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A B S T R A C T   

One of the underlying mechanisms that could link breast cancer and obesity is shifted redox homeostasis in the 
tumor microenvironment. To reveal the relationship between the malignant phenotype and obesity, we 
compared redox profiles of breast tumor and tumor-associated adipose tissue from premenopausal women: 
normal-weight with benign tumors, overweight/obese with benign tumors, normal-weight with malignant tu-
mors, and overweight/obese with malignant tumors. Namely, we examined the protein expression of nuclear 
factor erythroid 2-related factor 2 (Nrf2), protein expression and activity of main antioxidant defense (AD) 
enzymes: copper, zinc- and manganese superoxide dismutase, catalase, and glutathione peroxidase, as well as the 
level of 4-hydroxy-2-nonenal (4-HNE) modified proteins. Higher protein expression and activity of AD enzymes 
were found in malignant tumor tissue than benign tumor tissue, irrespective of obesity. Nevertheless, malignant 
tumor tissue of overweight/obese women was characterized by higher protein expression of Nrf2 and weaker 
immunopositivity for 4-HNE modified proteins. In malignant tumor-associated adipose tissue, the redox profile 
was clearly related to obesity. Higher Nrf2 protein expression and higher AD enzyme levels were observed in 
normal-weight women, while stronger immunopositivity for 4-HNE modified proteins was found in overweight/ 
obese women. The results suggest that the complex interplay between obesity and malignancy involves redox- 
sensitive pathways in breast tumor and tumor-associated adipose tissue.   

1. Introduction 

Breast cancer is the most prevalent malignancy in women, with the 
highest mortality rate worldwide. Excess body weight is a known risk 
factor for breast cancer in postmenopausal women, contributing to more 
severe disease progression [1–3]. However, evidence linking obesity to 
breast cancer in premenopausal women remains inconclusive [4–7]. 

One of the underlying mechanisms that could link obesity and breast 
cancer is shifted redox homeostasis in breast tissues. Since the pio-
neering work of Warburg and Oberley, metabolic reprogramming and 
underlying changes in redox regulation have been recognized as hall-
marks of neoplastic transformation [8]. The chief characteristics of 
cancer cells are mediated by redox-sensitive cellular processes that serve 
to sustain the malignant phenotype, i.e., genomic instability, prolifera-
tion, migration, and apoptosis [9]. Accordingly, malignant cells are 

often characterized by atypical redox signaling, different reactive spe-
cies generation rates, and altered levels of antioxidant defense (AD) 
enzymes. This is evident as increased production of reactive oxygen 
species (ROS), presence of oxidative stress biomarkers (e.g., 8-hydrox-
y-2′-deoxyguanosine, protein carbonyls, 4-hydroxy-2-nonenal protein 
adducts, malondialdehyde), as well as tumor-specific overexpression or 
underexpression of several redox proteins [10–12]. A delicate balance 
between ROS production and neutralization could reflect the metabolic 
blueprint of every cancer, determining its invasiveness, metastatic po-
tential, and resistance to conventional therapies. It is recognized that 
obesity, as a chronic state of altered energy homeostasis, can affect the 
metabolism of different tissues, including cancer [13,14]. Our recent 
study showed obesity-related changes to the lactate metabolism in the 
breast cancer microenvironment [15]; however, the impact of obesity on 
cancer tissue redox homeostasis has not been studied thoroughly. 
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On the local level, dysfunction of resident adipose tissue in obesity 
may be one of the critical features that contribute to cancer initiation 
and progression. Fat accumulation leads to systemic and adipose tissue 
(AT) localized prooxidant state [16], mainly attributed to stimulated 
ROS generation and decreased activity of superoxide dismutase (SOD) 
isoforms [17]. Moreover, adipose tissue possesses unique 
morpho-functional plasticity that comes to light in obesity. Adipo-
genesis, adipose hypertrophy, and hyperplasia are supported by 
redox-driven alterations in glucose homeostasis, oxidative metabolism, 
and antioxidant defense [18]. Such processes of local tissue remodeling 
are potentially responsible for establishing and sustaining the tumor 
microenvironment. The relationship between malignancy and obesity 
deepens by our increasing understanding of the importance of 
cancer-adipose tissue cross-talk. This complex communication, recently 
termed adipocyte cancer cell paracrine loop, leads to excessive mutual 
remodeling and promotes overall cancer aggressiveness [19–22]. 
However, cancer-adipose tissue cross-talk is mostly studied in vitro, in 
the light of paracrine functions of growth factors, adipokines, and 
proinflammatory cytokines. Human studies considering the 
morpho-functional specificity of the mammary adipose depot, especially 
in complex physiological states such as obesity, are still scarce [17,23, 
24]. 

