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Abstract: This study was conducted to compare the effects of commercially available (C) and green
synthesized (GS) Zinc oxide nanoparticles (ZnO-NPs) on immunological responses of common carp
(Cyprinus carpio) skin mucus. GS ZnO-NPs were generated using Thymus pubescent and characterized
by UV–vis diffuse reflectance spectroscopy (DRS), Fourier-transform infrared spectroscopy (FTIR),
X-ray powder diffraction (XRD), scanning electron microscope (SEM), and energy-dispersive X-ray
spectroscopy (EDX). Fish (n = 150) were randomly allocated into five groups in triplicate and received
a waterborne concentration of 0% (control), 25%, and 50% of LC50 96 h of commercially available (C1
and C2) and green synthesized ZnO-NPs (GS1 and GS2) for 21 days. Results from XRD displayed
ZnO-NPs with 58 nm in size and UV-vis DRS, EDX, and FT-IR analysis showed that some functional
groups from plant extract bonded to the surface of NPs. The SEM images showed that ZnO-NPs have
conical morphology. Acute toxicity study showed a higher dose of LC5096h for green synthesized
ZnO-NPs (78.9 mg.L−1) compared to the commercial source (59.95 mg.L−1). The highest activity of
lysozyme and alternative complement activity (ACH50) were found in control and GS1 groups. A
significant decrease in alkaline phosphatase activity (ALP) was found in C1 and C2 groups compared
to other treatments. Protease activity (P) was significantly decreased in the C2 group compared to
the control and GS groups. Total immunoglobulin (total Ig) content was the highest in the control. In
addition, total Ig in the GS1 group was higher than GS2. The exposure to ZnO-NPs lowered total
protein content in all experimental groups when compared to control. Present findings revealed
lower induced immunosuppressive effects by green synthesized ZnO-NPs on key parameters of fish
skin mucus.

Keywords: mucosal immunity; nanotoxicology; green synthesis; nanoparticles; common carp;
skin mucus
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1. Introduction

Nanotechnology is one of the most advanced technologies that has emerged from the
convergence of physics, chemistry, and biology sciences producing various types of materi-
als including nanoparticles (NPs) with at least one dimension below 100 nm [1–6]. Metal
oxide nanoparticles, as a very important class of NPs, are highly persistent in the environ-
ment and food chain [7] making them very dangerous for the environment and aquatic
organisms. Engineered metal and metal-oxide NPs are known to impose a wide range of
harmful implications (e.g., inducing oxidative stress, DNA damage, mutations, decreasing
cell viability, stimulation of apoptosis and necrosis) on living organisms [8–11]. Besides,
NPs can interact with immune compartments resulting in immunosuppression [12,13]. The
toxicity of NPs depends on various factors such as surface-to-volume ratio, phase transfer,
chemical stability, solubility, and the tendency to mass formation.

Zinc (Zn) is a nutritional trace element essential for living animals, including aquatic
animals [14], however, excessive Zn concentrations can be toxic [15,16]. Zinc oxide nanopar-
ticles (ZnO-NPs) are inorganic compounds with a wide range of applications in various
industries from cosmetics to wastewater treatment [17–24]. There is an estimation that
3700 tons per year of ZnO-NPs are released into the aquatic environment around the
world [25]. However, it is not possible to have an actual estimation due to the uncontrolled
use and release of NPs. Since aquatic environments are believed to be the ultimate receiver
of these engineered materials, it is, therefore, important to evaluate the impacts of NPs
on fish and other aquatic animals [26,27]. Fish can be also exposed to concentrations of
NPs that are greater than environmental ones via food and the process of biomagnifica-
tion through the food chain. Several studies have been dealing with the toxicity risks of
engineered NPs to the aquatic organism [9].

The green synthesis of NPs using plant extracts offers an alternative and promising
approach in the production of safer and environmentally friendly nanoparticles [28,29].
According to [30], the eco-friendly biosynthesized NPs provides an alternative to the
chemically synthesized ones, which should lower the chemical toxicity in the natural
environments. Furthermore, a majority of researchers have proposed green routes (using
plant extracts) for the synthesis of ZnO nanomaterials [31]. Using plant extracts with
high antioxidant content, e.g., polyphenols and sulfated polysaccharides to synthesize
metal nanoparticles, is a perfect option to modify NPs’ specific surfaces area (attachment
of functional groups to the surface of NPs) and probably reduce their toxicity to living
organisms.

