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Abstract 

Significance: Autoimmune diseases are progressively affecting westernized societies, as the 

proportion of individuals suffering from autoimmunity is steadily increasing over the past 

decades. Understanding the role of reactive oxygen species (ROS) in modulation of the 

immune response in the pathogenesis of autoimmune disorders is of utmost importance. The 

focus of this review is the regulation of ROS production within tolerogenic dendritic cells 

(tolDC) and regulatory T (Treg) cells that have the essential role in the prevention of 

autoimmune diseases and significant potency in their therapy. 

Recent Advances: It is now clear that ROS are extremely important for the proper function of 

both DC and T cells. Antigen processing/presentation and the ability of DC to activate T cells 

depend upon the ROS availability. Treg differentiation, suppressive function and stability are 

profoundly influenced by ROS presence.  

Critical Issues: Although a plethora of results on the relation between ROS and immune cells 

exists, it remains unclear whether ROS modulation is a productive way for skewing T cells 

and DC towards a tolerogenic phenotype. Also, the possibility of ROS modulation for 

enhancement of regulatory properties of DC and Treg during their preparation for use in 

cellular therapy has to be clarified. 

Future Directions: Studies of DC and T cell redox regulation should allow for the 

improvement of the therapy of autoimmune diseases. This could be achieved through the 

direct therapeutic application of ROS modulators in autoimmunity or indirectly, through 

ROS-dependent enhancement of tolDC and Treg preparation for cell-based immunotherapy. 
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Introduction 

Reactive oxygen species (ROS) are associated with the eradication of invading 

microorganisms, promotion of inflammation and tissue damage. However, their role in the 

immune response is far more complex. Redox signalling (158, 7, 126) is being recognized as 

an important player in the activation, differentiation and proliferation of immune cells. This 

review focuses on redox regulation in specific subsets of dendritic cells (DC) and T cells that 

possess immunosuppressive and/or regulatory roles during the immune response in the 

physiological and pathological conditions. The activity of DC with tolerogenic properties 

(tolDC) and regulatory T (Treg) cells is especially susceptible to ROS-mediated fine-tuning, 

as ROS is involved in antigen processing and presentation in DC, and T cell receptor (TCR)-

mediated signalling within T cells. TolDC and Treg are extremely important for the 

maintenance of central and peripheral immune tolerance i.e. the ability of the adaptive 

immune response to distinguish between self and non-self. It is generally accepted that 

mechanisms of the tolerance to self-tissues can be broken due to genetic predisposition and 

various environmental factors, such as viral or bacterial infection, food and gut microbiota 

antigens, tobacco smoke, alcohol consumption, lack of vitamin D (2, 117, 29, 130), allowing 

for the activation of autoreactive T and B cells. Activated T and B cells induce inflammation 

that causes destruction of self-tissues, i.e. trigger the development of autoimmune diseases. 

Multiple organs and tissues are targeted by the autoimmune response in systemic autoimmune 

disorders, such as systemic lupus erythematosus (SLE), while specific cells and structures of 

the certain organs are targeted in organ-specific autoimmune diseases, such as insulin-

producing β cells of the pancreas in type 1 diabetes (T1D), cartilage of the joints in 

rheumatoid arthritis (RA), and myelin sheaths and neurons of the brain and spinal cord in 

multiple sclerosis (MS). 
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Autoimmunity development has been also associated with inadequate redox signalling in 

immune cells (167). For example, ROS produced by macrophages within the pancreatic islets 

in T1D are detrimental for the insulin-secreting β cells since these cells are poorly equipped 

with the antioxidant machinery. Also, T cell-related mitochondrial abnormalities are detected 

in T1D, and the increase in ROS production in T cells is correlated with the major pro-

inflammatory cytokine, interferon-γ (IFN-γ) secretion (24, 25, 116). The importance of redox 

regulation is depicted by the fact that the severity of RA is correlated with the generation of 

altered auto-antigens such as the oxidized form of type II collagen by ROS during the early 

stages of RA (147). In MS, oligodendrocytes, myelin-producing cells, are especially 

vulnerable to oxidative stress, as they have low antioxidant levels, high content of redox-

active iron, and exposed extensive plasma membrane expansions (101). 

ROS include superoxide (O2•−), hydrogen peroxide (H2O2) and hydroxyl radical (OH•). Unlike 

O2•− or OH•, H2O2 does not readily mediate oxidative damage and since it is not extremely 

reactive, it can freely diffuse within the cell and even cross the cell membrane through 

aquaporins that act as membrane passages for H2O2 (38). They can be generated in several 

intracellular niches. The mere cell respiration is a source of ROS in dormant conditions. 

Therefore, cellular energy metabolism and ROS production are tightly related. ROS is 

produced during energy production (ATP) by the process of oxidative phosphorylation 

(OXPHOS) in the inner membrane of mitochondria. The transfer of electrons from NADH 

could lead to electron leakage and the generation of superoxide at Complex I and III of the 

electron transport chain. Complex I (NADH ubiquinone oxidoreductase) produces a large 

amount of superoxide in forward and reverse electron transport. When the NADH/NAD+ 

ratio is high, electrons generate superoxide in forward electron transfer. During reverse 

electron transfer, electrons derived from succinate oxidation on Complex II (succinate 

dehydrogenase) reversely flow to Complex I and generate superoxide. The next site in the 
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electron transport chain where superoxide generation occurs is Complex III (ubiquinol-

cytochrome c oxidoreductase). In contrast to Complex I, it appears that Complex III produces 

much less superoxide under physiological conditions (110, 26). Although OXPHOS and the 

inner membrane are a major source of superoxide production, α-ketoglutarate dehydrogenase 

or other enzymes that are associated with the NADH pool, may also be a source of superoxide 

in mitochondria (156). The end result of superoxide production in mitochondria is the 

generation of H2O2 by superoxide dismutase or the formation of peroxynitrite (ONOO-) in 

reaction with nitric oxide (NO) (80). 

