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Simple Summary: The seed beetle Acanthoscelides obtectus used in this study is a worldwide pest
species that inhabits storage facilities and fields of beans. Knowing that sexual dimorphism is very
common among insects, we investigated the level of morphological differences between the sexes.
Such an approach allowed us to look into the modular organization of this organism. As expected,
the females were larger than the males. The observed two modular organization (thorax and
abdomen) was sex specific, indicating that reproductive function has the central role in forming
the patterns of modularity. It seems that natural selection is driving force for females, while males
are influenced more by sexual selection.

Abstract: Sexual dimorphism and specific patterns of development contribute in a great manner to
the direction and degree of the sexual differences in body size and shape in many insects. Using a
landmark-based geometric morpohometrics approach, we investigated sex-specific morphological
size and shape variation in the seed beetle, Acanthoscelides obtectus. We also tested the functional
hypothesis of the two morphological modules—thorax and abdomen in both sexes. Female-biased
sexual dimorphism in size was shown, while differences in shape were reflected in the wider thorax
and abdomen and shorter abdomen in females in comparison to males. The functional hypothesis
of a two-module body was confirmed only in females before correction for size, and in both sexes
after the allometry correction. Our results indicate that reproductive function has the central role
in forming the patterns of modularity. We hypothesize that high morphological integration of
the abdomen in females results from intense stabilizing selection, while the more relaxed integration
in males is driven by the higher intensity of sexual selection.

Keywords: Acanthoscelides obtectus; geometric morphometrics; sexual dimorphism; modularity;
size; shape

1. Introduction

Seed beetles (Bruchidae) are phytophagous, holometabolous insects with a worldwide
distribution and often are major pests of legume plant species [1]. Within bruchine species
there is a great variation in body shape and size due to genetic variability, but also as
a result of adaptive responses to different ecological factors, i.e., geographical distribu-
tion [2], environmental variables such as temperature [3], or insect shift to novel host plant
species [4]. In addition, one of the most remarkable sources of morphological variation
refers to the direction and degree of sexual differences in body size and shape resulting in
sexual dimorphism [5–7]. The most common pattern of sex differences among insects is
female-biased size dimorphism, in which larger females have adaptive advantages such as
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greater fecundity, fertility and, in some cases, better parental care [8]. However, different
results have been reported in seed beetles from the Chrysomelidae family (i.e., Stator limbatus
(Horn, 1873)) [9]. It has been hypothesized that bigger males have large amounts of sperm
nutrient which are transferred to females, raising their fecundity. Although the data on
the size dimorphism between females and males are abundant and the factors that con-
tribute to the sex size differences are well examined, studies related to coleopteran sexual
shape dimorphism are underexplored [5,7,10,11].

Morphological integration refers to functional, developmental and/or evolutionary
connection between organism’s morphological traits [12]. More closely, developmental
processes that underlie phenotypic variation usually simultaneously encompass several
morphological traits that share the same genetic basis, developmental paths or a function,
and cause a certain degree of internal integration between them [13]. Such integration
between a group of traits leads to the development of a morphological module, which
is relatively less linked to other integrated modules [12,14]. This is the concept of mod-
ularity which focuses on relative differences in the level of the integration of the parts
within and between modules of organism traits and therefore can be applied to address
important evolutionary questions [15–18]. The evolutionary significance of a modular
biological organization lays in a potentially enhanced evolvability, that is, the increased
ability of organisms to evolve and respond to different selective challenges [19]. In other
words, selection is able to act on each of these distinctive entities separately without
great interference [20].

The concept of modularity in seed beetles’ body plans could be illustrated by three
easily identified separate entities integrated through their function, with a degree of in-
dependence between each other: head, thorax and abdomen. The size and shape of
the head are adapted to feeding habits, while the thorax is specialized for locomotion [21].
The thorax encompasses muscles for flight and for the movement of legs and body seg-
ments, and thus has a major role in locomotion [22]. Finally, the abdomen of beetles is
linked to the reproduction, since it contains the reproductive organs and all the nutrients
and energy reserves that can be used for producing eggs and ejaculate [23]. Addition-
ally, taking into account that the size and shape of abdomen could be an important trait
for mate choice in beetles, abdominal morphological variation is expected to be under
sexual selection [24].

