 

MMP = matrix metalloproteinases NFE2L2 = nuclear factor erythroid-derived 2-like 2 

NFkB = Nuclear Factor-κB NOX = NADPH oxidase  

Nrf2 = nuclear factor erythroid 2-related factor 

2  
PDGF = platelet-derived growth factor  

PDGFR = platelet-derived growth factor 

receptor 

PGC-1 = peroxisome proliferator-activated receptor-gamma 

coactivator-1  

PI3K/Akt = phosphoinositide-3-kinase–

protein kinase B 

PTEN = phosphatidylinositol-3,4,5-trisphosphate 

3-phosphatase 

PTX = paclitaxel  PX-12-1 = methylpropyl 2-imidazolyl disulphide  

RKIP = Raf kinase inhibitor protein Snail = transcription factor 

SOD = superoxide dismutase TAF = tumor associated fibroblast 

TAM = tumor-associated macrophage TIL = Tumor infiltrated lymphocyte 

TKI = tyrosine kinase inhibitor Trx = thioredoxin  

VEGF = vascular endothelial growth factor  YY1 = Yin Yang 1 transcription factor 
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