This minute amount of ROS released during OXPHOS is usually involved in cell 

communication and signalling and may aid the proper function of immune cells, especially in 

the terms of their activation and differentiation, antigen processing, cell cycle progression and 

inflammatory behaviour (61). However, when excessively produced upon cellular stress, ROS 

could be detrimental for the cell and its surroundings. Apart from microbe eradication, ROS 

can provoke cellular damage, interfere with adequate immune response and may contribute to 

the development of autoimmunity. This ROS comes from the processes mediated by NADPH 

oxidase (NOX) complexes, monoamine oxidase, xanthine oxidase, lipoxygenases, 

cyclooxygenases, monooxygenases (165). NOX complex is formed of several subunits and it 

is found in the plasma membrane and in the membranes of phagosomes. NOX catalyzes the 

electron transfer from NADPH to molecular oxygen and thus generates superoxide (O2•−), 

which is a precursor for most other ROS (76). Two membrane NOX subunits represent the 

catalytic core of the enzyme, gp91phox (often referred to as NOX2) and p22phox, while the other 

three p47phox, p67phox, and p40phox are regulatory subunits (165). As ROS can be highly toxic, 

there are several defence mechanisms, including glutathione peroxidase, superoxide 

dismutase, selenoproteins and catalase enzymes that prevent oxidative damage. In addition, 
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molecules such as pyruvate, α-ketoglutarate, oxaloacetate, ascorbate, vitamin E, melatonin, 

uric acid and hydrogen sulphide are potent ROS scavengers (140, 151,172). 

 

DC in autoimmunity 

Depending on the signals provided by DC, CD4+ T cells are directed towards various helper T 

(Th) or Treg cells (Fig 1). Thus, DC have a major role in the pathogenesis of autoimmune 

diseases where the overactivation or inappropriate activation of CD4+ T cells is the foundation 

of the autoimmune reactivity (Fig 2). The improper activation comes as a consequence of 

inadequate inherent regulation of T cells, i.e. flaws in the central tolerance or the inefficient 

activity of Treg cells. But it can also be a consequence of intrinsic dysfunction of DC. Indeed, 

it has been shown in various animal models of autoimmunity, or even in humans affected by 

autoimmune diseases that their DC have distinctive functional or phenotypic properties or 

different abundance in comparison to healthy animals or humans (11, 33, 148, 75, 88, 111, 

112). For example, intestinal DC from T1D patients were incapable of converting T cells into 

Treg cells (11). Diabetes-prone biobreeding rats, individuals at the preclinical phase of T1D, 

and first-degree relatives of T1D patients had less DC and these cells had impaired antigen-

presenting function (33, 148, 75). Also, DC from patients suffering from SLE or MS, as well 

as the DC from the first-degree relatives of T1D patients had impaired production of IFN-α 

(88, 75, 12, 143. Interestingly, both immature and mature DC obtained from SLE patients had 

elevated expression of co-stimulatory molecules (CD40, CD86), but their ability to stimulate 

T cell proliferation was increased in the former and decreased in the latter, in comparison to 

healthy individual’s DC (111). Similarly, decreased expression of CD80 and CD86 and lower 

ability to stimulate T cell proliferation was observed in the mature DC obtained from children 

with T1D (4). Also, these cells produced higher amounts of IL-10 and lower amounts of IL-12 
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in comparison to healthy individuals DC (5). Decreased ability of DC obtained from MS 

patients to express CD86, 4-1BBL, CD40 and CD83 and to stimulate IFN-γ and proliferation 

of T cells was observed (12, 144). Decreased expression of CC chemokine receptor 2 (CCR2) 

in mature DC of paediatric T1D patients was reported (112). Accordingly, genome-wide 

association and transcriptome studies in T1D and MS have identified autoimmunity-

associated loci and specific genes that are linked to the inherent DC development and/or 

function and that may interfere with tolerogenic DC activities (63, 137,113). All of these data 

imply that there are inherent disturbances in DC number and function that are relevant for the 

pathogenesis of autoimmune diseases. However, the observed dysfunctions of DC in 

autoimmune diseases might also be the consequence of the pro-inflammatory milieu that DC 

are exposed to. For instance, the resistance to experimental autoimmune encephalomyelitis 

(EAE) in Balb/c mice can be overcome by an infection with murine cytomegalovirus, and one 

of the main consequences of the infection is an increased number of DC expressing co-

stimulatory molecules CD86 and CD40 in the peripheral lymph organs (94). Further, NO 

produced by inducible NO synthase was shown to potentiate major histocompatibility 

complex (MHC) class II molecule expression in DC during EAE, thus increasing their 

inflammatory ability (142). Coagulation factor XII, which links coagulation and 

inflammation, was shown to act through CD87 on DC to activate T cells during 

neuroinflammation (51). Also, pancreatic resident phagocytes produce excessive ROS, which 

stimulates infiltrating macrophages and DC that can carry β cell antigens into the draining 

pancreatic lymph nodes to activate autoreactive T cells (19). 

In addition to their ability to activate autoreactive T cells, DC can suppress the T cell 

response. Such tolDC can be induced in vivo in response to regulatory cytokines, i.e. IL-27 

and IL-10, vitamin A and its metabolite retinoic acid, ligands of the aryl hydrocarbon 

receptor, such as tryptophan metabolites, or neurotransmitters, e.g. norepinephrine, as well as 
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in response to apoptotic cells (28, 149, 170). TolDC are of particular importance for the 

regulation of the immune response at the mucosal barriers, such as gut, lung and skin (Fig 3). 

For instance, CD11b-CCR7+MHC class IIhighCD103+ have been shown essential for dietary 

antigen tolerance (40, 28, 6). MHC class IIintCD80/86highCD40+CD8- cells were identified as 

potent Treg inducers in the lung (1) and MHC class IIlowCD80/86lowCD40low CD103+ tolDC 

were identified in the eye (146). Skin migratory dermal CD11b+CD103- DC were shown more 

potent than CD103+ DC in inducing Treg (55). 

The importance of tolDC in constraining an autoimmune disease was shown in mice where 

depletion of DC led to aggravated MS-like disease (176). Mechanisms of tolDC 

immunosuppressive actions include perforin-dependent apoptosis of T cells, secretion of 

transforming growth factor (TGF)-β and retinoic acid, or IL-10 and IL-27 mediated 

generation of Treg (149). TolDC derived from human peripheral blood monocytes or from 

murine bone marrow cells under the influence of tolerizing agents, such as vitamin D and/or 

dexamethasone, are used in cellular immunotherapy of autoimmune diseases (56, 50, 144, 

122,168). Their phenotype in vitro is usually as MHC classIIlowCD80/86lowCD40 low. 

