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Abstract 

Purpose: This study deals with a comparative analysis of the effects of chronic exposure to a 

static magnetic field (SMF) and an extremely low frequency magnetic field (ELF MF) in 

Blaptica dubia nymphs. The outcome of such treatment on insect and fat body mass, glycogen 

and total lipid content in the fat body and locomotion, as an energy demanding process, were 

examined. 

Materials and methods: One-month-old nymphs of B. dubia were exposed to an SMF (110 mT) 

or ELF MF (50 Hz, 10 mT) for 5 months. Their locomotion was monitored in the "open-field" 

test for 10 min and expressed as travel distance, time in movement and average speed while in 

motion. After that, fat body mass and content of its main components (glycogen and total lipids) 

were determined. Nymph body mass was also estimated after 1 and 5 months of MF treatment. 

Results: Chronic exposure to the SMF and ELF MF decreased nymph body mass and glycogen 

content in the fat body, but increased all examined parameters of locomotion. In addition, 

chronic SMF treatment elevated total lipid content in the fat body, while chronic ELF MF 

treatment reduced fat body mass and total lipid content. 

Conclusions: These findings indicate that B. dubia nymphs are sensitive to the applied MFs and 

possess different strategies for fuel usage in response to the SMF and ELF MF in order to satisfy 

increased energy demands and to overcome stressful conditions. 

 

Keywords: magnetic field, fat body, glycogen, total lipids, locomotion, cockroaches 
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Introduction 

Since life on Earth originated in a natural magnetic field (geomagnetic field), magnetic 

fields (MF) are identified as an important abiotic factor directly affecting all living beings. 

During evolution, organisms developed numerous adaptations to the natural MF that enabled 

them to survive in altering environmental conditions (Ghodbane et al. 2013). Due to 

technological developments and intensive industrialization, the level of magnetic and 

electromagnetic fields to which living beings are exposed is constantly increasing. Under 

changing conditions, homeostasis of biological systems may be disturbed, resulting in various 

disorders. Therefore, research attention is increasingly focused on obtaining better understanding 

of these issues, primarily to protect human health after the introduction of new technologies in 

everyday life, industry, transportation system and medicine, including therapeutic uses of MF. 

The available information about the health effects of these MFs included cancer incidence, 

haematological, reproductive and developmental changes, as well as neurobehavioral effects are 

contradictory (Zannella 1997; Leszczynski, 2005; WHO 2006; WHO 2007) and additional 

research is necessary to infer causal relationships. 

The biological effects of artificial MFs have already been studied in many organisms. 

Numerous findings have indicated that an MF can modulate various aspects of insect physiology 

and behavior (Stanojević et al. 2005; Starick et al. 2005; Rauš et al. 2009; Savić et al. 2011; 

Yang et al. 2011; Todorović et al. 2012; Todorović et al. 2013; Dimitrijević et al. 2014; 

Jankowska et al. 2015; Pavlović et al. 2016; Wyszkowska et al. 2016; Sheppard et al. 2017; Xu 

et al. 2017; Zmejkoski et al. 2017; Maliszewska et al. 2018; Todorović et al. 2019). 

Physiological processes and behaviors like reproduction, embryogenesis, metamorphosis, 

locomotion and flight require a steady supply of energy. Insects have developed special systems 
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for efficient and rapid use of energy stored in the fat body, as lipid and glycogen depots. Fat 

body functions are similar to those of the liver and adipocytes in vertebrates. The insect fat body 

consists of cell aggregates, mainly adipocytes, which take up and store nutrients (Beenakkers et 

al. 1985). The main source for energy demanding physiological processes is trehalose in 

hemolymph, while precursors for trehalose synthesis in the fat body are its glycogen depots or 

dietary carbohydrates (Steele 1999). Large reserves of triacylglycerol, derived from dietary fatty 

acids or from sugars and amino acids released during digestion, are also present in the fat body 

(Oguri and Steele 2003). Insect energy metabolism is hormonally regulated by adipokinetic 

hormones (AKHs), biogenic amines (predominantly octopamine) and the insulin-like 

neurohormone bombyxin (Orchard et al. 1993; Satake et al. 1997; Meyer-Fernandes et al. 2000; 