A recent study reported that the chemical synthesized silver NPs is 10 times more toxic
than the green synthesized nanoparticles for Artemia nauplii [32]. Another recent review
recommends the potential use of the green synthesized ZnO-NPs as growth promotors, also,
to increase resistance against viral infection [28]. Furthermore, ZnO-NPs have been found
to exert cytotoxic activity against cancer cells in addition to their promising antimicrobial
activity [33]. The information regarding the toxicity of green synthesized NPs on fish skin
mucus is scarcer.

Regardless of the exposure route, the interaction of NPs and immune system compart-
ments is inevitable. A study showed that common carp skin mucus actively responds to
waterborne exposure of NPs [34]. Some NPs may elicit immune responses at low concen-
trations suggesting immunostimulatory or immunosuppressive effects of NPs. However,
dietary administration of ZnO-NPs [35,36] and even lower doses of ZnO-NPs cause cy-
totoxicity, oxidative stress, changes in blood biochemical parameters, and tissue damage.
Furthermore, it has been reported that Nile tilapia antioxidant defense system is compro-
mised when exposed to ZnO-NPs [37]. Earlier studies revealed the involvement of NPs
in evolving oxidative stress by either inhibiting the antioxidant system of cells [38] or by
excessing production of reactive oxygen species (ROS) [39] thus, inducing a toxic impact.

Thus, the present study was conducted to compare the toxicity of the same concen-
trations of green synthesized ZnO-NPs (58 nm) using Thymus pubescent and commercially
available ZnO-NPs (35–45 nm) on major immunological parameters of skin mucus of
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common carp as a model organism. Common carp (Cyprinus carpio) is the fourth important
aquaculture species with high economic value [40], which has been suggested as an appro-
priate model for toxicological studies. To the best of our knowledge, this is the first report
to compare the toxicological effects of green synthesized and commercial ZnO-NPs on skin
mucus immunological responses of common carp.

2. Results
2.1. Characterization of the Fabricated ZnO-NPs

The obtained ZnO-NPs were characterized by XRD, EDX, SEM, FTIR, and UV-vis
DRS spectra analysis as shown in Figures 1–5. We performed XRD analysis in order to
determine the form (amorphous or crystalline) of our samples. Figure 1 represents the
results of XRD pattern of prepared ZnO-NPs using Thymus pubescent.
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The sharp diffraction peaks confirmed that the obtained ZnO-NPs were crystalline in
nature. Scherer’s equation (Equation (1)) was used to calculate the mean crystallite size of
the ZnO-NPs.

D = Kλ/βcosθ (1)

where θ is Bragg’s angle, β is peak width at half maximum, the wavelength of X-ray
radiation is λ = 0.15406 nm and K is Scherer’s constant, which is 0.9.

Hence, the average crystallite sizes of the ZnO-NPs were determined using Scherer’s
equation to be 58 nm. There are no other peaks related to impurities, clearly indicating the
high purity of fabricated ZnO-NPs. EDX analysis was exploited to evaluate the chemical
composition and purity of the ZnO-NPs, as shown in Figure 2.

The EDX spectra revealed the presence of zinc, oxygen, and carbon elements. The
presence of a carbon element in the EDX was attributed to bonded functional groups of
plant origin. In addition, generated NPs were of high purity since no other irrelevant peaks
were detected. Furthermore, the weight percentages of zinc (Zn), oxygen (O), and carbon
(C) elements were obtained as 78.6, 18.92, and 2.48%, respectively.

Results from SEM analysis are displayed in Figure 3. As can be seen, most of the
particles are nearly conical surface structures.

The observed peak at 466 cm−1 in FTIR spectra of ZnO-NPs (Figure 4) was attributed
to stretching of the vibration of Zn–O bond. In addition, the peaks at 1073 and 1623 cm–1

were attributed to stretching vibrations of the C–O and C=O bonds [41]. The absorption
peaks for C–H stretching vibrations of CH2 and CH3 groups were observed at 2862 and
2934 cm−1, respectively [42]. Finally, the FTIR spectra of the extract and all samples showed
broad absorption peaks at 3200 to 3668 cm−1, representing stretching the vibration of O–H
group [43].