This study aimed to reveal the redox profile related to the malignant 
phenotype and its relationship with obesity in premenopausal women. 
To this end, we examined the protein expression of transcription factor 
nuclear factor erythroid 2-related factor 2 (Nrf2), the activity and pro-
tein expression of first-line AD enzymes: copper, zinc- and manganese 
superoxide dismutase (CuZnSOD and MnSOD, respectively), catalase 
(CAT), glutathione peroxidase (GSH-Px) and level of 4-hydroxy-2-none-
nal (4-HNE) modified proteins in paired biopsies of tumor tissue and 
associated adipose tissue from normal-weight and overweight/obese 
women with breast cancer. As respective controls, paired biopsies of 
tumor tissue and associated adipose tissue from normal-weight and 
overweight/obese women with non-malignant (benign) breast changes 
were used. 

2. Materials and methods 

2.1. Subjects and sample collection 

This study followed the standards set by the latest version of the 
Declaration of Helsinki. The ethics committee of the Clinical Center of 
Vojvodina approved all the procedures. Patients volunteered for the 
study and signed an informed consent form. The study group consisted 
of 36 women who were hospitalized for breast surgery. All subjects were 
premenopausal (with regular menses for the last six months) with an 
average age of 39.8 ± 8.77 years. Indications for surgical intervention 
were benign cases of breast fibroadenoma or malignant cases of luminal 
type A (ER+/PR+/HER2-) invasive ductal carcinoma. At the beginning of 
the surgical procedure under general balanced anesthesia, samples of 
breast tumor and tumor-associated adipose tissue (in the immediate 
vicinity to the tumor mass) were obtained. From each patient, one piece 
of the tumor and the adipose tissue sample was snap-frozen in liquid 
nitrogen and stored at − 80 ◦C until subsequent protein isolation by TRI 
Regent procedure (Ambion, USA) for protein expression analysis by 
Western blot. The remaining piece was homogenized (Heidolph DIAX 
600) at 0–4 ◦C in 0.25 M sucrose, 0.1 mM EDTA, and 50 mM Tris buffer, 
pH 7.4 for enzyme activity measurements. Body mass index (BMI) was 
used to classify samples as normal-weight (BMI < 25 kg/m2) or over-
weight/obese (BMI ≥ 25 kg/m2) [25]. According to the tumor type and 
BMI, samples were further classified into four groups (n = 9); 
normal-weight (non-obese) with benign tumors, overweight/obese with 
benign tumors, normal-weight (non-obese) with malignant tumors, and 
overweight/obese with malignant tumors. 

2.2. Western blot analysis 

Western blot analysis was conducted as described previously [26] 
using antibodies against: CuZnSOD (0.2 μg ml− 1; ab13498), MnSOD 
(0.2 μg ml− 1, ab13533), CAT (1 μg ml− 1; ab1877), GSH-Px (1 μg ml− 1; 
ab17926-500), Nrf2 (1 μg ml− 1; ab31163), 4-HNE (1 μg ml− 1; ab46545) 
and β-actin (0.5 μg ml− 1; ab8226) (all purchased from Abcam, Cam-
bridge, UK). Quantitative analysis of immunoreactive bands was per-
formed with ImageJ software (National Institute of Health, USA). Total 
band density was calculated as the sum of pixel intensities within a band. 
The ratio of dots per band for the target protein was averaged against 
β-actin (gel loading control) from three independent experiments, and 
the levels of protein expression were expressed in arbitrary units (AU). 