Van der Horst et al. 2001; Gäde 2004; Lorenz and Gäde 2009). Increased carbohydrate and lipid 

metabolism occurs under stress to provide the energy necessary for implementing protective 

mechanisms. It is known that an MF can change the cell membrane potential and distribution of 

ions (Hughes et al. 2005). This may lead to modification of biochemical processes involved in 

the energy status of the cell. Thus, increased glucose and lipid metabolism has been shown in 

mouse muscle (metabolically active mass) and blood after exposure to different types of MF 

(Kumosani and Qari 2003; Elferchichi et al. 2010). 

Locomotion is defined as a behavioral property of all animals that requires energy 

expenditure. It could be considered as a reflection of the decision-making process (to walk or not 

to walk) depending on current status (Martin 2003). Insect locomotion has been studied for over 

a century in a wide variety of species, revealing generally conserved mechanisms of control 

(Serway et al. 2009; Borgmann and Büschges 2015; Martin et al. 2015). Important processes in 

the regulation of motor behavior are initiated by the neuroendocrine system (Orchard et al. 1993; 
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Osborne 1996; Nässel and Winther 2010). Octopamine is the most frequent insect amine that 

tunes both visceral and skeletal muscle activities (Roeder 1999) and has a functional role in 

motor behavior (Pflüger and Duch 2000). Other biogenic amines (dopamine, norepinephrine, 

serotonin, tyramine) also affect the production of AKHs (Van der Horst et al. 2001) that have a 

neuromodulatory role and stimulate insect locomotion (Socha et al. 1999). AKHs also have a 

metabolic role and control release of carbohydrates, lipids and the amino acid proline from fat 

body to hemolyph during locomotion and flight (Gäde and Auerswald 2003; Lorenz et al. 2004; 

Gáliková et al. 2015). Altered locomotion is one of the first signs of environmental change and 

the presence of stressors. Thus, exposure to an MF has been shown to modify movement of 

different insect species (Todorović et al. 2013; Dimitrijević et al. 2014; Pavlović et al. 2016; 

Wyszkowska et al. 2016; Zmejkoski et al. 2017). Moreover, insects can use the natural MF as a 

means of navigation and spatial orientation (Banks and Srygley 2003; Klotz and Jander 2003; 

Riveros and Srygley 2010; Guerra et al. 2014; Xu et al. 2017). 

Since environmental factors affect the physiological state and behavior of living 

organisms (Hansen and Berthelsen 2000), our goal was to investigate if a chronic 5-month 

exposure of Blaptica dubia nymphs to an MF modifies insect and fat body mass, glycogen and 

total lipid content in the fat body, and locomotion as an energy demanding process. The impacts 

of a static magnetic field (SMF; 110 mT) and an extremely low frequency magnetic field (ELF 

MF; 50 Hz, 10 mT) associated with different sources in industry (welding machines, electric and 

induction furnaces, electrolytic processes, aluminium production), transportation system (rail 

transport using magnetic levitation) and medicine (magnetotherapy) (Zannella 1997; 

Leszczynski, 2005; WHO 2006, WHO 2007) were considered and compared. This study has the 

practical significance since cockroaches are one of the most prominent pest insects that can be 
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found in almost every place where people live and work. They are exposed to the same MFs as 

humans and the obtained data can be extrapolated to estimate risks and benefits of such treatment 

in humans. Further, high voltage power lines emitting MF are often in the trajectory of many 

species (insects, birds, etc.), thus studies like this can be a good basis to consider how these high 

levels of MF might impact on other insects that provide valuable ecosystems services such as 

key pollinators (honey bees) whose cognitive abilities are crucial in finding food. 

Material and methods 

Model organisms 

B dubia is a synanthropic, cosmopolitan species that is easily grown in the laboratory. 

