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4 Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of
Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; jovana0303@ibiss.bg.ac.rs (J.P.);
mris@ibiss.bg.ac.rs (M.D.S.)

* Correspondence: spetropoulos@uth.gr (S.A.P.); lillian@ipb.pt (L.B.); Tel.: +30-2421-093-196 (S.A.P.);
+351-273330901 (L.B.)

Received: 29 September 2020; Accepted: 9 October 2020; Published: 15 October 2020
����������
�������

Abstract: The environmental burden from crop production byproducts is gradually increasing and
necessitates the sustainable management of waste towards a circular economy approach. In the
present study, three byproducts (cotton ginning waste (CGW), ground hazelnut husks (GHH) and
ground peanut husks (GPH)) were evaluated in lettuce cultivation. For this purpose, the tested
materials were incorporated in soil at two different rates (25% and 50% of total substrate volume)
while a control treatment (no addition of byproducts) was also considered. Fresh weight per plant and
total yield was the highest for the GHH50% treatment. The highest fat, protein, carbohydrates and
energy content were observed for the CGW25% treatment. Chemical composition also differed among
the tested byproducts where CGW25% treatment had the highest total tocopherols, sugars (sucrose,
fructose, trehalose and total sugars) and organic acids content. The most abundant fatty acids were
α-linolenic, linoleic and palmitic acid in all the tested treatments, while the highest antioxidant activity
was observed for the GHH50% treatment. Regarding polyphenols, phenolic acids content was the
highest in the GHH treatments, whereas flavonoids were the highest for the CGW25% treatment.
No cytotoxicity against the PLP2 non-tumor cell line was observed, whereas only the GPH50%
treatment showed moderate efficacy against HeLa, HepG2 and MCF-7 cell lines. The tested extracts
also showed moderate antibacterial activities and only the extracts from the CGW50% treatment
were more effective than the positive control against Trichoderma viride. In conclusion, the present
results showed the great potential of using the tested byproducts as soil amendments for vegetable
crops production, since they may improve the nutritional parameters, the chemical profile and the
bioactivities of the final product. The suggested alternative use of the tested byproducts not only
will increase the added value of crops but will also alleviate the environmental burden from bulky
agroindustry byproducts.
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1. Introduction

The environmental burden of agro-industry byproducts with bulky nature necessitates the finding
of alternative/complementary applications that will enhance the added value of crops and the farmers’
income, while further establishing the concept of circular economy and sustainable production in
the agricultural sector [1,2]. Field and tree crops such as cotton, hazel and ground peanut are
widely cultivated throughout the world and generate high amounts of waste. Cotton ginning waste,
also known as cotton gin thrash or gin thrash, constitutes a great amount (15–42%) of the overall global
yield (approximately 25 million tons) [3], which makes the handling of this material a nuisance for
the processing sector. Ground peanut or groundnut (Arachis hypogaea L., Fabaceae) is widely used for
seed oil production or in crop rotation programs due to nitrogen fixing properties [4]. A total amount
of approximately 46 million tons of ground peanut are produced annually out of which 25% of total
yield is discarded as waste in the form of hulls [5]. Moreover, hazelnut cultivation is mostly located in
the eastern Mediterranean where Turkey is the leading world producer (approximately 70% of world
production) [6], while hazelnut shells (or husks) constitute 20% of total yield [7].

So far, cotton ginning byproducts and hazelnut and ground peanut husks are usually discarded
or burnt in the field, thus increasing the greenhouse gas emissions and nutrients loss [8,9], while the
energy production from the obtained biomass is also evaluated [10–13]. An alternative approach is
to use husks of hazelnuts as mulching material for the sustainable management of weeds [6], or the
incorporation of peanut hulls compost in soil as natural biofertilizer [5].

Several studies suggested the use of various agro-industry wastes as growing substrates in soilless
or pot cultivation of ornamental and horticultural crops aiming to substitute peat which is the main
substrate currently used [1,14–18]. For example, the use of cotton ginning waste had positive effects on
lettuce crop [19] and potted chrysanthemum performance [15], while the same material and cardoon
byproducts showed promising results for the pot cultivation of Cichorium spinosum L. [1]. Moreover,
decomposed hazelnut husks showed promising results as growing media in soilless systems due
to their physicochemical properties (pH, EC, nutrients content and C/N) [14]. The use of hazelnut
husks compost was proposed for the greenhouse cultivation of tomato and the production of tomato
seedlings [7,20], as well as for the production of kiwifruit cuttings [21]. On the other hand, peanut
hulls have been suggested for mushroom substrate supplementation where the biological efficiency
(fresh weight of mushrooms divided by the dry weight of substrate) increased by 61% compared
to the control treatment [4]. Other studies suggested the use of such materials for soil amelioration
purposes through the improvement of physicochemical properties and organic matter and nutrients
replenishment [19,22,23], or as bulking agents in composting of sewage sludge [24] and biosorbents [25].

Considering the pollution of the environment that improper management of crop production
waste may cause, the first aim of this study was to examine the use of byproducts obtained from
cotton industry (cotton ginning waste) and the production of hazelnuts and ground peanuts as soil
amendments for the production of lettuce in order to suggest alternative uses of bulky byproducts.
Lettuce was selected since it is one of the main vegetable crops being cultivated in 1.27 million hectares
worldwide and producing approximately 27 million tons annually [3]. The wide distribution and
the added value of this crop ensures the adequate assimilation of bulky agroindustry byproducts
such as those tested in the present study. Moreover, the second aim of the study was to evaluate the
effect of the tested byproducts on the nutritional characteristics, the chemical profile and the bioactive
parameters of lettuce leaves in order to identify those materials that may benefit both the plant growth
and the quality of the final produce.