Similarly, reduced MHC class II and/or co-stimulatory molecules expression was also 

observed in vivo in animal models of T1D, RA and MS (123, 103, 118, 154). However, the 

precise phenotype of tolDC in vivo in conjunction with autoimmunity is still elusive and 

differs among the animal models (Fig 3). There are reports from non-obese diabetic (NOD) 

mice that lymphoid resident CD11b+DCIR2+ DC, corresponding to CD11b+CD1c+ DC in 

humans, are able to tolerize T cell response despite the ongoing autoimmune reaction against 

the pancreas (123). Similarly, CD11b+CD103- and CD11bhighCD103+ DC were identified as 

tolDC upon intravenous tolerization in EAE mice (154). However, migratory DEC205+ or 

Langerin+ DC (CD11b-CD103+ and Langerhans cells) were shown to potently induce Treg in 

EAE mice (67). Along the same line, CD11c+CD11b-CD103+ were identified as tolDC in 
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multiple low dose streptozotocin-induced T1D in mice (81). Also, CD11chiMHC class IIhi 

perforin producing DC were identified as tolDC in EAE (179) and CD11c+CD11b+IDO+ cells 

were recognized as tolDC in collagen-induced arthritis (118). Thus, it is possible that tolDC in 

autoimmune disease have different phenotypes depending on the immune context within 

which they perform their functions. 

 

T cells in autoimmunity 

The thymus is a central lymphoid organ where CD4+ Th cells and CD8+ cytotoxic 

lymphocytes have to pass through two checkpoints, i.e. positive and negative selection. Their 

T cell receptors (TCR) need to recognize the self MHC molecules in conjunction with 

antigenic peptides (positive selection), and then those T cells that do not bind MHC-self 

antigens complexes with strong avidity (negative selection) become selected to survive and 

exit the thymus (Fig 1). However, the evidence from healthy population indicates the presence 

of auto-reactive T cells specific for versatile auto-antigens (insulin, glutamic acid 

decarboxylase 65, melanocyte differentiation Ag tyrosinase, myelin basic protein, type II 

collagen, acetylcholine receptor) at the periphery (90, 121, 124, 141). Not all auto-reactive 

cells are pathogenic. One population of CD4+ cells that expresses TCR with high avidity for 

auto-antigens normally exit the thymus and these are called the Treg cells (104, 175). Their 

function is to maintain self-tolerance and immune system homeostasis (Fig 2). 

Although there is a variety of T cells with regulatory properties, this review will focus on 

natural Treg (nTreg) that develop in the thymus or induced Treg (iTreg) that are generated 

from naïve CD4+ cells at the periphery. All these Treg are CD4+ T cells that express high 

levels of the alpha chain of IL-2 receptor (CD25) and forkhead box p3 (FoxP3) transcription 

factor (CD4+CD25highFoxP3+). iTreg develop from naïve CD4+ cells (Fig 1) in the presence of 
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FoxP3-inducers, cytokines TGF-β, IL-2, dietary constituents (retinoic acid) in vivo, or drugs, 

such as glucocorticoids and rapamycin in vitro (65, 155). In contrast to nTreg that are 

exclusively auto-antigen-specific, iTreg can also be specific for foreign antigens (allergens, 

food and commensal microbiota). For example, intestinal iTreg orchestrate intestinal 

tolerance to harmless microbial and food antigens. The combination of retinoic acid 

derivatives and TGF-β derived from DC, together with IL-2 produced by innate lymphoid 

cells is necessary for their differentiation (52, 108). 

The lack of Treg cells resulting from Foxp3 mutation is a cause of fatal autoimmunity (10). 

The association of the specific autoimmune disease (such as T1D, MS or RA) and the type of 

change in the Treg biology is quite controversial. In some cases, a defect is mirrored by the 

number, while in the other by the function of the Treg. Several studies in humans show that 

T1D and RA are associated with lower levels of Treg (129, 57, 162, 42), while others report 

no association (16, 105, 124). These findings largely depend upon the identification markers 

of Treg. In NOD mice, for example, spontaneous T1D development has been correlated with 

the lower diversity of TCR on Treg (43) and reduced Treg suppressive capacity (31). In brief, 

T1D development in individuals and susceptible mice is generally associated with reduced 

sensitivity to IL-2, increased Treg apoptosis, decreased stability of FoxP3 expression, 

increased Treg production of pro-inflammatory cytokines as previously reviewed elsewhere 

(66). RA individuals show decreased Treg differentiation due to aberration in specific 

chromatin-modifying elements (171). Also, the development and the function of Treg in MS 

individuals were found to be disturbed (161), while the treatment of such individuals that 

resulted in reduced annual relapse rate and reduced disease progression was associated with 

increased Treg proportions (36).  
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Treg promote self-tolerance by versatile mechanisms. They secrete IL-10, TGF-β and IL-35, 

all implicated in the down-regulation of pro-inflammatory molecules in DC, macrophages, 

and activated B and T lymphocytes. Contact-dependent inhibition by Treg relies on the 

expression of CTLA-4, a co-inhibitory molecule that competes with the co-receptor CD28 in 

binding to the co-stimulatory molecules (CD80 and CD86) on antigen-presenting cells. In this 

way, Treg cells prevent the activation of the pathogenic T cells specific for the same auto-

antigen and induce tolerogenic properties in DC (177). Also, Treg can induce apoptosis of 

auto-reactive T cells through another co-inhibitory interaction, i.e. interaction of PD-1 with its 

ligand PD-1L on effector T cells (48). In addition, Treg exert contact-dependent inhibition of 

immune cells through the surface bound TGF-β1. This molecule is in inactive form, but when 

it becomes activated through the action of its linker molecule GARP, it performs its 

immunosuppressive functions (30, 18). Treg cells also express ectonucleotidases CD39 and 

CD73 that hydrolyse adenosine triphosphate and adenosine diphosphate into adenosine, which 

increases the intracellular concentration of immunoregulatory cyclic adenosine 

monophosphate in the effector T cells (131). As a shared feature with cytotoxic CD8+ 

lymphocytes, Treg can utilize granzyme B/perforin machinery for the direct inactivation of 

effector cells (20). ROS production in Treg is explored as a novel mode of Treg suppressive 

effects. 

 

The effect of ROS on DC biology 

DC utilize ROS to eliminate pathogens, as well as to process and present antigens (61, 82). 