These cockroaches have a high reproductive potential, give birth to live young, and their 

developmental pattern is known (Alamer 2013; Wu 2013). Nymphs of B. dubia undergo seven 

instars over a period of 6 months before reaching adulthood (Hintze-Podufal and Nierling 1986; 

Wu 2013). They are immature form that already resembles that of the adults, except for a lack of 

wings. Adults live up to 2 years. All this together with the long life cycle makes this species 

highly suitable as a model organism, particularly for the evaluation of chronic effects, in 

neurophysiological, pharmacological, biomedical and environmental studies. In most 

magnetobiological experiments, biological objects were exposed to MFs for relatively short 

period, from less than one hour to a few weeks. There have been few studies on the effects of 

chronic exposure, such as over a few months, despite some indication that test animals become 

more sensitive to radiation after such treatment (Levitt and Lai 2010). 

The 1-month-old nymphs of B. dubia used in the experiment were offspring of male and 

female from the cockroach laboratory stock of the Department of Insect Physiology and 

Biochemistry, Institute for Biological Research "Siniša Stanković". They were reared in an 
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experimental room under constant conditions: temperature (26 ± 0.2°C), relative humidity (60-

70%) and photoperiod (12 h light/12 h dark). Food (ground biscuits, dog chops and fresh apples) 

for all cockroaches (stock population and experimental individuals) was provided ad libitum and 

changed once a week. The advantage of using nymphs of B. dubia as a model in this study is that 

their development lasts long enough (about 6 months), which allows chronic exposure to MFs of 

individuals at a specific stage of development and attribution of the outcome of such treatment to 

changes induced by MFs exclusively during this stage. Adults also live long, but nymphs are 

younger and their survival rate is higher, which is very important for a chronic study to have a 

valid number of samples for statistical analysis. 

Magnetic field exposure systems 

B. dubia nymphs were exposed to an SMF (110 mT) generated by a permanent double U 

shaped magnet (Model 6002, Raytheon, Waltham, MA) or an ELF MF (50 Hz, 10 mT), 

generated by an electromagnet, as described in detail in Todorović et al. (2019). 

All experiments were performed in a room with an ambient geomagnetic field of 

approximately 47 µT. A GM05 gaussmeter with a PT 2837 probe (Hirst Magnetic Instruments, 

Falmouth, UK) was used to measure the MF. Throughout the experiments, the temperature was 

constantly recorded (Environment Meter (DVM 401) - Velleman, USA). Some slight 

differences, compared to the control room temperature, as well as the temperature in the 

permanent magnet (26 ± 0.2°C), were found in the electromagnet (26.3 ± 0.05°C). 

Experimental procedure 

The 1-month-old B. dubia nymphs were randomly placed in plastic 3.5 cm diameter Petri 

dishes (5 individuals per dish) and exposed to the SMF (110 mT; SMF group) or ELF MF (50 

Hz, 10 mT; ELF MF group) for 5 months, i.e. until the end of their development. Nymphs of the 
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control group were submitted to the same experimental procedure but remained outside the reach 

of the MF. Throughout the experiment, all groups were kept under the same optimal conditions 

(see above under Model organisms). 

After 5 months, locomotion of control and MF exposed individuals was monitored in the 

"open-field" test for 10 min. Thereafter, they were sacrificed, the fat body was isolated on ice 

and weighed, and its glycogen and total lipid content determined. Nymph body mass was also 

estimated 1 and 5 months after onset of the experiment. 

Determination of fat body glycogen and total lipid content 

Fat body glycogen content was determined in individual nymphs using the anthrone 

reaction (Wyatt and Kale 1957). Each fat body was placed in 30 volumes of deionized water and 

homogenized on ice, at the lowest speed (5 x 10 000 rpm). After centrifugation (4ºC, 10 000 

rpm, 10 min; Eppendorf 5417R, Germany) supernatants were collected. The samples were 

heated in 30% KOH at 100ºC for 15-20 min, centrifuged at room temperature for 8 min at 10 000 

rpm and the supernatants collected. Following addition of Na2SO4 (200 μl) and 96% ETOH (1.2 

ml) and centrifugation (4ºC, 14 000 rpm, 10 min), the obtained precipitate (glycogen) was 

diluted in H2O2 (400 µl) and 0.15% anthrone added. After heating at 100ºC for 8 min, glycogen 

content was measured spectrophotometrically at 620 nm (SAFAS, Monaco City, Monaco) and 

expressed as mg glucose per mg fat body. 