2. Materials and Methods

2.1. Plant Material and Growing Conditions

The experiment was performed during November 2017–February 2018 in a commercial plastic
greenhouse in the region of Trikala, Greece. Lettuce seedlings (Lactuca sativa L. cv. Starfighter; Batavia
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type) were transplanted to soil on 25 November 2017 when they formed 3–4 true leaves in plots of
2 × 2 m. The experimental treatments included the incorporation of three agro-industry by-products,
namely cotton ginning waste (CGW), ground hazelnut husks (GHH) and ground peanut husks (GPH)
in two amounts (25% and 50%; v/v), while a control treatment (C) with no addition of by-products
was also included. The amount of by-products used in each treatment was calculated assuming that
incorporation took place at the upper 30 cm of soil (total volume of each plot = 1.2 m3) and after
determining the dry bulk density of each by-product (0.152 kg/m3, 0.474 kg/m3 and 0.156 kg/m3 for
CGW, GHH and GPH, respectively). The calculated amount of each material was incorporated at the
depth of 30 cm via a rotary tiller. Table 1 presents physicochemical properties and minerals’ content
in soil and by-products. The soil was sandy clay loam (47% sand, 31% clay and 22% loam) with
pH = 7.6, electrical conductivity (EC) = 1731 µS/cm, organic matter = 3.4%, total CaCO3 = 11.0%
and total dissolved solids (TDS) = 969 mg/L. Each treatment was replicated three times while plants
were arranged in three double rows with distances of 0.25 × 0.25 m between plants and corridors of
0.50 m between each pair of rows (48 plants in each plot). Standard cultivation practices for pest and
pathogens control were applied, whereas weed control was carried out manually. Irrigation took place
at regular intervals and according to environmental conditions (once or twice a week). Fertilizers were
applied with basal dressing by adding 67 kg of granular complex fertilizer 20-10-10 (N-P-K) + 15 SO3.

Table 1. Mineral composition of the soil of the experimental field and the tested by-products.

By-Product Bulk Density (g/cm) WHC (%) OM (%) pH EC (dS/cm) N (%) K (cmol/kg)

Soil 1.07 45.5 3.4 7.6 1.73 0.13 0.91
CGW * 0.30 139.3 82.9 6.8 5.42 0.19 0.87
GHH 0.54 78.9 110.7 5.8 1.93 0.85 2.18
GPH 0.17 262.2 59.1 5.9 1.36 1.1 3.05

* CGW: cotton ginning waste; GHS: ground hazelnut husks; GPH: ground peanut husks.

Harvest took place on 5 February 2018 by cutting the aerial part of plants at the base of stem with a
sharp knife. Yield was calculated based on the fresh weight of individual plants and assuming a plant
density of 120.000 plants/ha without including the outer plants (12 plants) of each plot. Dry matter
content was estimated after forced-air drying fresh samples at 72 ◦C for at least 48 h and until constant
weight. For chemical analyses, fresh samples of fully grown leaves from each treatment were used to
prepare batch samples that were put in deep freezing conditions, then freeze-dried and pulverized
(pestle and mortar) and finally kept at −80 ◦C until analysis.

2.2. Nutritional Value and Hydrophilic Compounds

2.2.1. Macronutrients and Energetic Value

According to the AOAC methods [26], the proximate composition was determined in the
lyophilized samples and expressed in g per 100 g of fresh weight (fw). Total carbohydrates were
determined by difference, and total energy was determined using the following equation: Energy
(kcal/100 g fresh weight (fw)) = 4 × (g protein + g carbohydrates) + 9 × (g fat) [26].

2.2.2. Free Sugars

Free sugars content was estimated according to the procedure described in detail by the authors [27]
using an HPLC equipment coupled with a refraction index detector (RI). The identification of
compounds was performed via comparison with commercial standards, while the detected compounds
were quantified using the internal standard method (IS; melezitose; Sigma, St. Louis, MO, USA).

2.2.3. Organic Acids

Organic acids were determined according to the protocol of Pereira et al. [28]. The analysis
was performed using a Shimadzu 20A series UFLC with a diode array detector (DAD). The organic
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acids were quantified by comparing the peak area with calibration curves obtained from commercial
standards (oxalic acid, malic acid and fumaric acid acquired from Sigma-Aldrich, St. Louis, MO, USA)
of the detected compounds.

2.3. Lipophilic Compounds

2.3.1. Fatty Acids

Fatty acids were estimated following the protocol of Silva et al. [27] using a GC-FID equipment.
The identification of fatty acids was performed via comparison of the relative retention times of peaks
of the detected fatty acids methyl ester (FAME) with commercial standards (mixture 37 (standard
47885-U), Sigma-Aldrich, St. Louis, MO, USA).

2.3.2. Tocopherols

The extraction of tocopherols from the lyophilized samples was carried out following the procedure
described in detail by Silva et al. [27]. The identification of compounds was performed by comparisons
of the detected peaks with authentic standards. Tocopherol isoforms were quantified according to
their fluorescence signal response (IS method; tocol, Matreya, Pleasant Gap, PA, USA).

2.4. Phenolic Compounds Characterization

2.4.1. Extracts Preparation

To prepare the hydroethanolic extracts, the powder obtained from lyophilized leaves was extracted
after stirring for 1 h with 30 mL of ethanol/water (80:20, v/v) following filtering with Whatman No. 4
paper. The obtained residue was extracted for 1 h for one more time using 30 mL of ethanol/water.
The hydroethanolic extracts obtained from two extractions were combined and evaporated until
dryness. The phenolic compounds characterization and the bioactive assays were performed in the
dried residues after redissolution in ethanol/water [29].

2.4.2. Phenolic Compounds

The hydroethanolic extracts prepared above, were redissolved in ethanol/water (80:20, v/v), to a
final concentration of 10 mg/mL for the phenolic compounds characterization [30]. The analysis
was performed in a HPLC system coupled with a diode-array detector (DAD) and a Linear Ion Trap
(LTQ XL) mass spectrometer (MS) equipped with an electrospray ionization (ESI) source. Separation
was made in a Waters Spherisorb S3 ODS-2 C18 column. The operating conditions and the procedure
for the identification and quantification of the compounds were previously described in detail by
Bessada et al. [30].

2.5. Selected Bioactivities

2.5.1. Antioxidant Activity

Antioxidant activity was determined by applying two cell-based assays: the thiobarbituric acid
reactive substances (TBARS) formation inhibition assays and the oxidative hemolysis (OxHLIA)
previously described in detail by Spréa et al. [29] using the above-prepared hydroethanolic extracts.
The TBARS assay was determined by the color intensity of the malondialdehyde (MDA)-TBA complex
in the supernatant and the results were given as EC50 values (µg/mL) [29]. The antihemolytic activity
was determined by the oxidative hemolysis inhibition assay (OxHLIA) and the results were presented
as IC50 values [29]. In both assays, trolox was used as positive control.
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2.5.2. Cytotoxicity Assays

Cytotoxicity was evaluated using two assays according to the procedure described by the
authors [31]. For non-tumor cell lines, the cytotoxicity of the extracts was determined using the
sulforhodamine B assay against primary cell cultures (PLP2). For tumor cell lines cytotoxicity, the same
method was implemented using four human tumor cell lines (HeLa (cervical carcinoma), HepG2
(hepatocellular carcinoma), MCF-7 (breast adenocarcinoma) and NCI-H460 (non-small cell lung
cancer)). Ellipticine was the positive control for both assays, and the results were expressed as GI50

values (µg/mL).