UV–vis spectra (Figure 5) showed an absorbance peak at 355 nm which can be de-
scribed as the intrinsic band-gap absorption of ZnO-NPs due to the electron transitions
from the valence band to the conduction band (O2p-Zn3d). The reduction in the size of
ZnO-NPs due to the presence of the extract was observed as a shift of the blue peak of
41 nm. This is attributed to the quantum confinement effect. Furthermore, the ZnO-NPs
had strong absorption in the visible region due to the presence of functional groups from
the extract.

2.2. Toxicity Assessment of ZnO-NPs

Fish were exposed to different concentrations of commercial and green synthesized
ZnO-NPs, mortality was counted for 96 h (Figure 6), and lethal concentrations were
calculated accordingly (Tables 1 and 2). LC50 96 h of commercial and green synthesized
ZnO-NPs has recorded 59.95 and 78.9 mg.L−1 respectively.

Table 1. Lethal concentrations of commercial ZnO-NPs at different time points of 24, 48, 72, and 96 h.

Concentration (ppm)

Point 24 h 48 h 72 h 96 h
LC30 230.36 125.95 73.08 32.1
LC50 312.51 184.51 117.62 59.95
LC70 394.66 243.08 162.16 87.49
LC90 513.27 327.64 226.47 127.26
LC99 676.94 444.33 315.22 182.14
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Table 2. Lethal concentrations of green synthesized ZnO-NPs at different time points of 24, 48, 72,
and 96 h.

Concentration (ppm)

Point 24 h 48 h 72 h 96 h
LC30 145.76 92.46 43.9 39.31
LC50 179.51 161.43 87.84 78.9
LC70 213.26 230.4 131.87 118.49
LC90 261.99 329.98 195.22 175
LC99 329.23 467.39 282.77 254.52
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Figure 6. The cumulative mortality of common carp exposed to different levels of commercial and
green synthesized ZnO-NPs for 96 h (30 fish for each concentration).

2.3. Skin Mucus Immunological Parameters

Skin mucus immunological responses of common carp exposed to different levels of
commercial and green synthesized ZnO-NPs for 21 days are shown in Table 3. Lysozyme
activity was statistically highest in the control group, then in the GS1 group in comparison
to other treatments. Similar results were observed for alternative complement activity
(ACH50), whereas control and GS1 groups had higher activities than other groups. As for
alkaline phosphatase, groups treated with commercial ZnO-NPs showed statistically lower
activity in comparison to control groups. Among ZnO treated groups, the lowest activity
of alkaline phosphatase was observed in the C1 group (22.89 ± 0.40) and the highest in GS1
(24.96 ± 0.61). Protease activity was significantly decreased in fish exposed to ZnO-NPs
except for a lower concentration of green synthesized ZnO-NPS (GS1), which did not show
the statistical difference when compared to the control group. Total Ig was found the
highest in the control group followed by a lower concentration of green synthesized NPs
(GS1) compared to other treatments while no significant difference was found among GS2,
C1, and C2 treatments. Similar to the results of total Ig, exposure to ZnO-NPs induced a
decrease in the total protein content where the highest value of total protein was measured
in the control group. Differences between ZnO-NPs treated revealed that total protein was
higher in individuals from a lower concentration of green synthesized NPs (GS1) group.



Int. J. Mol. Sci. 2021, 22, 3270 7 of 16

Table 3. Skin mucus immunological parameters (lysozyme, alternative complement activity (ACH50), alkaline phosphatase,
protease activity, total Ig and total protein) of common carp exposed to waterborne concentrations of 0% (control), 25%
and 50% of the LC50 96 h (60 ppm) of commercially available ZnO-NPs (C1 and C2), and same concentrations of green
synthesized ZnO-NPs (GS1 and GS2) for 21 days.