Although the function of DC is not primarily related to the killing of microorganisms, these 

cells do activate NOX2 and subsequent ROS production after bacterial, viral, and fungal 

stimuli through Toll-like receptors (61, 82). These high ROS concentrations (oxidative burst) 
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are used for the elimination of the pathogen, as exemplified in the elimination of fungal 

pathogens (62). In contrast, when activated by T lymphocytes through CD40L, DC do not 

engage NOX2, and no oxidative burst occurs (163). Therefore, OXPHOS-related ROS 

production is probably involved in the intracellular signalling. Interestingly, lower OXPHOS 

gene expression was observed during maturation of human monocyte-derived DC (87). NO 

generated by inducible NO synthase was shown crucial for the maturation-related 

downregulation of OXPHOS in murine DC (41). On the contrary, microarray and proteome 

analysis showed that several genes directly related to OXPHOS were up-regulated in tolDC 

differentiated in vitro (44, 46). Also, tolDC derived from human monocytes in vitro had 

higher mitochondrial oxidative activity, production of ROS and increased spare respiratory 

capacity in comparison to mature DC (95).  It can be, therefore, hypothesized that OXPHOS-

derived ROS are associated with the suppressive phenotype of tolDC (Fig 4). However, 

NOX2-generated ROS at the plasma membrane affect cofilin activity in T cells, thus 

preventing efficient immune synapse formation, leading to T cell hypoactivation and necrotic 

cell death (133, 61). Thus, NOX2-derived ROS can also substantially contribute to 

tolerogenic activity of DC. 

Generally, it is considered that ROS contribute to antigen processing and presentation in DC 

(61). Degradation of proteins in phagosomes occurs in a strictly controlled environment with 

specific pH (5.5 – 6.5) for optimal enzymatic activity. NOX2-mediated ROS are involved in 

maintaining alkalinisation of the phagosomal lumen as ROS inactivates the V-ATPase and 

subsequently increases pH (157). Therefore, ROS seem to enable proper protein degradation. 

Completely absent ROS in DCs lacking gp91phox lead to a very low pH in phagosomes, which 

impairs antigen presentation (134). In contrast, there was also a report on ROS-dependent 

inhibition of cysteine proteases cathepsins that degrade proteins for MHC II loading and 

impaired antigen processing in DC (132). 
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Maturation of DC is related to the up-regulation of co-stimulatory molecules, such as CD40, 

CD80, CD86 that facilitate productive DC-T cell interaction, as well as with the production of 

cytokines that drive the differentiation of naïve T cells. Inhibition of ROS production during 

lipopolysaccharide (LPS)-induced maturation in vitro suppressed CD86 expression of murine 

bone marrow-derived DC (100). On the other hand, it was shown that IFN-γ+ LPS-matured 

DC from p47phox deficient mice produced more IL-12 and, consequently, potentiated the 

differentiation of Th1 cells (69). The negative effects of NOX2-generated endogenous ROS 

on IL-12 production were mediated through impairment of p38 MAPK signalling (69). Also, 

low concentration of H2O2 (0.01 µM) decreased expression of MHC class II molecules on 

human DC (119). The treated DC potentiated IL-4 producing T cells, i.e. Th2 cells (119). As 

already stated, the maturation of human monocyte-derived DC is associated with lower 

OXPHOS gene expression (87) and potentially lower production of mitochondrial ROS. 

 

The effect of ROS on Treg biology 

The involvement of ROS in T cell biology is still underexplored. Redox status of T cells 

depends upon the action of ROS producers: phagocytic NOX-2, non-phagocytic enzyme dual-

substrate oxidase 1 (DUOX-1), mitochondria, and the action of antioxidant system that 

includes superoxide dismutase, peroxiredoxins (cysteine-dependent peroxidase enzymes), and 

selenoproteins that include glutaredoxins (glutathione-dependent redox enzymes) and 

thioredoxin reductases (enzymes that reduce thioredoxin) (27). Both intracellular and 

extracellular ROS can act as signalling molecules and tightly regulate the process of T cell 

differentiation, activation and function (47).   

Intracellular ROS production in Treg probably follows the same principle as in T cells in 

general (27), i.e. ROS are generated upon TCR activation or during their cellular metabolism. 
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A cognate recognition of antigen-MHC complexes initiates TCR crosslinking in T cells and 

one of the consequences is the production of ROS (68, 89). The first wave of ROS production 

is exclusively H2O2 and is very rapid and transient (occurs after 2-4 mins) and is independent 

of NOX, but dependent upon DUOX-1. DUOX-1 activity promotes inactivation of Src 

homology 2 domain-containing protein tyrosine phosphatase 2. As a consequence, the 

phosphorylation of ZAP-70 occurs that enables its association with the Src family tyrosine 

kinase Lck and the CD3ζ chain of the TCR complex. Therefore, H2O2 generated by DUOX-1 

acts in a positive feedback loop to enhance and sustain further TCR signaling (89). The 

second phase of ROS production after TCR activation is stable H2O2 generation that is NOX-

dependent and provoked by FasL-Fas interaction. Superoxide anion generation, as a third 

event, occurs after 8–10 min and is FasL-Fas dependent and independent of NOX (68).  

However, TCR-initiated events also trigger OXPHOS. The efflux of calcium ions from the 

endoplasmic reticulum triggered by CD3 promotes calcium entry into the mitochondria and 

stimulates OXPHOS and concomitant ROS generation. These ROS are involved in the 

activation of key transcription factors like nuclear factor κB (NF-κB) that drives IL-2 

production and activates T cell proliferation. The ROS-mediated stimulation of activator 

protein 1 and nuclear factor of activated T cells is required for further downstream signalling 

events that support T cell-mediated immune responses (72, 73, 135). However, the excess of 

ROS may negatively affect T cell differentiation and proliferation. For example, the low 

content of selenium (a constituent in antioxidative selenoproteins) in the food diminishes the 

ability of T cells to become activated upon exposure to the antigen. Also, their proliferation is 

decreased and can be attributed to the reduction of free thiols observed after low selenium diet 

(60). 

In the steady state, Treg cells predominantly rely on fatty acid oxidation and OXPHOS to 

meet their relatively low-energy needs (59, 138, 164). However, activation shifts Treg 
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metabolism to the aerobic glycolysis, glutaminolytic and pentose phosphate (164). During 

OXPHOS in the mitochondria, the leakage of electrons occurs and ROS can be formed. To 

summarize, complex I produces large amounts of O2•- by two mechanisms: when the matrix 

NADH/NAD+ ratio is high, leading to a reduced flavin mononucleotide on Complex I, and 

when electron donation to the coenzyme Q pool leads to reverse electron transport (Figure 4). 