In this research we analyzed sexual dimorphism and morphological modularity in one
holometabolous, bruchine species—Acanthoscelides obtectus (Say, 1831). Classic morphologi-
cal analyses pointed out that sexual dimorphism in A. obtectus is related to the last segment
of the abdomen (fifth sternite) and the orientation of the pygidium [25,26]. However, these
studies have been limited to a few measures. A landmark-based geometric morphome-
tric is a far more powerful tool that allows quantifying and visualizing shape variation,
providing precise information on interindividual and intraindividual morphological vari-
ability [18,27]. In addition, this approach enables analyzing allometry, which is defined as
a relationship between changes in body shape and changes in body size [28]. Exploring
allometry shape changes is of great importance in studying sexual shape dimorphism
and the detection of modularity, because allometry can have major effects on the patterns
of variation and integration [11,18,29]. By applying a geometric morphometric approach
we explored and tested: (i) the specific morphological differences in size and shape be-
tween A. obtectus females and males; (ii) the influence of size on body shape changes; and
(iii) the functional hypothesis of the two modules: thorax and abdomen in females and
males separately.

2. Materials and Methods
2.1. Study Species—Seed Beetle (Acanthoscelides obtectus), Laboratory Population and Rearing Conditions

This research was conducted on seed beetles (A. obtectus) from a laboratory population
(hereafter referred to as base) maintained for more than 35 years (301 generations) under
constant conditions (30 ◦C ± 0.1 ◦C, relative humidity 30% ± 1%). Base population was
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established using beetles that hatched from infected bean seeds from three legume storages.
In order to limit the severe effects of inbreeding, at least 600 randomly sampled individuals
contributed to the consecutive generation. Individuals from different generations were not
mixed, i.e., there was no generation overlap.

According to the laboratory protocol, all insects were reared in the dark incubator set
at 30 ± 1 ◦C. Since A. obtectus is facultative aphagous, food and water was not offered to
adults. Food for larvae was pesticide free, organic white bean seeds that were frozen for
48 h on −20 ◦C before use in order to evade potential contamination.

2.2. Collection of Samples

Immediately upon emergence, a total of 314 adults from base population (157 females
and 157 males) were collected and stored on −20 ◦C in a single day. Adults were set up
on plasticine mold glued to a microscope plate and photographed with Nikon Digital
Sight Fi2 Camera attached to Nikon SMZ800 against a scale bar 10 mm on ventral side.
The distance and magnification were kept constant during photographing.

2.3. Landmark Data

To characterize the shape of body, we applied the methods of geometric morphomet-
rics, which use the relative positions of the set of landmarks to quantify morphological
variation [19,30,31]. We selected configurations of 22 landmarks of objects (12 landmarks for
the thorax and 10 landmarks for the abdomen) (Figure 1, Table 1). Potential differences in
the shape of head and specialized mouth parts (e.g., mandibles) go beyond the scope of this
study. Therefore, this part of the body has not been covered with landmarks and included
in analyses. The landmarks were digitized by one person in TpsDig2 software [32].

2.4. Geometric Morphometric Analyses
2.4.1. Analyses of Size and Shape Variation Patterns

Centroid size, the square root of the sum of squared distances of all the landmarks from
their centroid, was used as a measure of size of the seed beetle’s body [31].
The differences in the body sizes between females and males were tested by one-way
ANOVA. Statistical analyses of centroid size were carried out using GLM procedure of SAS
statistical software [33].
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Table 1. Definitions of landmarks on the Acanthoscelides obtectus.

Landmark Number Landmark Position

1. Point on the top of pronotum
2. Leftmost point on pronotum
3. Rightmost point on pronotum
4. Highest point on mesosternum on left side
5. Highest point on mesosternum on right side
6. Point on top of metasternum on left side
7. Point on top of metasternum on right side
8. Point on bottom of metacoxa on left side
9. Point on bottom of metacoxa on right side

10. Point on metacoxa and metasternum joining on left side
11. Point on metacoxa and metasternum joining on right side
12. Center of metathorax
13. Point on the top of 1st sternite
14. Leftmost point on 1st and 2nd sternite joining
15. Rightmost point on 1st and 2nd sternite joining
16. Leftmost point on 2nd and 3rd sternite joining
17. Rightmost point on 2nd and 3rd sternite joining
18. Leftmost point on 3rd and 4th sternite joining
19. Rightmost point on 3rd and 4th sternite joining
20. Leftmost point on 4th and 5th sternite joining
21. Rightmost point on 4th and 5th sternite joining
22. Point on half on 5th sternite bottom margin

To extract shape variables from the landmark configuration of beetle’s body, we
used Procrustes superimposition to eliminate effects of size, position and orientation [31].
We applied principal component analysis (PCA) on the covariance matrices of shape
variables to describe overall shape variation pattern of the seed beetle’s body in females
and males [27].