Treatment Control GS1 GS2 C1 C2

Lysozyme (U mL−1) 9.89 ± 0.37 a 8.07 ± 0.21 b 6.71 ± 0.38 c 5.83 ± 0.21 cd 5.4 ± 0.18 d

ACH50 (U mL−1) 32.88 ± 1.31 a 33.64 ± 1.32 a 27.93 ± 0.87 b 25.69 ± 0.33 bc 24.11 ± 0.70 c

Alkaline phosphatase (U L−1) 27.61 ± 0.70 a 24.96 ± 0.61 b 24.85 ± 0.57 b,c 22.89 ± 0.40 c 23.60 ± 0.85 b,c

Protease (U mL−1) 42.58 ± 1.58 a 42.84 ± 1.41 a 38.04 ± 0.77 b 38.38 ± 1.00 b 36.21 ± 1.04 b

Total Ig (mg mL−1) 19.33 ± 0.37 a 15.67 ± 0.37 b 13.47 ± 0.32 c 14.47 ± 0.40 c,d 14.70 ± 0.29 b,d

Total protein (mg mL−1) 3.04 ± 0.08 a 2.64 ± 0.07 b 2.35 ± 0.07 c 2.13 ± 0.04 d 2.01 ± 0.06 d

Different letters indicate significant differences between treatments (p < 0.05). Data represent mean ± SE.

Correspondence analysis showed that the first two dimensions explain 90.87% of total
inertia (Figure 7). Control and GS1 groups were clearly separated from other groups by first
dimension (58.37% of inertia). The second dimension (32.51%) separated the control and
C2 groups from GS1 and GS2 groups, while the C2 was placed on the axis. The parameters
distinguished examined groups were for: control individual- total Ig, total protein and
lysozyme; GS1- complement; C1 and GS2- protease; and C2- alkaline phosphatase.
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3. Discussion

Nanotechnology has gained tremendous attention to enhance aquaculture with ad-
vanced Nano-tools. There is a common understanding that the final destination of released
NPs would be the environment, underground or open water reservoirs. It is very likely that
NPs enter the fish body via food intake and ingestion of rearing water, however, several
other possible routes are suggested, e.g., epithelium of gills and skin [36,44,45]. In addition,
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the toxicity level of NPs has been shown to depend on various factors including size and
shape, a period of exposure, concentration, aggregation, surface area and charge. Herein we
report that based on our findings, the green synthesized type of nanoparticles (ZnO-NPs)
exhibited relatively less immunotoxic effects on fish skin mucus immunological parameters
and probably could be a better choice in comparison to the chemically synthesized type.

The state of immunosuppression in fish living in an aquatic ecosystem can be a
possible opportunity for skin inhabiting microorganisms to exert their action [46–48].

The fish skin is covered with a mucosal surface, as the outer layer, that is always in
contact with the surrounding environment. It serves as a major immunological barrier
and is considered the first line of defense against pathogens and other imminent stres-
sors [49–51]. In addition, mucus, the glycopolymers secretion covering the mucosa, harbors
a variety of antibacterial components, including proteins and enzymes, such as lysozyme
and proteolytic enzymes, immunoglobulins, complement proteins, lectins, and C-reactive
proteins [52–54]. Several literature data have addressed the ZnO-NPs toxicity following
waterborne exposure to various aquatic organisms [55–57]. The innate immune parame-
ters including mucus analysis of the fish skin, leukocytes function, NPs internalization,
cytokine expression, and lysozyme level are promising biomarkers to assess fish health
upon exposure to NPs [58].

In general, it is suggested that positively charged NPs might bind to mucoproteins
and therefore trap within the layer reducing their penetration onto the body and circulation
system. This entrapment normally results in the secretion of large amounts of superficial
mucus and reduces the chances of NPs passing through ion exchange channels. However,
a different interpretation discussed by [59] suggests the strong action of NPs to cross
biological barriers and exert different toxic actions, due to the generation of reactive oxygen
species (ROS).

To date, three studies demonstrated the effect of NPs exposure on fish skin mucus.
Oliveira et al. [60] showed the sensitivity of the skin mucus Sparus aurata to a low concen-
tration of gold NPs by measuring the total antioxidant capacity and esterase activity.

Hawkins et al., [61] monitored the amount of mucus production and recorded an
increase in mucus production in Pimephales promelas gills after 4 h exposure to silver nitrate
NPs (AgNO3) that persisted until 24 h. Then, on the third day, the amount of mucous
production showed a remarkable decrease. The third study displayed the significant
impact of NPs on several innate immune parameters, displaying profound alterations in
skin mucus, the function of leukocytes (macrophages and neutrophils), NPs internalization,
expression of cytokine, and lysozyme level [58].