Although the site of O2•- production during reverse electron transport is not known, the rate 

of O2•- production seems to be the highest possible in mitochondria (110, 26). Therefore, 

although Complex III can be induced to produce O2•- with the inhibitor antimycin, its 

production in mitochondria under physiological conditions is far lower and is negligible 

compared with the maximum rates of O2•- production from Complex I. Since this is 

predominant energy pathway in quiescent Treg, the intracellular ROS is higher compared to 

other T cells. 

Fine-tuning of both ROS concentrations and timing of ROS levels have a decisive role in T 

cell differentiation and this ROS-based control starts within the thymus and ensues at the 

periphery. In the thymus, intracellular redox status influences T cell fate, as it was shown that 

Treg precursors were predominantly in the ROSlow subset of thymocytes, unlike other T cell 

progenitors that were predominantly in the ROShigh subpopulation (70). Once T cells leave the 

thymus, Treg respiration is increased by 25% and total ROS concentration is significantly 

greater in comparison to other T cell subsets both in mice and humans (3, 8, 64). It was also 

shown that intracellular increase in ROS after Treg activation through TCR results in 

enhanced Treg stability. This stability is enforced by up-regulation of SUMO-specific 

protease 3 that controls SUMOylation and nuclear localization of BACH2 (transcription 

regulator protein) that represses the genes associated with CD4+ T effector cell differentiation 

and stabilizes Treg cell-specific gene signatures (178). Intracellular ROS also affects Treg 

suppressive functions. Namely, it was demonstrated that thiol-bearing antioxidants and 
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inhibitors of NOX2 attenuated suppressive activity of Treg (37). Moreover, Treg cells with a 

NOX2 deletion were less efficient suppressors in vitro as a consequence of impaired TGF-β 

utilization (37). Treg activate multiple strategies for interfering with the extracellular redox 

environment during T cell activation, affecting dendritic cells as well. For example, Treg 

exert their suppressive activity in a sulphur redox fashion. Briefly, activated T cells need the 

amino acid cysteine to proliferate but lack the transporter for its oxidized form, cystine that is 

abundantly present in the extracellular milieu. Therefore, DC provide glutathione, which is 

converted to cysteine in the extracellular space for T cells to take it up (5). Treg are able to 

inhibit the glutathione production in DC, as well to dominantly consume cysteine (173). 

Studies in mice deficient in certain antioxidant molecules show that such environment favors 

Treg activity. Elevated ROS levels in glutathione peroxidase-1 and neutrophil cytosolic 

factor-1 knockout C57BL/6 mice are associated with Treg hyperactivity. Also, hyperbaric 

oxygen therapy or chemicals, such as 2,3-dimethoxy-1,4-naphthoquinone and N-

acetylcysteine (NAC) promote Treg activity (77). Furthermore, deficiency of peroxiredoxin 

(Prx) II, an intracellular antioxidant molecule stabilizes the expression of FoxO1, a 

transcription factor important for FoxP3 gene transcription, and leads to the increased FoxP3 

expression in Treg and an increased number of Treg cells in PrxII-deficient C57BL/6 mice 

(169). The high selenium diet (enables high operability of selenoproteins) favors Th1 

differentiation and activation leading to higher IFN-γ and CD40 ligand levels (60). Interesting 

observations were described in BDC-2.5 mice (that possess autoreactive T cells against beta 

cell autoantigen - Ag7 mimotope) that serve as an inducible model of type 1 diabetes. When 

made deficient in NOX-derived superoxide, CD4+ T cells from these mice skewed their 

phenotype towards pro-inflammatory Th1 while Treg were impaired in their activity (115). 

The concomitant increase in Th17 (on account on reduced Th1) was observed in NOD mice 

that spontaneously develop type 1 diabetes and were made deficient in NOX-2 (153, 158). 
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The discrepancy observed in potentiation of either Th1 or Th17 in the absence of superoxide 

is probably related to the difference in the immune response of used mouse strains.   

It seems that Treg have developed ways to survive in the presence of extracellular high ROS 

levels. It is known that ROS are detrimental to T cells in general (53). The ablation of 

selenoproteins (specifically in T cells) leads to the inability to generate mature T cells and 

oxidant hyperproduction in T cells thereby suppressing their proliferation activated through 

TCR (139). Treg are the most resistant cells (compared to effector and memory T cells) to 

external ROS influence (106). The reason for such Treg resilience does not lie in higher 

production of antioxidant enzymes or scavenging molecules. It is rather a result of sustained 

expression of anti-apoptotic Bcl-2 under pro-oxidant treatment (106) or high levels of surface 

thiols (107). Extracellular ROS may favorably impact Treg function (68). The generation of 

functional iTreg at the periphery is dependent on ROS derived from macrophages (Fig 5). It 

was shown that ROS produced by NOX2 complex in macrophages induce iTreg in humans 

and rats in vitro, as well as in rats in vivo (86). One of the potential mechanisms of ROS-

mediated stimulation of Treg differentiation is the inhibitory influence of extracellular ROS 

on mTORC1 complex. As mTORC1 inhibition by rapamycine is a well-known approach for 

enhancing Treg differentiation in vitro (23), long-term ROS exposure or high concentrations 

or ROS that lead to AMPK-mediated phosphorylation of Raptor (an adaptor protein in 

mTORC1complex that negatively regulates its activity) could result in increased Treg 

differentiation (91). In addition, our unpublished data suggest that the presence of H2O2 

stimulates differentiation of Treg in vitro. Briefly, the addition of H2O2 (1-5 μM) 48 h after 

TCR stimulation of naïve CD4+CD25- cells (in the presence of Treg growth factor IL-2 and 

differentiation factor TGF-β) increased the proportion of differentiated Treg. However, this 

effect was absent when H2O2 was added simultaneously with stimulation cocktail 

(unpublished). We could speculate that the possible reason for such resistance to extracellular 
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ROS is the need for prolonged Treg survival at the site of inflammation where oxidative burst 

occurs and where they play a role in the termination of inflammation. 