Fat body lipid content was measured spectrophotometrically using the vanillin 

phosphoric acid method (Stone and Mordue 1980). Following addition of H2SO4 (500 μl) to fat 

body homogenates (5 µl) the solution was heated in boiling water for 10 min. After cooling to 

room temperature the vanillin reagent (20 ml; 85% phophoric acid and 197.7 mg vanillin in cold 
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deionized water) was added and absorption measured at 546 nm (SAFAS, Monaco City, 

Monaco). Total lipid content was expressed as mg of lipid per mg of fat body. 

Locomotion monitoring 

The nymphs were transferred to 8.5 cm diameter Petri dishes (one individual per dish). A 

LifeCam VX-6000 (Microsoft, Redmond, WA, USA) positioned above the Petri dishes was used 

to record locomotion of two individuals simultaneously. The camera was connected to a 

computer with Any-maze behavioral tracking software (v.4.96, Stoelting Co., Wood Dale, IL, 

USA). The following parameters of locomotion were analyzed by blinded personnel: travel 

distance (m), time in movement (s) and average speed while in motion (m/s). 

Each nymph was tested only once immediately after transfer to the Petri dish. 

Locomotion was monitored between 9 a.m. and 1 p.m in the experimental room under the same 

conditions used for the experiment. 

Statistical analysis 

Data distribution was initially estimated using the Kolmogorov-Smirnov test. The results 

for insect and fat body mass, as well as glycogen and total lipid content were normally 

distributed and were analyzed using one-way analysis of variance (ANOVA) followed by post 

hoc Fisher's Least Significant Difference (LSD) test. The data for locomotion did not fit a normal 

distribution and they were analyzed using the Kruskal-Wallis ANOVA followed by the post hoc 

Mann-Whitney U test. In all cases, the probability p < 0.05 was considered as statistically 

significant. 

All analyses were performed with STATISTICA v.7.0 software (StatSoft, Tulsa, OK, 

USA). 
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Results 

Nymph mass and fat body mass 

B. dubia nymph body mass was unchanged after a one-month exposure to the MFs (F = 

0.49, df = 2, p > 0.05). In contrast, it was reduced by each five-month MF treatment (F = 9.44, df 

= 2, p < 0.001) when compared to the control group (Table 1). Although the effect was more 

pronounced in the SMF group, it was not significantly different from that for the ELF MF group. 

Changes in fat body mass of nymphs chronically exposed to the MFs for 5 months were 

also observed (F = 8.68, df = 2, p < 0.01). Both the SMF and the ELF MF caused decreases in fat 

body mass, but the stronger effect was statistically significant only for the ELF MF (Table 1). 

Glycogen and total lipid content in the fat body 

Chronic exposure of B. dubia nymphs to the MFs for 5 months affected glycogen content 

(F = 28.25, df = 2, p < 0.001) and total lipid content (F = 12.91, df = 2, p < 0.001) in the fat 

body. Thus, glycogen level was significantly reduced in both SMF and ELF MF groups to a 

similar extent when compared to the control group (Figure 1A). In contrast, total lipid content 

was significantly increased in the SMF group, but significantly decreased in the ELF MF group 

in comparison with the control group value (Figure 1B). The total lipid content in the ELF MF 

group was also significantly lower when compared to the SMF group value. 

Locomotion 

Altered locomotion of B. dubia nymphs was another consequence of chronic exposure to 

MFs for 5 months (travel distance: H = 19.66, df = 2, p < 0.001; time in movement: H = 18.50, 

df = 2, p < 0.001; average speed while in motion: H = 19.73, df = 2, p < 0.001). In both SMF and 

ELF MF groups, all three examined parameters of locomotion were significantly increased 
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compared values for the control group (Figure 2A, B C). The increases were higher in the ELF 

MF group, but were not significantly different from values for the SMF group. 