Recent research recommends the safe use of green synthesized nanoparticles as they
contain many bioactive molecules such as polyphenols, enzymes, esters, polysaccharides,
and terpenoids). In addition, plant leaf extracts could act as stabilizing and reducing agents
in the biosynthesis processes of nanoparticles [33,62].

Fish mucus is enriched with many immune-associated proteins such as lysozymes,
phosphatases, immunoglobulins and proteins [63–65]. Lysozyme is a potent defense
component of the innate immune system through its antibacterial action [66]. Mucus
metabolites, including protease activity, are considered good non-invasive bioindicators
to determine fish immunological and physiological responses, the composition of these
metabolites responded to the many challenges, for example, mucus protein decreased
significantly following pathogenic bacterial infection in sea bass [67]. Herein we report
the highest level of lysozyme activity in the control and the GS1 groups compared to
other groups. It is probable that the green synthesized ZnO-NPs contain a potential
substrate for lysozyme thus the induction of lysozyme activity. However, a different
perspective mentioned by [58], stated that NPs cause suppression of the fish lysozyme
activity. Lysozyme activity was decreased in fish exposed to waterborne concentrations
of commercial and green synthesized ZnO-NPs. In contrast, other studies reported that
dietary administration of low concentrations of ZnO-NPs elevates lysozyme activity. Until
now, few studies evaluated the activity of lysozyme in fish mucus after exposure of fish
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to NPs. Nevertheless, Epinephelus coioides exposure to Cu-NPs and copper sulfate NPs
(CuSO4) showed suppression in the lysozyme activity in the intestine after 25 days [68].
This diminishing impact was also found in blood samples after 60 days of exposing
Oreochromis niloticus to Fe2O3 NPs [69]. Another study revealed a decrease in the serum
lysozyme activity after exposure to a low concentration of ZnO-NPs for 2 weeks [70].

Immunoglobulins play a substantial role in the local adaptive immune responses
of fish mucous by defending the mucosa against different infections and interact with
microorganisms to sustain the commensal homeostasis [71]. The current investigation
demonstrated that the green synthesized ZnO-NPs especially at low concentrations have
an immunomodulatory activity as shown by the elevation of the total Ig, protease activity,
ALP, and total protein compared to the groups administered with the commercial NPs. This
result corroborated recent studies demonstrating that the commercial type of ZnO-NPs
shows higher toxic effects likely because of their ability to release Zn ions, and cause cell
apoptosis [72,73]. Moreover, a comparison of commercial and green synthesized ZnO-NPs
has revealed the efficiency of the green synthesized NPs [74] which could be attributed
to the presence of bioactive molecules [33,62]. Similar findings were recorded for the
toxicity of commercial ZnO-NPs that significantly decreased ALP in common carp post-
exposure [75]. In addition, a significant alteration in the total protein and protease of M.
rosenbergii post-exposure to 90 days of ZnO-NPs were reported [76].

Various skin mucus proteins are targets to identify the fish physiological status and
classified into three main groups based on their functions including structural (actins,
keratins, and their catabolic products), metabolic (glycolytic enzymes and proteasome-
associated proteins), and protection-related group (heat shock proteins, hemopexin, and
transferrin) [77]. Proteases are another factor in fish mucus. Proteins such as trypsin,
cathepsin BL, cysteine protease (cathepsin D), aspartic protease (and metalloproteases)
have been identified in the mucus of fish skin. Antioxidant power activity in the skin
mucus owing to the presence of protease blocks bacterial growth [78].

4. Materials and Methods

All chemicals used in this experiment were of analytical grade and purchased from
local suppliers. Analytical grade compounds of zinc (II) nitrate [Zn (NO3)2.6H2O], and
sodium hydroxide were obtained from Merck. Commercial ZnO-NPs (US3580, NanoSany,
Iran) (35–45 nm, 99% purity, spherical shape) were purchased from NanoSany, Iran. The
fresh plant materials were obtained from local traders (Ardabil, Iran) and further identified
by a botanist.