Another scenario for increased Treg function upon ROS exposure is the tumour 

microenvironment. Namely, ROS derived from the tumour cells increase apoptosis in Treg, 

but induce their suppressive properties at the same time (94). This finding is corroborated by 

in vitro experiments where Treg treatment with either H2O2 or ovarian ascites (abundant in 

superoxide) leads to Treg apoptosis. The suppressive effect of dying Treg is mediated by 

increased ATP release and generation of high levels of immunosuppressive adenozin via 

actonucleotidases CD39 and CD73 (94). Apoptosis in Treg cells in tumour surroundings is 

attributed to their weak nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-associated 

antioxidant system compared to T conventional cells both in mice and humans (94). These 

results are in contrast to the ones obtained in our laboratory. The difference in Treg resistance 

to extracellular H2O2 may correspond to different Treg origins (from tumour environment or 

healthy mice) and also whether exposure to pro-oxidants happens during Treg differentiation 

from naïve cells, or when they are fully differentiated. 

 

ROS-targeted strategies for DC manipulation 

Immunotherapy based on the application of tolDC is a promising novel approach for the 

treatment of autoimmune diseases (152). A great number of studies in animal models of MS, 

T1D and RA showed the efficiency of tolDC in ameliorating autoimmunity (144). These 

results enabled numerous on-going clinical trials that investigate tolDC application in these 

diseases (Table 1). 
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There are several different approaches for the in vitro expansion of human tolDC for the 

therapy. The most common way to obtain tolDC is to culture peripheral blood monocytes in 

the presence of granulocyte-macrophage colony-stimulating factor and IL-4, along with 

tolerizing agents, such as dexamethasone or vitamin D3 (17, 159). The first clinical trial using 

tolDC to treat autoimmunity was performed by Giannoukakis and colleagues in T1D 

(clinicaltrials.gov identifier: NCT00445913) (50, 122). Since then, 10 clinical trials with 

tolDC application for the treatment of MS, T1D and RA have been performed (Table 1). 

Having in mind that ROS have a profound influence on tolDC, ROS-targeted strategies to 

modify these cells for the therapeutic benefit in autoimmunity is being considered. 

Modulation of ROS production in conjunction with the tolerization of DC has already been 

documented (Fig 4). Some of the examples follow. Numerous studies have shown that 

glucocorticoid dexamethasone and vitamin D3 are strong tolerogenic modulators of DC (17, 

159). It was reported that ROS production in dexamethasone-treated DC was higher than in 

the untreated human monocyte-derived DC (49). The link between ROS and tolerogenic 

function of DC might be found in ROS-driven increase of intracellular zinc level through the 

modulation of proteins involved in its cellular availability (128). The rise in zinc is usually 

associated with immunosuppression. For example, zinc is involved in the limitation of the 

production of the pro-inflammatory cytokines (IL-1β, TNF and IL-6) in myeloid cells (165). 

Also, the generation of DC in the presence of dexamethasone was associated with an 

enhanced level of p47phox expression proposing that ROS production in DC is regulated by 

NOX2 (85). Similarly, higher ROS production is observed in human monocyte-derived DC 

grown in the presence of vitamin D3 (45, 158).  

In contrast to ROS-stimulating approaches, tolerogenic modulation of DC activity could be 

accomplished by antioxidants such as ascorbate (vitamin C) and α-tocopherol (vitamin E). It 
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was reported that eIF-2, NF-κB, protein kinase C, and p38 MAPK signalling pathways were 

suppressed in DC treated with vitamin C and vitamin E, alone or in combination (150). 

Consequently, the treated DC acquired phenotypic and functional tolerogenic properties. 

Importantly, reduced ROS levels are detected in the cells (150). 

Pyruvate and its derivative ethyl pyruvate are well-known antioxidants and potent ROS 

scavengers in the cell (78). Ethyl pyruvate is a stable derivate of pyruvate that easily enters 

the cell and can be transformed into pyruvate. Our interest in ethyl pyruvate has arisen from 

its redox similarities to dimethyl fumarate, the active compound of MS drug tecfidera (136). 

Dimethyl fumarate acts on redox processes through Nrf2 (93, 21).  Nrf2 is the master redox 

regulator, as it controls the expression of various genes involved in the antioxidant protection 

such as: glutathione-S-transferase, NAD(P)H quinone oxidoreductase 1 (NQO1), heme 

oxygenase-1 (HO-1) and others (84). Both dimethyl fumarate and ethyl pyruvate have been 

shown to interfere with DC maturation (120), and differentiation (34). Ethyl pyruvate reduced 

the expression of MHC II, co-stimulators (CD40, CD86) and pro-inflammatory cytokines (IL-

1β, TNF, IL-6, IL-12) in murine and human DC (34). Importantly, ethyl pyruvate tolerogenic 

influence was operative in the cells obtained from healthy subjects and MS patients alike (34). 

Furthermore, ethyl pyruvate-treated DC restrained T cell proliferation and cytokine 

production in the alloreaction. Ethyl pyruvate-treated DC had an elevated level of proteins 

involved in the cellular response to ROS, including Nrf2 and HO-1 (submitted elsewhere). 

These findings are in agreement with a recent report that ethyl pyruvate decreases glycolysis 

and mitochondrial respiration and NO production in DC (22). Therefore, ethyl pyruvate may 

contribute to the DC tolerogenicity due to its redox properties (Fig 6). 

 

ROS-directed strategies for Treg manipulation 
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Redox regulation of Treg can be achieved both in vivo and in vitro. As Treg are resilient to 

high ROS levels, the substances with anti-oxidative capacity would theoretically disturb Treg 

function. Few studies indicate plant-derived polyphenols or polyphenol-rich extracts with 

high antioxidant properties as Treg reducers. For example, resveratrol was found to exert a 

suppressive effect on tumour-derived Treg cells in mice (173), and in healthy humans 

following 28-day long consumption (39). Our research on black chokeberry water extract 

(extremely rich in flavonoids) had shown similar results, as the proportion of Treg was 

significantly lower after 14 days long administration to tumour bearing mice (unpublished 

data). However, ample of data suggest that in vivo antioxidant application results in a 

decrease of autoimmunity or inflammation through the stimulation of Treg. This effect of 

antioxidant on Treg could be attributed to other ROS-unrelated events. As it is reasonable to 

assume that the addition of pro-oxidant compounds in vivo is not recommended due to 

various side effects, one of the possible approaches could be stimulation of Treg activity in 

vitro by the administration of oxidative compounds. 