2.5.3. Antimicrobial Properties

The hydroethanolic extracts prepared above were used for the determination of the antibacterial
and antifungal properties according to the method of Soković et al. [32]. The results were expressed
as the concentrations that resulted to the complete inhibition of the bacterial growth (MIC, minimal
inhibition concentration), MBC (minimal bactericidal concentration) and MFC (minimal fungicidal
concentration) values. Streptomycin, ampicillin and ketoconazole were positive controls, whereas 5%
DMSO was the negative control.

2.6. Statistical Analysis

The experiment was performed according to the randomized complete block design (RCB) (n = 3).
All chemical analyses were performed in triplicate (n = 3). The analysis of data was accomplished with
the use of Statgraphics 5.1.plus (Statpoint Technologies, Inc., Warrenton, VA, USA) and the one-way
ANOVA, while means were compared with the Tukey’s HSD test (p = 0.05) and Student’s t test (p = 0.05)
when significant differences were detected.

3. Results and Discussion

Results of crop performance are presented in Figure 1. Fresh weight (g) per plant and total
yield (kg/h) were the highest for the GHH50% treatment in both cases (350.6 g/plant and 42,072 kg/h,
respectively), followed by the treatments of GPH50% and CGW50%. The lowest fresh weight per plant
and total yield were observed in the GPH25%; however, there were no significant differences among the
rest of the treatments (Control, CGW25% and GHH25%). These results suggest that the incorporation
of the highest amount (50%) of each byproduct could result in a significant increase in the crop fresh
weight and total yield compared to the control treatment and the treatment when 25% equivalents
are applied. According to the physicochemical properties of the tested material (Table 1), it could
be assumed that the recorded yields are mostly associated with the improvement in water holding
capacity and the soil content in organic matter, as well as with the addition of macronutrients (N and
K). Khah et al. [19] who evaluated cotton ginning byproducts as growth media of vegetable crops
suggested the increase of plant growth parameters (plant height, leaf number, dry and fresh weight of
leaves, chlorophyll content) of radish, spinach and lettuce. Moreover, Riley et al. [33] suggested that
the incorporation of cotton gin thrash resulted in lower air space and similar water holding capacity
to cotton stalks, although the amounts of unavailable water were higher for the cotton gin thrash
treatment. This finding suggests that the application of high amounts of cotton gin waste may affect
the water status of soil with further implications on plant growth. Positive effects on soil properties
caused by hazelnut husks were also reported by Ozdemir et al. [34] where the authors suggested that
hazelnut husks could be used in composted mixes with wastewater biosolids for the production of
ornamental plants. Moreover, Aşkın and Aygün [35] highlighted the beneficial impact of hazelnut husk
compost on soil organic matter content and water holding capacity, while Gülser et al. [36] and Gülser
and Candemir [37] indicated the slow mineralization rate of hazelnut husks and the improvements
they induce in soil hydraulic properties.
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Figure 1. Yield in relation to growth medium expressed as fresh weight (g) per plant (n = 32) (A) and
fresh per hectare (B) (n = 3). Different letters above the bars point out significant differences between
the means based on Tukey’s HSD test (p = 0.05).

Regarding the nutritional parameters, the highest moisture content was recorded in the CHH 50%
treatment, whereas the highest ash, protein, carbohydrates and energy content were recorded in the
CGW25% treatment (Table 2). Finally, the highest fat content was measured in the GPH treatment
regardless of the amount of byproduct incorporated in the soil. Similarly, the control treatment
had the lowest amounts of protein and ash, whereas the incorporation of high amounts (50%) of
cotton and hazelnut husks resulted in the lowest amounts of fat in the first case and carbohydrates
and energy in the second one. The recorded values where within the same range of other reports
indicating that lettuce is a leafy vegetable with high moisture content and low amounts of protein,
fat, ash and carbohydrates [38]. However, these results are not comparable with our study since no
identical growing media were implemented [39], while significant differences among the various lettuce
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genotypes have been also reported [40]. The effect of substrates containing agroindustry byproducts
on the nutritional parameters of vegetables has been highlighted in several studies. For example,
by using biochar as hydroponic growth medium, an improved nutritional composition of various leafy
vegetables was observed [41], while other materials such as oak sawdust, cotton seed hulls and olive
press cake affected ash and protein content of Hericium erinaceus isolates [42]. Moreover, the substrate
type may affect the nitrogen and nitrates content in spinach [43] and the nutritional composition of
lettuce [44].

Table 2. Nutritional value (g/100 g fw), energy (kcal/100 g fw), free sugars (g/100 g fw) and organic
acids (mg/100 g fw) of lettuce leaves in relation to the growth medium (mean ± SD; n = 3).

Control GHH25% * GHH50% CGW25% CGW50% GPH25% GPH50%

Nutritional Value

Moisture 95.9 ± 0.7 b 95.8± 0.6 b 96.2± 0.3 a 95.0 ± 0.5 c 95.9 ± 0.1 b 95.2 ± 0.1 c 95.8 ± 0.6 b
Fat 0.142 ± 0.002 e 0.15 ± 0.01 c 0.148 ± 0.003 c 0.157 ± 0.003 b 0.133 ± 0.009 e 0.162 ± 0.003 a 0.161 ± 0.003 a
Proteins 0.753 ± 0.005 f 0.889 ± 0.001 d 0.812 ± 0.004 e 1.15 ± 0.01 a 0.977 ± 0.003 c 1.02 ± 0.01 b 0.882 ± 0.001 e
Ash 0.56 ± 0.01 d 0.60 ± 0.01 c 0.60 ± 0.03 c 0.86 ± 0.02 a 0.73 ± 0.01 b 0.84 ± 0.01 a 0.74 ± 0.01 b
Carbohydrates 2.61 ± 0.01 c 2.58 ± 0.02 c 2.19 ± 0.02 f 2.81 ± 0.01 a 2.30 ± 0.01 e 2.74 ± 0.01 b 2.46 ± 0.01 d
Energy 14.73 ± 0.03 d 15.23 ± 0.01 c 13.35 ± 0.08 f 17.28 ± 0.05 a 14.31 ± 0.03 e 16.51 ± 0.04 b 14.83 ± 0.01 d