2.3. Immunofluorescence analysis 

Standard immunolabeling procedure we conducted as previously 
described [27] using primary antibodies against 4-HNE (5 μg ml− 1; 
ab46545, Abcam, UK) and with the appropriate 
fluorochrome-conjugated secondary antibody (1:400; Alexa Fluor® 633 
goat anti-rabbit, A2070, Thermo Fisher Scientific, USA). For counter-
staining of the nuclei, Sytox Orange (1 μL ml− 1, Thermo Fisher Scien-
tific) was used. Slides were mounted with Mowiol (Polysciences, 
Eppelheim, Germany), and confocal images were acquired with a Leica 
TCS SP5 confocal laser scanning microscope (Leica Microsystems, 
Austria) in sequential mode to avoid cross-talk between channels. The 
specificity of immunofluorescence was tested by the omission of primary 
antibodies. Image processing and quantification were performed with 
NIH Image J software. 

2.4. AD enzyme activity 

The activity of superoxide dismutase isoforms was determined using 
the method of Misra and Fridovich [28] and expressed in U mg− 1 pro-
tein. Catalase activity was assayed according to the method of Beutler, 
and the activity was expressed in U mg− 1 protein [29]. Glutathione 
peroxidase was determined using the method of Paglia and Valentine 
[30], and the activity was expressed in nmol of reduced NADPH min− 1 

mg− 1 protein. 

2.5. Statistics 

Statistical analysis was performed in GraphPad Prism software 
(GraphPad Prism, Version 6.01). Normality of distribution for all data 
sets was assessed with D’Agostino and Pearson’s omnibus normality test. 
One-way two-tailed analysis of variance (ANOVA) was applied for 
within-group comparison of the data from molecular analysis. If the F 
test showed an overall difference, multiple comparison Tukey’s post hoc 
test was used to evaluate the significance of the among group differ-
ences. Statistical significance was accepted at p < .05. 

3. Results 

Protein expression of AD enzymes, Nrf2, and level of 4-HNE modified 
proteins in benign and malignant tumor tissue of normal-weight and 
overweight/obese women. 

In general, malignant tumor tissue of normal weight and over-
weight/obese women displays increased protein expression of AD en-
zymes in comparison to benign tumor tissue of weight-matched women. 
Namely, a clear difference in protein expression of CuZnSOD, CAT and 
GSH-Px was observed (CuZnSOD (normal-weight) p < .05, CuZnSOD 
(obese) p < .01; CAT(normal-weight) p < .001, CAT(obese) < 0.001; 
GSH-Px (normal-weight) p < .001, GSH-Px (obese) < 0.001). Besides, 
there were no differences in protein expression of CuZnSOD, CAT, and 
GSH-Px between normal-weight and overweight/obese pairs of benign 
and malignant tumors. Higher protein expression of MnSOD was found 
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only in malignant tumor tissue of normal-weight women (p < .01). 
Interestingly, Nrf2 showed higher protein expression in malignant 
tumor tissue of overweight/obese women, compared to both its corre-
sponding benign counterpart (p < .001) and to the malignant tumor 
tissue of normal-weight women (p < .01) (Fig. 1A–E). Semi-quantitative 
analysis of 4-HNE immunofluorescence intensity showed no significant 
differences between analyzed groups. However, Western blot analyses 
showed multiple prominent immunopositive bands for 4-HNE, where a 
weaker positivity corresponding to the 95 kDa band was found in ma-
lignant tumor tissue of overweight/obese women compared to their 
overweight/obese benign counterparts and malignant tumor tissue of 
normal-weight women (Figs. 1F and 5). 

AD enzyme activity in benign and malignant tumor tissue of normal- 
weight and overweight/obese women. 

There were no significant differences in CuZnSOD and MnSOD ac-
tivity in the tumor tissue when weight-matched benign and malignant 
counterparts were compared, except for slightly higher CuZnSOD ac-
tivity (p < .05) in overweight/obese women with malignant tumors. 
Clearly higher GSH-Px activity characterized malignant tumor tissue of 
both normal-weight (p < .01) and overweight/obese women (p < .05), 
compared to benign weight-matched counterparts. Similarly, a trend 
towards the higher activity of CAT was present in malignant tumor tis-
sue in comparison to benign, irrespective of the BMI (Fig. 2). 

Protein expression of AD enzymes, Nrf2, and level of 4-HNE modified 
proteins in tumor-associated adipose tissue of normal-weight and 
overweight/obese women with benign and malignant breast tumors. 