In order to explore and visualize allometric shape changes, we performed multivariate
regression analyses of obtained shape variables for females and males [34]. Statistical sig-
nificance of allometric shape changes were obtained by permutation test (10,000 iterations).
Residuals obtained from these regression analyses represent nonallometric component of
shape variation.

To quantify differences in shape between females and males we calculated Procrustes
distances (PD)—the square root of the squared distances between pairs of corresponding
landmarks. This procedure was repeated on nonallometric component of shape variation.
The statistical significance of PD was obtained using the permutation test (10,000 iterations).

To estimate the measurement error, we used Procrustes ANOVA with the main effects
of: (i) individuals—indicating the interindividual phenotypic differences in shape of
females and males; and (ii) residual term representing the measurement error [35]. For this
analysis, the whole sample was digitized twice by one person.

2.4.2. Analyses of Shape Covariation Patterns

To test the two module hypothesis of modularity of beetles’ females and males, we
used the covariance matrices of pairways Procrustes distances. As a measure of strength
of association between the hypothesized partitions, RV coefficients (ratio that describes
the degree of covariation between sets of variables relative to the variation and covariation
within sets of variables) were calculated and compared with RV coefficients obtained for
all possible alternative partitions [29,36]. Values of the RV coefficient can range from 0 to 1,
providing that lower values indicate weaker correlation [36]. If a value of the RV coefficient
between hypothesized modules is smaller than for most of all alternative partitions, the
modularity hypothesis will be confirmed [29]. RV coefficients for females and males were
calculated twice: for allometric and nonallometric component of the shape variation. All
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statistical analyses and visualizations of shape changes were conducted using MorphoJ
software package [37].

3. Results
3.1. Sexual Dimorphism in Size and Shape

The principal component analysis (PCA) for females and males showed that the first
two principal components (PC1 and PC2) described about 55% of the total shape variation
(Table 2). The main patterns of the shape variation were changes in the relative length vs.
width of the thorax and abdomen (Figure 2). PC1 and PC2 in females were associated with
shortening of the abdomen and slight elongation of the thorax. In males, PC1 reflected
elongation of abdomen and narrowing and shortening of the thorax, while PC2 was related
to a shortening of abdomen and elongation and widening of the thorax. A scatterplot of PC
scores revealed clear tendency of differences in body shape between A. obtectus females
and males (Figure 2).
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females and males associated with the PCs are represented by wireframe graphs.
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Table 2. Eigenvalues and contribution of principal components (PCs) in the shape variation of
Acanthoscelides obtectus females and males.

Eigenvalues % Variance Cumulative %

Females
PC l 0.00057 27.185 27.185
PC 2 0.00037 17.603 44.787

Total variance 0.00208

Males
PC l 0.00089 31.681 31.681
PC 2 0.00073 25.533 57.214

Total variance 0.00283

Multivariate regression of shape variables on size showed highly statistical significance
and explained different portion of the total variation for females (4.18%, p < 0.0001) and
males (13.88%, p < 0.0001).

The one-way ANOVA indicated significant sex-specific differences of seed beetles
(F = 109.59; d.f. = 1; p < 0.0001). Mean centroid sizes indicated that females (mean
CSfemales = 7.711) are larger than males (CSmales = 7.641).

For the allometric and nonallometric component of shape variation, the permutation
test revealed high statistical significance (p < 0.0001) for Procrustes distances between
females and males (PDallometric = 0.028, PDnon-allometric = 0.014). Visualization of the sexual
shape dimorphism is presented by a diagram in Figure 3. The differences in shape between
the sexes are characterized by a wider thorax in general, and an elongated metathorax
in females in comparison to males. Females’ first abdominal sternite is shortened, while
females’ 2nd abdominal sternite is wider than males’. The last abdominal sternite is shorter
in females.