Free Sugars

Fructose 0.47 ± 0.03 c 0.43 ± 0.03 d 0.43 ± 0.01 d 0.59 ± 0.01 a 0.43 ± 0.04 d 0.46 ± 0.02 c 0.49 ± 0.01 b
Glucose 0.267 ± 0.009 a 0.244 ± 0.005 b 0.22 ± 0.03 c 0.22 ± 0.02 c 0.18 ± 0.01 d 0.26 ± 0.03 a 0.223 ± 0.001 c
Sucrose 0.123 ± 0.003 a 0.088 ± 0.005 d 0.104 ± 0.001 b 0.125 ± 0.002 a 0.094 ± 0.002 c 0.087 ± 0.001 d 0.105 ± 0.001 b
Trehalose 0.017 ± 0.002 b 0.017 ± 0.002 b 0.013 ± 0.001 e 0.023 ± 0.001 a 0.015 ± 0.003 d 0.017 ± 0.001 b 0.016 ± 0.001 c
Sum 0.88 ± 0.02 b 0.77 ± 0.05 d 0.77 ± 0.02 d 0.96 ± 0.03 a 0.72 ± 0.05 e 0.83 ± 0.01 c 0.83 ± 0.01 c

Organic Acids

Oxalic acid 286 ± 1 f 315 ± 3 e 278 ± 1 g 413 ± 8 a 339 ± 4 c 358 ± 1 b 330 ± 2 d
Malic acid 319 ± 7 e 389 ± 1 b 318 ± 6 e 401 ± 7 a 369 ± 5 c 405 ± 2 a 335 ± 6 d
Fumaric acid tr tr tr tr tr tr tr
Sum 605 ± 9 e 704 ± 4 c 596 ± 7 f 814 ± 15 a 708 ± 1 c 763 ± 2 b 666 ± 8 d

* CGW: cotton ginning waste; GHH: ground hazelnut husks; GPH: ground peanut husks; tr—traces. Different
letters in the same row point out significant differences between the means based on Tukey’s HSD test (p = 0.05).

Table 2 presents the composition of free sugars. Fructose was the major compound, followed by
glucose and sucrose, whereas trehalose was detected in lesser amounts. As reported in our study,
Barickman et al. [45] suggested fructose to be the main detected sugar in lettuce leaves, whereas
Fallovo et al. [46] recorded two to three times higher sucrose content than fructose and glucose. These
contradictory results could be mainly associated with differences in the extraction protocols and
determination assays used (liquid chromatography vs. spectrophotometric assays used by Barickman
et al. [45] and Fallovo et al. [46], respectively). Regarding the effect of soil amendments, the application
of cotton gin waste in low amounts (CGW25%) led to the highest amounts of fructose, sucrose, trehalose
and total free sugars, while the highest glucose content was found in the control and the GPH25%
treatments. Although the existing results regarding the impact of growing substrates on sugars content
in lettuce are not comparable [47], according to the literature, growing conditions are strongly involved
in sugars biosynthesis, especially the light quality [48–50]. Therefore, considering that the plants in our
study were grown under identical light conditions it could be assumed that the observed differences
could be assigned to different water and nutrient status in soil induced by the incorporation of different
waste materials at different rates, since Fallovo et al. [39] already reported the effect of nutrients
availability on sugars composition in lettuce. Moreover, sugars are the main substrate for flavonoids
biosynthesis through the production of phenylalanine which is the precursor of flavonoid glycosides
via the shikimic pathway [51]. Therefore, the low total sugars content observed for the CGW50%
treatment could be associated with the increased flavonoids’ content observed for the same treatment
(see below the corresponding results).

The composition of organic acids is presented in Table 2. Only two organic acids were detected in
traceable amounts, whereas traces of fumaric acid were also identified. The same compounds were
identified through a metabolomics analysis in different lettuce varieties by Yang et al. [52]. The highest
amounts of total and oxalic acid were observed in the CGW25% treatment, while malic acid content
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was similarly high in CGW25% and GPH25% treatments. In contrast, the GHH50% treatment resulted
in the lowest oxalic acid content which is an important quality feature of leafy vegetables [53,54].
Although lettuce is not a rich source of oxalic acid, the findings of the present study could be tested
with vegetables that are oxalate accumulators, such as spinach [55]. As already mentioned in the case
of free sugars composition, the recorded differences could be allocated to differences in water and
nutrients availability in soil due to the incorporation of the tested byproducts at different rates.

Fatty acids composition is presented in Table 3. The major compound was α-linolenic acid,
followed by linoleic and palmitic acid (saturated fatty acid; SFA). Consequently, polyunsaturated fatty
acids (PUFA) was the most abundant class (68.5% to 74.0%) followed by the saturated (SFA; 22.4–27.7%)
and monounsaturated fatty acids (MUFA; 3.5–4.3%). Similarly to the present study, Kim et al. [56]
and Ko et al. [57] reported that fatty acids in lettuce consist mostly of PUFA (α-linolenic and linoleic
acids) and despite its low lipid content, the high consumption of lettuce throughout the world may
significantly contribute to the improvement of blood lipid profile and the fortification of human body
against chronic diseases. Moreover, the same study as well as the study of Yang et al. [52] highlighted
the differences in fatty acids profile that exist among the various types (leafy and head types) and
varieties of lettuce, which has a great importance considering the established consumer preferences in
specific markets. A variable response was observed to the tested materials and although most of the
fatty acids had the highest content in the control treatment, α-linolenic was the richest in the GHH50%
treatment. This resulted in similar trends for the SFA and PUFA, while MUFA were the highest in the
CGW25% and GPH25% treatments.

Table 3. Fatty acids (relative %) and tocopherols (mg/100 g fw) composition of lettuce leaves in relation
to the growth medium (mean ± SD; n = 3).