In vitro redox manipulation aimed at enhancing Treg function or number could be an 

alternative for potential use in therapy. Treg are usually obtained from peripheral blood 

mononuclear cells or umbilical cord. For clinical trials, the common methodology includes 

expansion of isolated polyclonal cells in vitro in the presence of TCR stimulators, without any 

further manipulation (35). Research on Treg expansion in animal models has utilized the 

application of various Treg stimulators such as all-trans retinoic acid (ATRA), rapamycin or 

IL-2 to prevent the outgrowth of contaminant effector T cells. Although it is assumed that 

autoantigen-specific Treg would exert more potent suppression in the specific autoimmune 

disease, their application has been so far limited to animal models (35). There are 8 clinical 

trials for the treatment of T1D, already finished or on-going, that are exploring the safety of 

the Treg application (Table 1). 
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Similarly to tolDC, Treg cells can be affected by the action of antioxidants (Fig 5). ROS are 

important for Treg activity, but also excessive ROS production may be detrimental for Treg 

function. Therefore, the effect of ROS deprivation has conflicting effects on Treg biology. 

Apart from ROS reduction, antioxidants may also affect the cellular signalling pathways that 

are directly or indirectly important for the Treg activity. 

In line with the data that ROS are mandatory for the proper function of Treg, down-regulation 

of ROS with vitamin C treatment goes hand in hand with the reduced ability of nTreg to 

suppress effector T cell proliferation in vitro. However, when vitamin C is administered in 

vivo, it enhances TGFβ-induced Foxp3+ iTreg differentiation (114). A similar effect is exerted 

by vitamin A metabolite, ATRA (150). Vitamin C also facilitates induction of a FOXP3high 

iTreg population in human naïve T cells. Both vitamin C and A promote Treg stability even in 

the presence of Th17-polarizing conditions in vitro and enhance their suppressive properties 

(109, 114). Vitamin D3 has been shown to change memory Th cells isolated from healthy or 

RA individuals into regulatory cells that produced anti-inflammatory factors, including IL-10 

and CTLA4 and exhibited strong suppressive activity (32). 

Superoxide is known to support promotor hypermethylation generally through recruitment of 

DNA methyltransferase (DNMT), an enzyme that transfers methyl groups to DNA and 

inhibits gene expression (58). It is shown that vitamin C stabilizes Foxp3 expression by 

promoting demethylation of specific regions of conserved non-coding DNA sequence 2 

(CNS2) in FoxP3 locus. Also, vitamin C can enhance demethylation and subsequent 

expression of CTLA-4 and Eos in antigen-specific iTreg, preventing their conversion into 

inflammatory ex-Foxp3 iTreg (74). By promoting hypomethylation of the Treg-specific 

demethylated region in the FoxP3 gene, phospho-vitamin C can support conversion of γδ T 

cells (potent cytotoxic effector cells) into Treg (83). This effect was accompanied by 
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increased suppressive activity as determined by up-regulated inhibitory action on Teff 

proliferation. Phospho-vitamin C also provoked better stability of converted Treg as they still 

kept their phenotype on day 14 after conversion (83). Another antioxidant, vitamin E, is a 

natural inhibitor of DNMT and therefore may be involved in the promotion of FoxP3 

expression as well. These vitamins may have a dual role in Treg biology, through ROS 

scavenging or through the influence on the Treg signalling pathways. 

Intracellular metabolites that have scavenger activity are also related to Treg status. α-

ketoglutarate is a product of glutamine catabolism and a well known intracellular scavenger. 

It has been found that treatment of naïve cells with glutamine prevents differentiation to Treg 

and rather favours Th1 (79).  

A completely different scenario occurs when naïve CD4+ T cells are exposed to ethyl 

pyruvate. Our results indicate that ethyl pyruvate stimulates proliferation of healthy murine 

Treg in vitro and in vivo (Fig 6). The addition of ethyl pyruvate (125 µM) to purified CD4+ T 

cell cultures that have been already exposed to Treg differentiation cocktail (anti-CD3 and 

anti-CD28 antibody, IL-2 and TGF-β) for 48 h, stimulates Treg proliferation. This effect is 

mediated through enhanced glycolysis and correlates with the increased proportion of ROS+ 

cells. Although ethyl pyruvate is ROS scavenger, the observed up-regulation in ROS+ cells is 

a reflection of the increased number of activated Treg (unpublished data). The stimulatory 

effect of ethyl pyruvate (100 mg/kg body weight) on Treg proliferation was also evident after 

in vivo administration to healthy (unpublished data) or diabetic C57BL/6 mice. In addition, 

both suppressive activity and Treg migration were enhanced after intraperitoneal application 

of ethyl pyruvate during multiple low-dose streptozotocin-induced T1D pathogenesis in mice 

(compared to control group of mice that received equal volumes of Hartmann solution) (81).  

Conclusion and future perspectives 
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ROS appear to be crucial for the function of T cells and DC acting as signalling molecules 

involved in the activation and differentiation of these cells. Overall, the literature suggests that 

ROS produced by NOX-dependent reactions are generally involved in the elimination of 

infectious agents by phagocytes, while those produced at enhanced energy demands 

(activation, proliferation, differentiation) are involved in the maintenance of DC and Treg 

function and metabolism. Although tolDC and Treg are extremely resistant to ROS-induced 

damage, in the circumstances of uncontrolled ROS production from the mitochondria, the 

initiation and progression of inflammatory and autoimmune diseases can occur. For instance, 

T1D etiopathogenesis is highly associated with oxidative stress in the pancreas (115). Thus, it 

does not come as a surprise that antioxidants, e.g. NAC or dimethyl sulfoxide (DMSO) 

prevent or alleviate T1D and promote survival of transplanted pancreatic islets in NOD mice 

(9, 92). Pathogenesis of MS is also linked to the enhanced systemic oxidation levels and 

antioxidants, such as vitamin E, C, D, A that have been suggested to prevent or counteract 

oxidative damage in the disease (54, 105, 127). While their potency to be used as 

supplementary therapeutic agents is yet to be determined, another redox-active compound 

dimethyl fumarate proved to be a disease-modifying drug for MS (136). It is important to test 

whether the observed beneficial effects of antioxidants are associated with the increased 

fitness of Treg and tolDC, as already suggested for DMSO or retinoic acid and Treg (92, 145). 