Insects 2021, 12, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 3. Discriminant functional analyses of seed beetles. The outline graphs show differences in 
shape between Acanthoscelides obtectus females (solid line) and males (dashed line). 

3.2. Modularity 
Procrustes ANOVA revealed that mean squares of interindividual variation have sig-

nificant higher values than measurement error (Table 3), so Procrustes distances can be 
used as valid variables for testing hypothesis of modularity. 

Table 3. Procrustes ANOVA of shape in Acanthoscelides obtectus females and males with effects of 
individual (interindividual variation) and measurement error. SS—sum of squares, MS—mean of 
the sum of squares, df—degree of freedom, F—value of F test, p—level of statistical significance. 

 SS MS df F p 
Females      

Individual 0.46976 0.0001506 3120 3.31 <0.0001 
Error 0.03758 0.0000060 6280   
Males      

Individual 0.70243 0.0002251 3120 4.59 <0.0001 
Error 0.02821 0.0000045 6280   

The functional hypothesis of the two modules (thorax and abdomen) (Figure 4) was 
confirmed for females, but not for males before the correction for size (Figure 5A,B). Co-
variation between thorax and abdomen in females was among the lowest when compared 
with covariation for alternative partitions (p = 0.016). On the other hand, in males, the 
hypothesis of the two modules was not confirmed (p = 0.081). Interestingly, after removing 
the influence of allometry, the correlation matrices of the residuals were statistically sig-
nificant and correlated with theoretically derived matrices for both females (p = 0.023) and 
males (p = 0.025) (Figure 5C,D). Hence, after correction for size, the two module functional 
hypothesis was confirmed for both sexes. 

Figure 3. Discriminant functional analyses of seed beetles. The outline graphs show differences in
shape between Acanthoscelides obtectus females (solid line) and males (dashed line).



Insects 2021, 12, 350 7 of 12

3.2. Modularity

Procrustes ANOVA revealed that mean squares of interindividual variation have
significant higher values than measurement error (Table 3), so Procrustes distances can be
used as valid variables for testing hypothesis of modularity.

Table 3. Procrustes ANOVA of shape in Acanthoscelides obtectus females and males with effects of
individual (interindividual variation) and measurement error. SS—sum of squares, MS—mean of
the sum of squares, df—degree of freedom, F—value of F test, p—level of statistical significance.

SS MS df F p

Females
Individual 0.46976 0.0001506 3120 3.31 <0.0001

Error 0.03758 0.0000060 6280

Males
Individual 0.70243 0.0002251 3120 4.59 <0.0001

Error 0.02821 0.0000045 6280

The functional hypothesis of the two modules (thorax and abdomen) (Figure 4) was
confirmed for females, but not for males before the correction for size (Figure 5A,B). Co-
variation between thorax and abdomen in females was among the lowest when compared
with covariation for alternative partitions (p = 0.016). On the other hand, in males, the
hypothesis of the two modules was not confirmed (p = 0.081). Interestingly, after removing
the influence of allometry, the correlation matrices of the residuals were statistically signifi-
cant and correlated with theoretically derived matrices for both females (p = 0.023) and
males (p = 0.025) (Figure 5C,D). Hence, after correction for size, the two module functional
hypothesis was confirmed for both sexes.
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4. Discussion
4.1. Morphological Variation and Sexual Dimorphism in Size and Shape

In the present work, we quantified and compared female and male morphological
variation in A. obtectus. Our results revealed the female-biased size dimorphism that is a
common pattern in insects. It is expected for sexual dimorphism in insects to be affected
by both life-history evolution and sexual selection. Larger female body size is usually
related to the fitness, that is, to the higher number of viable offspring and an increase
in mating success [38–40]. In many insect species, as well as in A. obtectus [41,42], it has
been confirmed that large females are able to convert higher portions of their accumulated
resources into fecundity [43–45]. Evolutionary changes of body size in insects could
also be achieved via selection on development time, being that the time needed for the
development of an adult is positively correlated with its body size [42,46]. Namely, in
protandrous insects, the slower development of female sex leads to larger adults and
their higher fecundity, whereas faster male development, although it results in smaller
individuals, increases the chances for males to copulate with newly hatched females and
therefore could increase male reproductive success [42].