Fatty Acids Control GHH25% * GHH50% CGW25% CGW50% GPH25% GPH50%

C12:0 0.106 ± 0.004 a 0.089 ± 0.005 b 0.086 ± 0.006 b 0.066 ± 0.001 c 0.059 ± 0.002 d 0.069 ± 0.002 c 0.045 ± 0.001 e
C13:0 0.125 ± 0.001 a 0.034 ± 0.001 d 0.065 ± 0.004 b 0.025 ± 0.001 e 0.022 ± 0.002 f 0.051 ± 0.004 c 0.026 ± 0.002 e
C14:0 1.86 ± 0.02 a 1.5 ± 0.1 c 1.5 ± 0.1 c 1.46 ± 0.02 d 1.7 ± 0.1 b 1.03 ± 0.01 f 1.06 ± 0.01 e
C14:1 0.069 ± 0.001 c 0.047 ± 0.002 d 0.035 ± 0.002 e 0.012 ± 0.001 f 0.084 ± 0.002 b 0.38 ± 0.01 a 0.049 ± 0.001 d
C15:0 0.252 ± 0.007 a 0.25 ± 0.01 a 0.22 ± 0.01 c 0.230 ± 0.003 b 0.215 ± 0.004 d 0.153 ± 0.008 e 0.23 ± 0.01 b
C16:0 19.2 ± 0.2 a 16.93 ± 0.03 d 15.7 ± 0.8 f 17.41 ± 0.05 c 17.0 ± 0.5 d 17.7 ± 0.2 b 16.7 ± 0.4 e
C16:1 2.0 ± 0.1 d 1.9 ± 0.1 e 1.98 ± 0.05 d 1.95 ± 0.02 d 2.2 ± 0.1 b 2.3 ± 0.1 a 2.12 ± 0.06 c
C17:0 0.222 ± 0.001 a 0.20 ± 0.02 b 0.19 ± 0.01 c 0.202 ± 0.002 b 0.203 ± 0.004 b 0.18 ± 0.01 d 0.20 ± 0.01 b
C18:0 1.67 ± 0.07 b 1.56 ± 0.04 d 1.57 ± 0.06 c 1.73 ± 0.04 a 1.67 ± 0.01 b 1.67 ± 0.03 b 1.52 ± 0.01 e
C18:1n9 c 1.77 ± 0.01 c 1.75 ± 0.07 c 1.47 ± 0.04 e 2.4 ± 0.2 a 1.82 ± 0.07 b 1.61 ± 0.06 d 1.65 ± 0.02 d
C18:2n6 c 25.7 ± 0.3 a 24.6 ± 0.4 c 23.6 ± 0.3 d 24.4 ± 0.1 c 22.4 ± 0.3 e 24.3 ± 0.2 c 25.01 ± 0.03 b
C18:3n3 42.1 ± 0.1 e 47.1 ± 0.3 c 50.2 ± 0.7 a 46.0 ± 0.2 d 49.3 ± 0.2 b 45.6 ± 0.4 d 47.1 ± 0.3 c
C20:0 0.48 ± 0.01 c 0.47 ± 0.01 c 0.43 ± 0.02 d 0.52 ± 0.02 b 0.53 ± 0.01 b 0.62 ± 0.02 a 0.46 ± 0.01 c
C20:2 0.65 ± 0.02 a 0.313 ± 0.001 c 0.31 ± 0.01 c 0.259 ± 0.008 e 0.256 ± 0.004 e 0.362 ± 0.004 b 0.265 ± 0.001 d
C22:0 1.27 ± 0.02 c 1.17 ± 0.02 d 1.06 ± 0.01 e 1.30 ± 0.02 b 1.31 ± 0.04 b 1.48 ± 0.01 a 1.31 ± 0.05 b
C23:0 0.191 ± 0.001 d 0.215 ± 0.001 b 0.20 ± 0.01 c 0.17 ± 0.01 f 0.178 ± 0.002 e 0.366 ± 0.009 a 0.214 ± 0.001 b
C24:0 2.29 ± 0.07 a 1.83 ± 0.01 e 1.34 ± 0.03 f 1.91 ± 0.01 d 1.0 ± 0.3 g 2.14 ± 0.01 b 2.08 ± 0.16 c

SFA 27.7 ± 0.2 a 24.24 ± 0.07 d 22.4 ± 0.9 f 25.03 ± 0.07 v 23.9 ± 0.3 e 25.5 ± 0.2 b 23.8 ± 0.3 e
MUFA 3.8 ± 0.1 c 3.68 ± 0.03 d 3.49 ± 0.09 e 4.3 ± 0.2 a 4.1 ± 0.2 b 4.28 ± 0.06 a 3.82 ± 0.04 c
PUFA 68.5 ± 0.4 e 72.08 ± 0.04 c 74 ± 1 a 70.7 ± 0.3 d 72.0 ± 0.5 c 70.3 ± 0.2 d 72.3 ± 0.3 b

Tocopherols

α-Tocopherol 0.054 ± 0.002 f 0.101 ± 0.002 c 0.141 ± 0.001 a 0.115 ± 0.001 b 0.091 ± 0.002 d 0.089 ± 0.001 e 0.089 ± 0.001 e
γ-Tocopherol 0.293 ± 0.002 g 0.405 ± 0.001 e 0.420 ± 0.001 d 0.509 ± 0.002 b 0.459 ± 0.007 c 0.517 ± 0.006 a 0.348 ± 0.008 f
δ-Tocopherol 0.011 ± 0.001 e 0.016 ± 0.001 b 0.016 ± 0.001 b 0.014 ± 0.001 c 0.013 ± 0.001 d 0.018 ± 0.001 a 0.014 ± 0.001 c
Sum 0.360 ± 0.001 g 0.520 ± 0.001 e 0.580 ± 0.001 d 0.640 ± 0.001 a 0.570 ± 0.007 c 0.630 ± 0.007 b 0.460 ± 0.007 f

* CGW: cotton ginning waste; GHH: ground hazelnut husks; GPH: ground peanut husks. Different letters in the
same row point out significant differences between the means based on Tukey’s HSD test (p = 0.05).

Tocopherols composition is presented in Table 3. γ-tocopherol was the most abundant vitamin E
isoform, followed by α- and δ-tocopherols, a result which agrees with the findings of Mou [40] who
reported a similar profile of tocopherols for various lettuce types (except for the crisphead lettuce)
although δ-tocopherol was not present. Similarly, Samuolienė et al. [58] suggested the content of
the same two vitamin E isoforms (α- and γ-tocopherol) to be affected by light quality, whereas in
another study all four tocopherols were detected [59]. Moreover, the CGW25% treatment increased
significantly the overall tocopherols content, while in regard to individual tocopherols the GHH50%
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treatment increased α-tocopherol and that of GPH25% increased γ- and δ-tocopherol. In any case,
the content of individual and total tocopherols was the lowest in the control treatment indicating
the positive effects of soil amendment with the tested materials on lettuce quality. According to the
literature, the growing conditions and the genotype [60,61] or the harvesting stage and the plant
part [62,63] are key factors for tocopherols composition in leafy vegetables, while in the case of fruit
vegetables harvesting stage, fertilization regime and water availability may also have an effect on this
parameter [64–66]. Other researchers have also mentioned the importance of cultivation management
and growing system on phytochemicals composition via the induction of main genes involved in
the biosynthetic pathways [67,68]. This finding is very important, since apart from the genotypic
effect on tocopherols composition in lettuce, simple and cost-effective cultivation practices, such as the
soil amendment with agroindustry byproducts tested in our study, could enhance the quality of the
final produce.