Expression patterns of AD enzymes in tumor-associated adipose tis-
sue were mainly consistent. Significantly higher protein expression of 
CuZnSOD, MnSOD, and CAT was found in adipose tissue of normal- 
weight women with malignant tumors, as compared to weight- 
matched women with benign breast tumors (p < .001) and to over-
weight/obese women with malignant tumors (p < .001). Higher protein 
expression of GSH-Px was found in tumor-associated adipose tissue of 
women with malignant tumors (p < .05), compared to their benign 
counterparts, regardless of BMI. In addition, protein expression of Nrf2 
was found to be higher in adipose tissue of normal-weight women with 
malignant breast tumors, in comparison to weight-matched women with 

benign tumors (p < .001) and overweight/obese women with malignant 
tumors (p < .01) (Fig. 3A–E). Semi-quantitative analysis of 4-HNE 
immunofluorescence intensity showed the strongest immunopositivity 
for 4-HNE modified proteins in adipose tissue of overweight/obese 
women with malignant tumors. Interestingly, Western blot analysis 
showed that the intensity of immunoreactive bands for 4-HNE at 40 kDa 
was higher in adipose tissue of overweight/obese women with benign 
tumors as well as in adipose tissue of normal-weight women with ma-
lignant tumors compared to adipose tissue of normal-weight women 
with benign tumors. However, additional immunoreactive bands for 4- 
HNE at 25 kDa were markedly visible only in adipose tissue of over-
weight/obese women with malignant tumors (Figs. 3F and 5). 

AD enzyme activity in tumor-associated adipose tissue of normal- 
weight and overweight/obese women with benign and malignant 
breast tumors. 

There were no differences in adipose tissue CuZnSOD and MnSOD 
activity between examined groups of women. Higher CAT and GSH-Px 
activity in adipose tissue of normal-weight (p < .05) and overweight/ 
obese (p < .05) women with malignant tumors was observed, in com-
parison to respective adipose tissue of women with benign tumors 
(Fig. 4). 

4. Discussion 

This study evaluated the redox profile of breast tumor tissue and 
tumor-associated adipose tissue and its relationship with malignancy 
and obesity in premenopausal women. Cross-examination of malignant 
tumor tissue biopsies revealed higher protein expression and activity of 
investigated AD enzymes regardless of BMI compared to benign tumor 
tissue. Nevertheless, protein expression of Nrf2 in malignancy was 
associated with obesity. Interestingly, the redox profile of malignant 
tumor-associated adipose tissue was clearly BMI-related. Significantly 
higher protein expression of AD enzymes was found in normal-weight 
women, where activation of the Nrf2 pathway seems to play a role in 
establishing such “activated” phenotype in cancer-associated adipose 
tissue. The results suggest a specific redox-sensitive relationship be-
tween neoplastic transformation, mammary adipose tissue, and obesity 

Fig. 1. Protein expression of Nrf2 (A), AD enzymes (CuZnSOD (B), MnSOD (C), CAT (D), GSH-Px (E)), and level of 4-HNE modified proteins (130 kDa (Fa), 95 kDa 
(Fb), 40 kDa (Fc)) in benign and malignant breast tumor tissue of normal-weight (black) and overweight/obese (gray) women. The protein content is expressed in 
arbitrary units (AU). Band images from a representative blot of three trials are shown. Bars represent the mean ± S.E.M. *Compared to respective benign counterpart, 
*p < .05, **p < .01, ***p < .001; # compared to normal-weight malignant counterpart, ##p < .01. 
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in premenopausal women. 
Redox profile represents a blueprint of every cancer, reflecting the 

stage of progression [31,32], metabolic demands [33,34], or selective 
pressures imposed by the tumor microenvironment [8,35,36]. Accord-
ingly, data obtained for different types of tumors and at different stages 
of tumor progression in vitro and in vivo are inconsistent. Increased or 
decreased levels of ROS, oxidative stress biomarkers, and redox-related 

proteins were associated with the malignant phenotype [37–50]. 
Furthermore, a shift towards oxidative or peroxidative state, evident as 
the relative disproportion in the expression of O2•- and H2O2 eliminating 
enzymes, has been previously described [51–53]. We show higher 
CuZnSOD, MnSOD, CAT, and GSH-Px protein expression and CAT and 
GSH-Px activity in malignant tumor tissue than in benign tumor tissue, 
irrespective of BMI. This is in agreement with the higher redox 