Discussion 

The main finding of this study is that chronic exposure of B. dubia nymphs to the SMF 

(110 mT) or the ELF MF (50 Hz, 10 mT) for 5 months decreased their body mass and the fat 

body glycogen content, as well as increasing all examined parameters of locomotion. In addition, 

the SMF treatment elevated total lipid content in the fat body, while the ELF MF treatment 

reduced fat body mass and its total lipid content. 

The concept of energy reorganization under the pressure of stress postulates energy re-

allocation and modulation of energy demands for stress compensatory reactions (Djawdan et al. 

1998). The insect store of chemical energy is required for three types of physiological processes: 

biosynthesis (reproduction, growth, energy deposition, etc.), maintenance of function and 

structure, and external work (Hill et al. 2012). Acquired energy must be divided optimally 

among these processes to maintain homeostasis and fitness. Under stressful conditions, the 

priority is energy expenditure to protect survival, so energy flux is redirected to stress-protective 

reactions (Kooijman 2000). 

The fat body is the center for energy metabolism in insects. Energy reserves are deposited 

in the form of glycogen (carbohydrate) and neutral lipids (fat). The glycogen polymer can be 

readily degraded to glucose on demand for use as a glycolytic fuel in the stress state (Arrese and 

Soulages 2010). In insects lipids are the principal energy substrate for long-term extreme 

circumstances (Chino 1997). During tethered long lasting flight of Locusta migratoria, the level 

of lipids in hemolymph was elevated about three-fold together with acceleration of the 

diacylglycerol pool turnover rate (Van der Horst et al. 2001). The energy content of fats is much 
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greater than that of glycogen. As insect fat reserves contain eight to nine times more energy per 

unit mass than glycogen reserves (Arrese and Soulages 2010), they play the predominant role in 

energy compensation in severe stress states (Djawdan et al. 1998). Rall et al. (2010) found that 

insect feeding was reduced and catabolic processes (due to higher energy demands) in the fat 

body were turbulent under continual stress conditions. Kooijman (2000) proposed a concept of 

energy-limited tolerance to stress whereupon more energy is spent on somatic maintenance under 

stress conditions than in enlarging energy reserves, i.e. energy stores become depleted. Our 

results showed significantly lower nymph body masses after chronic exposure to the SMF or 

ELF MF, but lower fat body mass only after chronic exposure to the ELF MF. This suggests that 

in the SMF group energy influx was probably similar to expenditure and therefore the energy 

depots were not depleted. On the contrary, in the ELF MF group energy demands (locomotion, 

higher metabolic rate, reactions of stress-compensation, etc.) exceeded energy intake with the 

consequent deficit being covered by utilization of fat body mass. This could indicate higher 

susceptibility of B. dubia nymphs to the effects of the ELF MF than the SMF, but further 

research is needed to confirm this assumption. 

In line with the above mentioned are our results regarding the influence of chronic 

exposure to MFs on fat body glycogen and total lipid content in B. dubia nymphs. The glycogen 

content was decreased regardless of MF type, while total lipid content was greater after SMF 

treatment, but lower after ELF MF treatment. It seems that the nymphs used different energy 

resources in response to the SMF (carbohydrates) and ELF MF (carbohydrates and lipids) to 

satisfy the increased energy demands and overcome the stressful conditions. Thus, ELF MF 

treatment activated both glycogen and lipid catabolism, while SMF treatment activated glycogen 

catabolism but lipid synthesis in fat body at the same time. These findings also suggest that 
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under the stress provoked by the SMF there was a balance between energy production and loss, 

while in the case of the ELF MF, the priority was energy expenditure leading to the depletion of 

energy depots, observed here as reduced fat body mass. 

In insects, AKHs have a central role in control of energy metabolism and are involved in 

the mobilization of carbohydrates and lipids for energy-consuming activities (Gäde 2004; Lorenz 

and Gäde 2009). Biogenic amines, predominantly octopamine, regulate the activity of glycogen 

phosphorylase, the enzyme involved in glycogen degradation (Van der Horst et al. 2001). 