The data regarding phenolic compounds identification and quantification are presented in Tables 4
and 5, respectively. Thirteen compounds were tentatively identified, namely ten phenolic acids (caffeic
and p-coumaric acid derivatives) and three O-glycosylated flavonoids (quercetin and kaempferol
derivatives) (Table 4). The phenolic profile of L. sativa leaves has been extensively described in the
literature [69,70], also using HPLC methodologies coupled to mass spectrometry, such as in the variety
longifolia by Ribas-Agustí et al. [71] or in six different varieties by Alarcón-Flores et al. [72], in red
oak leaf (“Krysthine RZ”) and green oak leaf (“Versai RZ”) by Viacava et al. [73] and cv. Omega
by Materska et al. [74]. As such the tentative identification was performed using the previously
described profiles. Despite that the plant varieties studied by other authors were not herein present,
the phenolic profile in our study was very similar, having been all the compounds found in the existing
bibliography also present in the tested variety. Peaks 4 ([M-H]− at m/z 353), 11 ([M-H]− at m/z 477) and
12 ([M-H]− at m/z 461) were positively identified as 5-O-caffeoylquinic acid, quercetin-3-O-glucuronide
and kaempferol-3-O-glucuronide, respectively, in comparison with available standard compounds.

Table 4. Retention time (Rt), wavelengths of maximum absorption in the visible region (λmax), mass
spectral data and tentative identification of the phenolic compounds present in the studied lettuce leaves.

Peak Rt (min) λmax (nm) [M-H]− (m/z) MS2 (m/z) Tentative Identification

1 5.21 323 341 179 (100) Caffeic acid hexoside isomer I
2 5.73 323 341 179 (100) Caffeic acid hexoside isomer II
3 6.44 323 341 179 (100) Caffeic acid hexoside isomer III
4 7.1 324 353 191 (100), 179 (11), 173 (3) 5-O-Caffeoylquinic acid
5 9.6 326 295 179 (100), 133 (33) Caffeoylmalic acid isomer I
6 9.89 326 295 179 (100), 133 (42) Caffeoylmalic acid isomer II
7 11.42 315 337 191 (100), 173 (3), 163 (17) p-Coumaroylquinic acid

8 12.8 326 473 311 (100), 293 (92),
179 (5), 149 (3) di-O-Caffeoyltartaric acid isomer I

9 13.25 329 473 311 (100), 293 (98),
179 (6), 149(4) di-O-Caffeoyltartaric acid isomer II

10 13.72 328 473 311 (100), 293 (90),
179 (5), 149 (3) di-O-Caffeoyltartaric acid isomer III

11 18.08 352 477 301 (100) Quercetin-3-O-glucuronide
12 18.57 348 461 285 (100) Kaempferol-3-O-glucuronide

13 20.12 354 549 505 (52), 463 (33),
301 (100) Quercetin-O-malonylhexoside

The quantification of individual compounds revealed a variable composition among the tested
byproducts (Table 5). In all the samples, phenolic acids were recorded in higher contents compared to
flavonoids in amounts that ranged between 53.4 µg/100 g fw to 89.0 µg/100 g fw and 22.46 µg/100 g fw to
29.49 µg/100 g fw, respectively. Di-O-Caffeoyltartaric acid (isomer I) was the major compound followed
by its isomers II and III and 5-O-Caffeoylquinic acid with the highest contents being observed in plants
grown in soil where ground hazelnut husks were incorporated (Table 5). The same trend was observed
for total phenolic acids and total phenolic compounds concentrations. On the contrary, the content of
the detected flavonoids was the highest for the CGW25% treatment which was also reflected to the
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total flavonoids content. Similarly to our study, the use of alternative growth substrates resulted in
significant alterations in total phenols and total flavonoids content of two culinary herbs (parsley and
dill) [75], whereas Chrysargyris et al. [76] suggested a variable response of three ornamental plants
(marigold, petunia and matthiola) to substrates with different composition in terms of paper waste
rates. A varied response of the total phenols content to the use of olive-stone waste as growing substrate
was also reported in the seedlings of three vegetable species (cauliflower, broccoli and cabbage) [77],
whereas Kim et al. [56] suggested significant differences between various types and varieties of lettuce
in terms of total phenols content. In addition, Petropoulos et al. [1] reported significantly altered
composition of phenolic compounds in pot-grown spiny chicory plants depending on the growth
substrate composition, a finding which agrees with the results of this study.

Table 5. Phenolic compounds quantification (µg/100 g fw) of lettuce leaves extracts in relation to the
growth medium (mean ± SD; n = 3).

Peak Compound Control GHH25% * GHH50% CGW25% CGW50% GPH25% GPH50%

1 Caffeic acid hexoside
isomer I tr 0.36 ± 0.02 b 0.35 ± 0.02 c 0.38 ± 0.02 a tr 0.36 ± 0.02 b tr

2 Caffeic acid hexoside
isomer II tr 0.39 ± 0.02 b 0.35 ± 0.02 c 0.68 ± 0.04 a 0.13 ± 0.01 d 0.38 ± 0.01 b tr

3 Caffeic acid hexoside
isomer III tr 0.75 ± 0.03 a 0.56 ± 0.01 b 0.10 ± 0.01 e 0.14 ± 0.01 d 0.25 ± 0.01 c tr

4 5-O-Caffeoylquinic acid 10.2 ± 0.1 e 16.4 ± 0.7 b 18.7 ± 0.1 a 15.7 ± 0.4 c 5.60 ± 0.06 g 10.9 ± 0.1 d 9.80 ± 0.06 f
5 Caffeoylmalic acid isomer I 5.63 ± 0.04 e 9.75 ± 0.02 a 9.39 ± 0.02 b 8.20 ± 0.05 c 3.38 ± 0.05 g 3.54 ± 0.02 f 6.81 ± 0.02 d
6 Caffeoylmalic acid isomer II 7.8 ± 0.2 c 10.8 ± 0.1 a 10.1 ± 0.2 b 7.67 ± 0.07 dd 5.7 ± 0.1 f 6.72 ± 0.08 e 7.60 ± 0.03
7 p-Coumaroylquinic acid 1.49 ± 0.05 d 1.96 ± 0.05 b 2.02 ± 0.04 b 1.42 ± 0.02 e 2.96 ± 0.08 a 2.9 ± 0.1 a 1.86 ± 0.05 c