4.1. Preparation of the Extract and Nanoparticles

The green leaves of Thymus pubescens were washed with distilled water and dried
at 25 ◦C for 6 days. Then, 100 mL of distilled water was added to the powdered dried
materials (20 g) and the resulting solution was incubated at 95 ◦C for 24 h and thoroughly
mixed using a magnetic starrier (180 rpm) to allow a proper extraction. Finally, the solution
was centrifuged at 5000× g for 5 min and kept at 4 ◦C until use. For the preparation of the
ZnO-NPs, zinc nitrate (5 g) was dissolved in 80 mL distilled water and 20 mL of the extract
at 37 ◦C under stirring. Afterward, 5 M NaOH was added to the solution in a drop-wise
manner until pH 10 was achieved. The suspension was then placed in a microwave oven
for 10 min. The precipitate was centrifuged at 2000× g for 6 min, washed with distilled
water and ethyl alcohol, and dried at 60 ◦C overnight (Figure 8).
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4.2. Characterization of Fabricated NPs

A microwave oven (Panasonic, 2.45 GHz, and 1000 W) was used for the preparation
of the samples. FTIR spectra were recorded with KBr pellets using a WQF-510 FTIR
Rayleigh. UV-Vis spectra were recorded with T80 double beam UV-Vis spectrophotometer
(NORDANTEC-GmbH, Germany) diode-array spectrometer using quartz cells of 1 cm
optical path. X-ray diffractometer (XRD) was applied to determine purity, crystallinity,
and the average size of NPs. Scanning electron microscopy (SEM) (LEO1450 VP, Germany)
with a scanning range from zero to 30 keV was used to assess the shape and morphology
of NPs. The purity of the materials by EDX spectroscopy using the same SEM instrument
was obtained.

4.3. Assessment of LC50 of ZnO-NPs

In order to determine the LC50 of commercial and green-synthesized available ZnO-
NPs, 180 fish with an average body weight of 25.41 ± 0.87 g were exposed to 6 different
concentrations of 0 (as control), 10, 20, 40, 80, and 120 mg.L−1 for 24, 48, 72, and 96 h.
Mortalities were counted and LC50 96 h was defined as the concentration of ZnO-NPs
capable of killing 50% of fish after 96 h.

4.4. Fish Husbandry

Common carp fingerlings were provided from a local farm and transferred to the
laboratory (Private facility, Karaj, Iran). Fish were allowed to adopt laboratory conditions
for two weeks. The experiment was performed in a completely randomized design with
five treatment groups in triplicate. Thus, 150 fish (29.59 ± 0.61 g) were distributed in
15 tanks and fed on commercial carp feed with the approximate composition of 36% protein,
6% lipid, 10% moisture, 11% ash, 5% fiber, and 1.5% phosphorus (Faradaneh.Co, Iran).
Fish were fed 2% of their body weight twice a day and uneaten food was siphoned from
the bottom of tanks just before the water exchange process. Physiochemical parameters
of rearing water including temperature, pH, dissolved oxygen, and hardness (CaCO3)
were measured as 25± 1 ◦C, 7.25 ± 0.34, 6.5 ± 0.6 mg.L−1, and 385 ± 51 respectively.
The photoperiod was set as 12 L:12 D using artificial light. Dead fish were immediately
removed and recorded if there was any during the 21-day experiment.

4.5. Exposure Experiment

Fish were exposed to waterborne concentrations of 0%, 25%, and 50% of the LC50 96 h
(60 ppm) of commercially available (C) or green synthesized (GS) ZnO-NPs referred to as
control, C1 (25%), C2 (50%), GS1 (25%), and GS2 (50%) respectively were provided in a total
water volume of 200 L for 21 days. Water was exchanged with 30% of freshwater with the
same concentrations of NPs to maintain water quality and refresh the NPs concentration.
The tanks were vigorously aerated to keep the particles most suspended possible.
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4.6. Sampling Process

At the end of the experiment, nine fish were randomly taken from each treatment
and sampled for their skin mucus. Fish were starved for 24 h prior to sampling then
anesthetized with clove powder (50 ppm) for 5 min. Mucus samples were collected
according to [79] with slight modifications. In brief, fish were placed in a small plastic bag
containing 50 mL of physiological serum and kept for 1 min. The fish body was gently
rubbed and the released mucus was collected. Samples from each three fish from the same
replicate were pooled in order to reduce the individual influence and have enough samples
for further investigation. Collected samples were centrifuged at 10,000× g for 5 min and
the supernatant was kept at −80 ◦C until further analysis.