Also, dimethyl fumarate and its redox analogue ethyl pyruvate have already been investigated 

as tolerizing agents for DC (22, 34, 120). Further studies on the tolerizing potential of other 

antioxidants are certainly of interest. Also, an open question remains: Why some antioxidants 

and scavengers promote, while others inhibit Treg? This seems to largely depend upon the 

Treg subtype, microenvironment and the concentration of extracellular ROS. Finally, there is 

no evidence what artificial pro-oxidants could do for the fitness of Treg. Further studies 
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devoted to unrevealing the complex interplay between anti- and pro-oxidant regulation of 

Treg and DC are warranted. 
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Figure legends 

Figure 1 CD4+ T cell activation by DC. Naïve CD4+ T cells, including natural Treg (nTreg) 

leave the thymus. Dendritic cells are professional antigen-presenting cells, i.e. they have the 

ability to activate naïve T cells. Dendritic cells present antigens to CD4+ T cells on their MHC 

class II molecules. Depending on the co-stimulatory signal provided by DC and cytokines 

(produced by DC and other immune cells) present in the extracellular environment, CD4+ T 

cells are directed to differentiate into various T helper (Th) subpopulations. Also, they can 

differentiate into induced Treg (iTreg). These subpopulations express specific transcription 

factors, produce specific set of cytokines and express specific surface receptors. 

Figure 2 DC and T cells in autoimmunity. The activation of auto-reactive cells takes place 

in the lymph nodes. DC activate T cells, while Treg and tolDC actively suppress this process. 

In the case of ineffective suppression, activated auto-reactive T cells migrate to the target 

organs where they mediate tissue destruction in interaction with the local immune cells, such 

as macrophages (Mf) and microglia (Mg). Treg are also attracted to and accumulate in the 

affected tissue in an attempt to suppress the autoimmune response. 

Figure 3 TolDC in humans and experimental models. TolDC are present at mucous 

barriers where they control tolerance to the non-self antigens. Animal and human studies have 

provided insight into the possible phenotypes of tolDC in the eye, the skin, the lung, and the 

gut. Also, murine experimental models of human autoimmune diseases have provided data on 

the phenotype of tolDC in autoimmunity (EAE, T1D, RA). 

Figure 4 Effects of ROS and antioxidants on DC. DC produce ROS by NOX2 in response 

to pathogen-associated molecular patterns (PAMP), such as LPS. PAMP bind to their 

receptor, such as TLR. ROS produced by NOX2 in the phagosomes has a dual role in the 

process of antigen processing that provides antigens for presentation in the complex with 
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MHC molecules. They regulate pH within the phagosomes, thus allowing for efficient antigen 

processing. On the contrary, they inhibit cathepsin (Cts), thus inhibiting antigen processing. 

NOX2 produced in the plasma membrane interferes with T cell cofilin, inducing T cell 

hyporesponsiveness and death. OXPHOS ROS generation is inhibited during the process of 

DC maturation, NO generated by iNOS playing the major role in the inhibition. Well known 

tolerizing agents, dexamethasone and vitamin D3, increase ROS generation in DC. 

Antioxidants vitamin C and E down-regulate ROS in DC, although at the same time they have 

tolerizing effects on DC. 

 

Figure 5 Effects of ROS and anti-oxidants on T cells. ROS generated by NOX2 in Treg, or 

by other cells in the surroundings (predominantly macrophages), stimulates expression of 

CTLA4, the release of TGF- and FoxP3 gene expression. TCR crosslinking leads to Ca2+ 

influx from the endoplasmic reticulum and consequent activation of OXPHOS in the 

mitochondria. ROS generated in this way contributes to the activation of NFkB and 

subsequent expression of IL-2, which is essential for T cell proliferation. Intracellular ROS 

inhibit IFN- in activated T cells, thus shifting Th cells from Th1 to other Th populations. 

Vitamin A and C stimulate differentiation of iTreg and contribute to their stability through up-

regulation of CTLA-4 and Eos (a zinc finger transcription factor). Vitamin C contributes to 

demethylation of the FoxP3 CNS2 promoter region, and vitamin E inhibits DNMT, both 

effects promoting expression of FoxP3 and its stabilization. -ketoglutarate inhibits 

differentiation of naïve T cells into iTreg. Vitamin C and resveratrol inhibit, while 2,3-

dimethoxy-1,4-naphthoquinone  and N-acetylcysteine potentiate nTreg suppressive activity. 

Figure 6 Effects of EP on T cells and DC. In vivo ethyl pyruvate promotes the migration of 

tolDC into the target tissue and induces CD4+CD25high Treg proliferation (Ki67+), activation 
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(CD44+), and increases the proportion of Treg (Tbet+) that actively suppress Th1. Also, ethyl 

pyruvate enhances Treg migration through up-regulation of CD103 (a ligand for E-cadherin), 

CD11a (a part of adhesion molecule leukocyte function-associated antigen 1), CXCR3 (a 

chemokine receptor for migration into the pancreas). Ethyl pyruvate increases Treg 

suppressive properties through stimulation of CTLA-4 inhibitory molecule expression and IL-

10 and TGF-β production. Although ethyl pyruvate is not affecting ROS production in vivo, it 

specifically decreased OXPHOS and nitric oxide (NO) in DC in vitro. Further, ethyl pyruvate 

induces tolerogenic profile of DC in vitro through down-regulation of pro-inflammatory 

transcription factor NF-κB, serine/threonine-protein kinase AKT and extracellular signal-

regulated kinases (ERK) and subsequent production of pro-inflammatory cytokines IL-6, IL-

1β and TNF. Concomitantly, ethyl pyruvate increases Nrf2 (a transcription factor that 

regulates the expression of anti-oxidant enzymes) and anti-inflammatory cytokine IL-10. 

Similarly, ethyl pyruvate stimulates differentiation of Treg in vitro, increases their suppressive 

properties through up-regulation of CTLA-4, programmed cell death protein 1 (PD-1), 

glucocorticoid-induced TNFR-related protein (GITR) and IL-10. Ethyl pyruvate down-

regulates pyruvate dehydrogenase kinase (PDK) and subsequently enhances pyruvate 

dehydrogenase (PDH) activity, thus supporting Treg stability in inflammatory conditions.  
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