8 di-O-Caffeoyltartaric acid
isomer I 12.8 ± 0.5 e 17.97 ± 0.06 a 18 ± 1 a 15.4 ± 0.6 d 17 ± 1 c 17.8 ± 0.4 b 10.1 ± 0.2 f

9 di-O-Caffeoyltartaric acid
isomer II 11.8 ± 0.2 f 16.7 ± 0.1 a 15.9 ± 0.1 b 13.3 ± 0.4 e 15.6 ± 0.2 c 15.0 ± 0.3 d 9.71 ± 0.08 g

10 di-O-Caffeoyltartaric acid
isomer III 8.5 ± 0.1 e 13.9 ± 0.2 a 12.3 ± 0.4 b 10.3 ± 0.1 d 12 ± 1 c 12.4 ± 0.7 b 7.57 ± 0.08 f

11 Quercetin-3-O-glucuronide 7.28 ± 0.01 f 8.05 ± 0.07 d 8.35 ± 0.01 c 9.28 ± 0.03 a 8.09 ± 0.02 d 8.92 ± 0.01 b 7.71 ± 0.01 e
12 Kaempferol-3-O-glucuronide 7.48 ± 0.02 f 8.3 ± 0.2 e 8.47 ± 0.05 d 10.09 ± 0.06 a 8.82 ± 0.03 c 9.56 ± 0.02 b 8.29 ± 0.05 e
13 Quercetin-O-malonylhexoside 7.70 ± 0.01 f 8.52 ± 0.01 d 9.31 ± 0.07 c 10.12 ± 0.04 a 8.41 ± 0.03 e 9.47 ± 0.02 b 8.5 ± 0.1 d

Total Phenolic Acids 58 ± 1 e 89 ± 1 a 88 ± 1 a 73.2 ± 0.2 b 62.4 ± 0.1 d 70 ± 1 c 53.4 ± 0.3 f

Total Flavonoids 22.46 ± 0.02 f 24.89 ± 0.08
d 26.1 ± 0.1 c 29.49 ± 0.08 a 25.3 ± 0.1 d 28.0 ± 0.1 b 24.5 ± 0.1 e

Total Phenolic Compounds 81 ± 1 e 114 ± 1 a 114 ± 1 a 102.7 ± 0.1 b 87.7 ± 0.7 d 98 ± 1 c 77.9 ± 0.5 f

* CGW: cotton ginning waste; GHH: ground hazelnut husks; GPH: ground peanut husks; tr—traces. Different
letters in the same row point out significant differences between the means based on Tukey’s HSD test (p = 0.05).

The antioxidant activity of extracts was tested with two different assays (TBARS and OxHLIA)
(Table 6). The highest antioxidant capacity was observed for the GHH 0% treatment, which is partly
justified by the highest α-tocopherol and PUFAs content (see Table 3) for the same treatment, especially
in the case of TBARS assay which measures the peroxidation of lipids [78]. Although antioxidant
activity of lettuce is strongly associated with total phenolic compounds content [56], the implemented
assay [79] and the genotype [80,81] may also have a significant effect resulting in variable results.
The substrate type may affect the antioxidant activity of leafy greens [1,77,82], culinary herbs [75] and
ornamental plants [76], whereas Petropoulos et al. [1] suggested that Cichorium spinosum plants grown
in soil exhibited higher antioxidant activity than plants grown in substrates containing agroindustry
byproducts due to severe stress conditions which increased phenolic compounds content. However,
this trend was not confirmed in our study since high phenolic compounds content was not followed by
similarly high antioxidant activity and other compounds such as α-tocopherol should be implicated in
the antioxidant mechanism of lettuce plants [60,78].

Table 6 presents the cytotoxicity results, where none of the tested extracts exhibited in vitro
toxicity to non-tumor (PLP2 cell line) or against non-small cell lung cancer cell lines (NCI-H460).
Moreover, extracts obtained from leaves of GPH50% treatment grown in soil where 50% of ground
peanut hulls were incorporated exhibited slight in vitro toxicity against the rest of the tested cell
lines (HeLa, HepG2 and MCF-7), as well the treatment of GHH 50% (only against MCF-7 cell line).
According to the literature, flavonoids present in lettuce extracts could exhibit in vitro toxic effects
against human hepatoma (HepG2) cells [83], however the main compound responsible for these
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effects was luteolin-7-O-glucoside which was not detected in our study. Moreover, extracts from
iodine-biofortified lettuce were effective against Caco-2 cancer cell line [84], while Durazzo et al. [85]
suggested significant effects of cultivation practices on cytotoxicity of lettuce extracts against the same
cell line. Similarly to our study, Karkanis et al. [82] reported a significant impact of growth substrate on
the cytotoxic effects of Sanguisorba minor leaf and root extracts, which indicates that differences in the
physicochemical properties of the growing medium may affect the bioactivities of the final produce.

Table 6. Antioxidant activity (EC50, µg/mL) and cytotoxicity (GI50, values µg/mL) of lettuce leaves
extracts in relation to the growth medium (mean ± SD; n = 3).

Control GHH25% * GHH50% CGW25% CGW50% GPH25% GPH50% Positive Control

Antioxidant activity Trolox

TBARS 169 ± 8 a 50 ± 2 e 27 ± 1 f 96 ± 5 c 76 ± 1 d 74 ± 5 d 114 ± 6 b 23 ± 0.1
OxHLIA
∆t = 60 min 383 ± 16 e 553 ± 32 b 186 ± 11 f 550 ± 28 b 500 ± 15 c 590 ± 73 a 451 ± 17 d 19.6 ± 0.7

Cytotoxicity to non-tumor cell lines Ellipticine

PLP2 >400 >400 >400 >400 >400 >400 >400 2.3 ± 0.1

Cytotoxicity to tumor cell lines

HeLa >400 >400 >400 >400 >400 >400 258 ± 14 0.91 ± 0.1
HepG2 >400 >400 >400 >400 >400 >400 269 ± 20 1.10 ± 0.09
MCF-7 >400 >400 329 ± 17 a >400 >400 >400 307 ± 6 b 1.21 ± 0.02
NCI-H460 >400 >400 >400 >400 >400 >400 >400 1.03 ± 0.09

* CGW: cotton ginning waste; GHH: ground hazelnut husks; GPH: ground peanut husks; tr—traces. Different
Latin letters in the same row indicate significant differences between the means according to Tukey’s HSD test or
Student’s t test (p = 0.05).