Octopamine, frequently named the "stress hormone", was also responsible for rapid mobilization 

of lipids for locust flight (Orchard et al. 1993) and for increased amounts of lipids and glycogen 

in Acheta domesticus (Fields and Woodring 1991). Finally, the insulin-like neurohormone 

bombyxin alters carbohydrate metabolism, including utilization of glycogen, enhanced 

hydrolysis of trehalose in hemolymph and its uptake by tissue cells (Satake et al. 1997; Meyer-

Fernandes et al. 2000). Therefore, it could be assumed that the observed effects of the SMF and 

ELF MF on glycogen and total lipid content were achieved indirectly by an influence on 

neurohormonal factors involved in the regulation of energy metabolism in insects. This scenario 

seems acceptable given the already demonstrated impact of an MF on the activity of 

neurosecretory neurons in gypsy moth caterpillars and yellow mealworm pupae, as well as 

octopamine concentrations in cockroaches (Wyszkowska et al. 2006; Perić-Mataruga et al. 2008; 

Ilijin et al. 2011). 

It is known that AKHs and octopamine also have very important roles in the regulation of 

insect locomotion (Socha et al. 1999; Pflüger and Duch 2000). Thus, AKHs stimulate 

locomotion (Socha et al. 1999) and mobilize various substrates (lipids, carbohydrates, proline) 

from stores in insect fat bodies during locomotion and flight (Gäde and Auerswald 2003; Lorenz 
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et al. 2004; Gáliková et al. 2015). Mobilized substrates undergo oxidation in the muscles, which 

is predominantly based on carbohydrate oxidation in cockroaches (Gäde and Auerswald 2003). 

Octopamine plays a major neuromodulatory role in regulating various insect behaviors including 

locomotion, flight muscle activity and lipid and carbohydrate mobilization. This prepares insects 

for periods of extended activity or assists recovery from times of increased energy demand 

(Pflüger and Duch 2000; Farooqui 2012). In the present study chronic exposure of B. dubia 

nymphs to either SMF or ELF MF for 5 months increased all examined parameters of 

locomotion (travel distance, time in movement, average speed while in motion). These findings 

are consistent with the already observed influence of MF on locomotion of other insect species 

(Todorović et al. 2013; Dimitrijević et al. 2014; Pavlović et al. 2016; Wyszkowska et al. 2016; 

Zmejkoski et al. 2017) and could be attributed to effects on AKHs and octopamine, as key 

factors in the control of insect locomotion. 

In light of our recently published finding, an explanation for the observed changes in 

locomotion should be also sought in the effects of SMF and ELF MF on cholinergic transmission 

in the brain of B. dubia nymphs (Ilijin et al. 2020). In insects, acetylcholine (ACh) is a 

neurotransmitter involved in the control of locomotion and acetylcholinesterase (AChE) is an 

enzyme that catalyzes its hydrolysis (Osborne 1996). The amount of synthesized and released 

neurotransmitters depends on the intracellular Ca2+ concentration (Augustine 2001), while the 

activity of neurons depends on the change in the function of voltage-dependent Na+ channels 

(Marchionni et al. 2006; Aldinucci et al. 2009; Cuccurazzu et al. 2011). It is known that MF may 

increase the membrane potential and voltage sensors move up towards the extracellular matrix 

(Gapeyev et al. 2001; Bauréus et al. 2013; He et al. 2013; Pall 2013; Lu et al. 2015), resulting in 

an increased number of open-voltage-dependent Ca2+ and Na+ channels, and consequently 
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altered neuronal activity and the amount of neurotransmitters released. On the other hand, the 

reactive oxygen species (ROS) generated after exposure to MFs change the cell membrane 

properties, e.g. their current and potential, ionic gradients and level of ion channel openness 

(Kourie 1998; Annunziato et al. 2002). As we have already shown, the activity of the enzyme of 

antioxidative defense in the gut of B. dubia nymphs increased after long-term exposure to both 

SMF (110 mT) and ELF MF (50 Hz, 10 mT) (Todorović et al. 2019). It can be assumed that the 

same scenario is in the brain of B. dubia nymphs, namely that the applied MFs generate ROS 

that induce changes in membrane properties and amount of Ca2+ ions in neurons, including 

cholinergic. In addition, long-term exposure to both MFs had a direct effect on cholinergic 

transmission in the brain of B. dubia nymphs causing a decrease in the activity of AChE (Ilijin et 

al., 2020) and thus excessive ACh accumulation in the synaptic cleft. Having in mind these 

findings, it is possible that changes in this neurotransmitter determine the behavioral patterns of 