Fig. 2. The activity of CuZnSOD (A), MnSOD (B), CAT (C), and GSH-Px (D) in benign and malignant breast tumor tissue of normal-weight (black) and overweight/ 
obese (gray) women. Enzyme activity is expressed in absolute units in U mg− 1 protein (A, B, C) and nM NADPH min− 1mg− 1 protein (D). Bars represent the mean ± S. 
E.M. *Compared to respective benign counterpart, *p < .05, **p < .01. 

Fig. 3. Protein expression of Nrf2 (A), AD enzymes (CuZnSOD (B), MnSOD (C), CAT (D), GSH-Px (E)), and level of 4-HNE modified proteins (95 kDa (Fa), 40 kDa 
(Fb), 25 kDa (Fc)) in tumor-associated adipose tissue of normal-weight (black) and overweight/obese (gray) women with benign and malignant breast tumors. The 
protein content is expressed in arbitrary units (AU). Band images from a representative blot of three trials are shown. Bars represent the mean ± S.E.M. *Compared to 
respective benign counterpart, *p < .05, ***p < .001; # compared to normal-weight malignant counterpart, #p < .05, ##p < .01, ###p < .001. 
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homeostasis threshold hypothesis [54,55] and indicates a well-balanced 
capacity of malignant tumor tissue to metabolize ROS [44,52]. In an 
indirect assessment of ROS levels and lipid peroxidation rate, stronger 
immunopositivity for 4-HNE modified proteins was found in 
normal-weight women than in overweight/obese. In contrast, protein 
expression of transcription factor Nrf2 was higher in overweight/obese 

women with malignant tumors. Consistent with overall metabolic 
changes caused by systemic effects of obesity, cancer tissue metabolism 
has been previously shown to differ between normal-weight and over-
weight/obese women [15,56]. Differential protein expression of Nrf2 
and level of 4-HNE modified proteins could reflect such obesity-related 
intricate metabolic differences, especially in the light of new evidence 

Fig. 4. The activity of CuZnSOD (A), MnSOD (B), CAT (C), and GSH-Px (D) in tumor-associated adipose tissue of normal-weight (black) and overweight/obese (gray) 
women with benign and malignant breast tumors. Enzyme activity is expressed in absolute units in U mg− 1 protein (A, B, C) and nM NADPH min− 1mg− 1 protein (D). 
Bars represent the mean ± S.E.M. *Compared to respective benign counterpart, *p < .05, **p < .01. 

Fig. 5. Immunofluorescence staining and confocal microscopy of 4-HNE modified proteins presence and localization in breast tumor tissue and tumor-associated 
adipose tissue of normal-weight (black bars) and overweight/obese (gray bars) women with benign and malignant breast tumors. 4-HNE- (red) and nuclei Sytox 
Orange staining (false blue). Merged images are an overlay of two channels on phase-contrast tissue images. NC-negative control. Scale bars: 25 μm and 10 μm on 
merged x6 zoom. 
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for the pleiotropic role of Nrf2 in metabolic reprogramming [57–60] and 
a complex signaling role of 4-HNE in cancer [61–64]. Moreover, there is 
evidence to support a worse prognosis, shorter disease-free interval, and 
higher mortality in breast cancer patients with high Nrf2 expression [59, 
65]. 