The antimicrobial properties of lettuce leaves in response to the tested byproducts are presented in
Table 7. None of the extracts showed better antibacterial activity than the used positive controls against
the six evaluated bacteria. However, specific extracts were more efficient, such as the treatments of
GCW (25% and 50%) and GPH25% against Staphylococcus aureus or the treatments of GHH50% and
CGW25% against Bacillus aureus. For the rest of the tested bacteria, no significant differences between
the tested extracts were observed, except for the case of GHH25% treatment which routinely showed
the lowest efficacy. Similar results were suggested by Noumedem et al. [86] who also recorded a
moderate efficacy of lettuce leaves’ extracts against various bacteria strains without however being
more efficient than the tested positive control. Moreover, according to the studies of Karkanis et al. [82]
and Petropoulos et al. [1], growth substrate may have an effect on the antimicrobial properties of the
final produce through the changes in the chemical profile of phytochemicals which are responsible for
such properties.

Table 7. Antibacterial activity (MIC and MBC, mg/mL) and antifungal activity (MIC and MFC, mg/mL)
of lettuce leaves extracts in relation to the growth medium (mean ± SD; n = 3).

Control GHH25% ¥ GHH50% CGW 5% CGW50% GPH25% GPH50% Positive Controls

Antibacterial Activity Streptomycin Ampicillin

S. aureus
(ATCC 11632)

MIC *
MBC

1.75
3.50

1.75
3.50

1.75
3.50

0.89
1.75

0.89
1.75

0.89
1.75

1.75
3.50

0.006
0.012

0.012
0.025

B. cereus
(food isolate)

MIC
MBC

0.89
1.75

0.89
1.75

0.44
0.89

0.44
0.89

0.89
1.75

0.89
1.75

0.89
1.75

0.10
0.20

0.25
0.40

L. monocytogenes
(NCTC 7973)

MIC
MBC

1.75
3.50

3.50
7.00

1.75
3.50

1.75
3.50

1.75
3.50

1.75
3.50

1.75
3.50

0.20
0.30

0.40
0.50

S. typhimurium
(ATCC 13311)

MIC
MBC

1.75
3.50

3.50
7.00

1.75
3.50

1.75
3.50

1.75
3.50

1.75
3.50

1.75
3.50

0.20
0.30

0.75
1.20

E. cloacae
(ATCC 35030)

MIC
MBC

1.75
3.50

3.50
7.00

1.75
3.50

1.75
3.50

1.75
3.50

1.75
3.50

1.75
3.50

0.003
0.006

0.006
0.012

E. coli
(ATCC 25922)

MIC
MBC

0.89
1.75

3.50
7.00

0.89
1.75

0.89
1.75

0.89
1.75

0.89
1.75

0.89
1.75

0.20
0.30

0.40
0.50

Antifungal Activity Ketoconazole

A. fumigatus
(ATCC 9197)

MIC
MFC

0.88
1.75

0.88
1.75

0.44
0.88

0.44
0.88

0.44
0.88

0.88
1.75

0.22
0.44

0.20
0.50
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Table 7. Cont.

Control GHH25% ¥ GHH50% CGW 5% CGW50% GPH25% GPH50% Positive Controls

A. versicolor
(ATCC 11730)

MIC
MFC

0.88
1.75

0.88
1.75

0.44
0.88

0.44
0.88

0.44
0.88

0.88
1.75

0.44
0.88

0.20
0.47

A. niger
(ATCC 6275)

MIC
MFC

0.88
1.75

0.88
1.75

0.44
0.88

0.44
0.88

0.44
0.88

0.44
0.88

0.44
0.88

0.20
0.50

P. funiculosum
(ATCC 36839)

MIC
MFC

0.44
0.88

0.44
0.88

0.44
0.88

0.44
0.88

0.22
0.44

0.44
0.88

0.44
0.88

0.20
0.50

P. v. var.
cyclopium
(food isolate)

MIC
MFC

1.75
3.20

0.44
0.88

0.88
1.75

0.44
0.88

0.44
0.88

0.44
0.88

0.44
0.88

0.20
0.30

T. viride
(IAM 5061)

MIC
MFC

0.44
0.88

0.22
0.44

0.44
0.88

0.22
0.44

0.11
0.22

0.22
0.44

0.22
0.44

0.20
0.30

* MIC: minimum inhibitory activity; MBC: minimum bactericidal activity; MFC: minimum fungicidal activity.
¥ CGW: cotton ginning waste; GHH: ground hazelnut husks; GPH: ground peanut husks.

Regarding the antifungal activities of the evaluated extracts, the positive controls were more
efficient than the leaf extracts in most of the cases, except for Aspergillus fumigatus where the extracts of
the GPH50% treatment had the lowest MFC values, as well as in the case of Trichoderma viride where
the extracts of the CGW50% treatments were more efficient than the positive control (Table 7). Similar
findings were observed by Karkanis et al. [82] who evaluated the effect of growth medium on the
antifungal activities of Sanguisorba minor root and leaf extracts and reported a varied response to the
tested growing medium, whereas Petropoulos et al. [1] did not observe any significant fungicidal
effects for the extracts of spiny chicory leaves grown in different growth substrates.

4. Conclusions

The findings of this study were promising and suggested the alternative use of organic waste
from cotton, ground peanut and hazelnut as soil amendments, aiming to reduce the environmental
pollution and the pressure to agro-ecosystems that the improper disposal of agroindustry waste may
cause. The most beneficial effect on crop performance was observed for the ground peanut husks when
applied in high amounts (GHH 50%) in the soil, followed by the other two tested materials (cotton
ginning waste and ground hazelnut husks) at the same amounts. Considering that most of the studies
related with organic waste utilization focus on the impact on soil characteristics and crop growth
parameters, limited literature exists for the effect of these byproducts on the quality and the chemical
profile of the final produce. As such, the findings of this study increase the knowledge towards the
sustainable production of high-quality vegetables and indicate cost effective means that could allow
the improvement of the quality of the final product. Therefore, the incorporation of crop byproducts in
soil for lettuce cultivation may have a direct effect on improving soil physicochemical characteristics,
as well as an indirect one through the increase in lettuce crop performance and the improvement of the
quality of the final produce. However, prior to suggesting the extended use of these materials, further
studies are needed with different soil types and different crops to identify the amounts of organic waste
that will be beneficial for the physicochemical properties of soil and crop performance and quality
as well.
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1. Petropoulos, S.; Fernandes, Â.; Stojković, D.; Pereira, C.; Taofiq, O.; Di Gioia, F.; Tzortzakis, N.; Soković, M.;
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LED illumination affects bioactive compounds in romaine baby leaf lettuce. J. Sci. Food Agric. 2013, 93,
3286–3291. [CrossRef] [PubMed]
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