B. dubia nymphs. 

Finally, the question remains as to the consequences of such treatment in other organisms 

and humans. By affecting metabolism, applied MFs could interfere with other energy demanding 

processes (not only locomotion) in animals. In addition, changes in locomotion could be 

reflected in performing daily activities involving the movement of animals. For example, it is 

known that some direct physiological effects on ion channels could well produce immediate 

behavioral responses and underpin avoidance movements to high levels of ELF electromagnetic 

field around overhead power lines which could then act as barriers to animals' their movement 

(Wyszkowska et al. 2016). In humans living and working in the presence of these MFs, 

prolonged exposure could have adverse health effects, especially in individuals with metabolic 

and motor disorders. It is very important to point out here the possible difference in sensitivity of 
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cockroaches and humans to the applied MFs. As already shown for radiation, cockroaches are 

more resistant than humans (Berenbaum 2001) and thus it is quite expected that the observed 

effects of MFs in cockroaches are more pronounced in humans. 

Conclusion 

These findings indicate that chronic exposure to the applied MFs could be considered as a 

stress affecting different aspects of nymph functioning. Particularly interesting is that B. dubia 

nymphs possess different strategies for energy use in response to the SMF and ELF MF in order 

to satisfy the increased demands for fuel needed for locomotion and other activities under 

stressful conditions. 
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Figure legends 

 

Figure 1. The influence of chronic exposure to a static magnetic field (SMF, 110 mT) and an 

extremely low frequency magnetic field (ELF MF; 50 Hz, 10 mT) for 5 months on glycogen 

content (A) and total lipid content (B) in the fat body of B. dubia nymphs. Results are presented 

as means ± S.E.M. (n = 10 nymphs per group). Different letters (a, b, c) indicate significant 

differences between groups (LSD test). 

 

Figure 2. The influence of chronic exposure to a static magnetic field (SMF, 110 mT) and an 

extremely low frequency magnetic field (ELF MF; 50 Hz, 10 mT) for 5 months on locomotion, 

expressed as travel distance (A), time in movement (B) and average speed while in motion (C), 

of B. dubia nymphs. Results are presented as means ± S.E.M. (n = 10 nymphs per group) during 

a 10-min period. Different letters (a, b) indicate significant differences between groups (LSD 

test). 
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Table 1. The influence of chronic exposure to a static magnetic field (SMF, 110 mT) and an 

extremely low frequency magnetic field (ELF MF; 50 Hz, 10 mT) for 5 months on body mass 

and fat body mass of B. dubia nymphs. Results are presented as means ± S.E.M. (n = 10 nymphs 

per group). Different letters (a, b) indicate significant differences between groups (LSD test). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Nymph body mass (mg) 
after 1 month           after 5 months 

Fat body mass (mg) 
after 5 months 

Control 43.0 ± 3.9 a 663.9 ± 100.6 a 32.4 ± 1.1 a 
SMF 40.9 ± 1.6 a   275.5 ± 33.0 b 29.1 ± 1.9 a 

ELF MF 45.1 ± 3.1 a   351.7 ± 47.5 b 24.3 ± 1.0 b 
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extremely low frequency magnetic field (ELF MF; 50 Hz, 10 mT) for 5 months on glycogen 

content (A) and total lipid content (B) in the fat body of B. dubia nymphs. Results are presented 

as means ± S.E.M. (n = 10 nymphs per group). Different letters (a, b, c) indicate significant 
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Figure 2. The influence of chronic exposure to a static magnetic field (SMF, 110 mT) and an 

extremely low frequency magnetic field (ELF MF; 50 Hz, 10 mT) for 5 months on locomotion, 

expressed as travel distance (A), time in movement (B) and average speed while in motion (C), 

of B. dubia nymphs. Results are presented as means ± S.E.M. (n = 10 nymphs per group) during 

a 10-min period. Different letters (a, b) indicate significant differences between groups (LSD 

test). 
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