4.7. Skin Mucus Immunological Parameters

At the end of the 21-day exposure experiment, the following mucosal parameters of
lysozyme, total immunoglobulin (total Ig), complement activity (ACH50), protease activity
(P), alkaline phosphatase (ALP) activity, and total protein (TP) were evaluated.

4.7.1. Lysozyme Activity

Lysozyme activity was determined according to [80] method. In brief, aliquots of
Micrococcus luteus were mixed with mucus samples and optical density (OD) was measured
using a spectrophotometer (Eppendorf, Germany) at 670 nm. One unit of lysozyme activity
was defined causing a reduction in absorbance at 0.001/min.

4.7.2. Total Immunoglobulin (total Ig)

Total Ig was determined following the method described by [81] that is subtracting the
total protein of serum before and after treating with 12% polyethylene glycol (PEG, Sigma).

4.7.3. Alternative Complement Activity (ACH50)

Alternative complement activity (ACH50) was measured based on [82]. In brief,
sheep red blood cells and gelatin veronal buffer (Sigma, USA) were applied. Each 20-µL
aliquots of a serially diluted serum with ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-
tetraacetic acid -Mg2+-gelatin veronal buffer (GVB) as a complement source was intro-
duced into 6 µL of sheep red blood cells (SRBC)suspension (4 × 108 cells ml−1), and later
they were incubated at 21 ◦C and pH 7.2 for 2 h. Two hundred µL of GVB containing
10 mM Ethylenediaminetetraacetic acid (EDTA) was added into the suspension to stop the
hemolytic activity. The suspensions were centrifuged at 1600× g for 10 min at 4 ◦C and OD
was read at 414 nm using an ELISA microplate reader. The reactions were supplemented
with 6 µL EDTA-GVB, 20 µL EDTA-GVB, and 220 µL distilled water to replace the SRBC
suspension, the diluted mucus sample, and the diluted mucus + EDTA-GVB, respectively,
as the SRBC blank, serum blank, and 100% hemolysis sample. The ACH50 activity level of
hemolysis was calculated for all treatments.

4.7.4. Protease Activity

Mucosal protease activity was measured by the azocasein hydrolysis method described
by [83] using commercially available Pars Azmun kits (Tehran, Iran).

4.7.5. Alkaline Phosphatase Activity

In order to measure skin mucus alkaline phosphatase activity (ALP), 1 unit of samples
was diluted in 9 unit physiological serum. ALP activity was measured using commercial
kits (ALP 5018, Pars Azmun. Co, Tehran, Iran) through the spectrophotometric method
following the manufacturer’s instructions.

4.7.6. Total Protein

Total protein levels were determined using commercial kits (Pars Azmun Co., Tehran,
Iran) according to the manufacturer’s instructions. The spectrophotometer device was
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calibrated using provided reagents and after 5 min incubation in ambient temperature total
protein content of mucus, samples were measured at 546 nm.

4.8. Statistical Analysis

Outliers were checked by Grubb’s test, while normality and homogeneity of variances,
Kolmogorov-Smirnov test Levine’s test respectively. Possible differences between control
and treatments were analyzed using one-way ANOVA. The post hoc Tukey HSD (honest
significant difference) was performed to determine further differences for each variable.
The significance level was set as p < 0.05. All statistical analyses were performed using
STATISTICA 8.0 (StatSoft, Inc., Tulsa, OK, USA, 2007). Correspondence analysis was
applied to obtain the position of treatments in the relation to examined parameters using
XLSTAT software Version 2015.5.01.22537 and Microsoft Excel 2010.

5. Conclusions

Our study suggests the replacement of commercial ZnO-NPs with natural plants
synthesized ZnO-NPs as less toxic, and more ecofriendly. To date, this is the first report
describing the effects of green synthesized ZnO-NPs on the mucosal immunological param-
eters of common carp compared with the commercial NPs. In view of current results, future
studies are necessary to assess more characteristics of the green synthesized ZnO-NPs in
various applications in aquaculture and on different fish species. In addition, methods
to ensure the safety, mitigate adverse impacts of ZnO-NPs, and assess their potentially
hazardous effects on human health are warranted.
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