Local interaction between adipose tissue and cancer tissue has been 
recently shown to play an important role in cancer development and 
progression [20,22,66]. Cancer cells have been shown to communicate 
with adipocytes and “activate” their phenotype towards dedifferentia-
tion, deregulated secretory activity, increased lipolysis, and β-oxidation 
[67]. In turn, adipocytes secrete free fatty acids, adipokines, proin-
flammatory cytokines, proteases, and components of the extracellular 
matrix to promote cancer invasion. It has been proposed that obesity 
could enhance two-way communication between these tissues [21, 
68–71]. However, this has mostly been addressed in cell culture and 
co-culture studies, not fully considering the morpho-functional diversity 
of adipose tissue depots. Here, our data on paired human biopsies 
indicate that described cross-talk also affects redox-sensitive pathways 
in vivo. Initial assessment of adipose tissue from women with benign 
breast changes showed no significant obesity-related differences in Nrf2 
and AD enzyme expression. However, cross-examination of malignant 
tumor-associated adipose tissue revealed a clear association between the 
redox profile and BMI. Higher protein expression of AD enzymes 
(CuZnSOD, MnSOD, and CAT) was found in normal-weight women, 
compared to overweight/obese. This could be related to the increased 
metabolic demands of cancer tissue, which favor oxidative metabolism 
[22,72]. Indeed, AD enzyme levels in adipose tissue were parallel to 
those observed in malignant tumor tissue, suggesting a coordinated 
redox response of breast tissues in a normal-weight state. A similar 
mirror image was previously shown for cancer-associated fibroblasts. 
Activated fibroblasts exhibit a slight increase in antioxidant defense, 
following phenotypic change that promotes cancer aggressiveness [33, 
35,73,74]. Such “redox coupling” could serve to sustain metabolic 
cooperation between cancer and its associated stromal tissues [36,74]. 
There is evidence for metabolic cooperation between adipocytes and 
cancer cells, but this was not further addressed so far in the 
redox-dependent context. To the best of our knowledge, we show the 
redox profile of cancer-associated adipose tissue for the first time and 
propose that the Nrf2 signaling pathway plays a role in establishing such 
“activated” phenotype. 

Compelling differences in redox profile between normal-weight and 
overweight/obese women suggest that malignancy-related redox 
response of adipose tissue differs in obesity. If the increase in AD enzyme 
expression, found in breast adipose tissue of normal-weight women, is 
due to pressure imposed by cancer cells, the question of what happens in 
overweight/obese women remains. Are adipocytes in obesity immune to 
this induced prooxidant state, or is their ability to respond to it 
impaired? Malignant tumor-associated adipose tissue in overweight/ 
obese women showed significantly reduced antioxidant capacity and 
stronger immunopositivity for 4-HNE modified proteins compared to 
normal-weight women. An increase in 4-HNE was reported as a 
biomarker of localized prooxidant state [17,75–77] and an inter- and 
intracellular redox signaling mediator of metabolic reprogramming in 
adipose tissue of obese individuals [78,79]. Recently, increased 4-HNE 
release from obese adipose tissue and Nrf2-dependent proliferation of 
breast cancer cells upon 4-HNE treatment was shown in two indepen-
dent studies [80,81]. Here, in paired biopsies from obese women, we 
observed high Nrf2 expression in malignant tumor tissue, concomitantly 
with high immunopositivity for 4-HNE modified proteins in malignant 
tumor-associated adipose tissue. 

This study’s cross-sectional nature does not permit us to discuss 
temporal relations between obesity and breast cancer or whether 
described redox differences in tumor and adipose tissue are related to 
the risk of cancer development or severity of disease progression. Mul-
tiple studies showed that obesity reduces breast cancer risk in premen-
opausal women, contrary to the increased risk in postmenopausal 

women [1–5]. Still, there is substantial evidence that obesity leads to 
higher mortality, shorter disease-free intervals, and increased chemo-
therapy resistance in pre- and postmenopausal women [6,82]. Our 
future efforts will be directed towards studying redox-related protein 
expression and localization in the context of breast cancer tissue archi-
tecture and cancer cell and adipocyte ultrastructure. Studies regarding 
metabolic reprograming of breast tumor tissue and its associated adi-
pose tissue, especially in the context of metabolic cooperation between 
cancer cells and adipocytes, are needed to expand our current under-
standing of the redox-driven relationship between mammary adipose 
tissue, neoplastic transformation, and obesity in premenopausal women. 
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Antioxidant defense AD 
Copper, zinc superoxide dismutase CuZnSOD 
Manganese superoxide dismutase MnSOD 
Catalase CAT 
Glutathione peroxidase GSH-Px 
Reactive oxygen species ROS 
White adipose tissue WAT 
Body mass index BMI 
Superoxide anion O2

•

Hydrogen peroxide H2O2, Nuclear factor erythroid 2-related factor 2 
(Nrf2), 4-hydroxy-2-nonenal (4-HNE) 
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