The evolution of the female-bias size dimorphism in A. obtectus could also be related
to the behavior during copulation. It has been shown that in this species courtship ac-
tivities are simple; they do not include specific rituals or acoustic signals, and the most
important activity for the males is the level of their aggressiveness and persistence in
chasing females [47]. In general, copulation in insects often has harmful effects in females,
resulting in reduced fitness and even death [48]. If smaller males could potentially do less
harm to females during copulation, then sexual selection could influence the general size
and shape of males as well as to select for females that are better in recognizing the least
harmful males [49].

Sexual dimorphism in the shape of abdomen has been confirmed in different groups
of insects, such as Scathophagidae [49], and, recently, the Carabidae family [5,7]. The most
pronounced sex difference in shape that we observed in A. obtectus was divergence in
the abdomen, which was wider and shorter in females than in males. Such specific shape
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can be related to the ability of females to accumulate and transport more eggs [39,50]. Hence,
the shape of the female’s abdomen and fecundity can be positively correlated through
natural selection [24,51]. Again, the specific shape of the abdomen in this species could
be the result of specific patterns of sexual selection, especially related to its reproductive
behavior. Unlike many insect species, contact between females and males during copulation
is loosed in A. obtectus enabling females to avoid injuries relatively easily [52]. The particular
size and shape of female and male abdomens allow the copulation to be efficient enough
for potentially a short period of time. Accordingly, the more elongated body of A. obtectus
males can assist in forced copulation with females [53] and more accurate positioning
above females just before copulation [52].

4.2. Modularity

Research on morphological shape variation in holometabolous adults, integration
and modularity are mostly limited to Carabidae and Hymenoptera [5,54,55]. The origin of
morphological integration and modularity has been analyzed in different insect species
on various body parts: mouthparts in Pterostichus thunbergi (Morawitz, 1862) [56], hind
wings in Diabrotica virgifera virgifera (LeConte, 1868) [57], wings in bumblebees [58], dragon-
flies [59] and in adult ants [54]. In our study, the hypothesis of the two functional modules
(thorax and abdomen) was confirmed for A. obtectus females before correction for size, and
for both sexes after size correction.

One common explanation for the evolution of tight integration of traits within a
module refers to a strong stabilizing selection acting on the functionality of the module [60].
Although the existence of distinctive entities enables their evolution independently from
other body parts, this also constrains fast diversification of a module in order to maintain
conserved modes of function. Genetically and/or environmentally induced perturbations
during development, which could alter the basic functional structure, have to be limited in
their effects on a module. It seems that the female abdomen in A. obtectus is under strong
selective pressure due to its importance in reproductive function and it is independent from
body size [61]. On the other hand, the shape of male abdomen is significantly associated
with body size, indicating lower integration of male modules. Thus, we hypothesize that
male abdominal parts could have greater potential for the evolution of diverse shapes and
structures because they are more driven by sexual selection. Being that the reproductive
successes of males is highly dependent on their ability to mount females, it could be
suggested that different abdominal sizes need different abdominal shapes in order to
achieve copulation.

Our results on A. obtectus lead to conclusion that evolution of modules of body parts
with reproductive function are under the influence of both natural and sexual selection,
but the courses and intensity of these mechanisms are different in females and males.
In support of that is the recent morphological study on green-belly stink bug (Dichelops
melacanthus (Dallas, 1851) (Heteroptra: Pentatomidae)) genitalia which strongly indicates that
the reproductive organs are subjected to sex specific selection, although male and female
genitalia are functionally associated [62]. The authors hypothesized that integration of
reproductive organs in females constrains diversification via stabilizing selection, while in
males directional selection is more responsible for their maintenance or for the improve-
ment of copulatory performance. It seems that sex specific modular patterns may be of
greater importance in the evolution of different insect species than previously thought.

5. Conclusions

• Female-biased size dimorphism in seed beetle (Acanthoscelides obtectus) laboratory
population is affected by both life-history and sexual selection.

• Females have shorter and wider abdomens compared to more elongated abdomens
in males.

• By testing the modularity hypothesis it was confirmed that female and male body
is compartmentalized into two functional modules: thorax and abdomen. The in-
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tegration of the abdomen in males is dependent on their size, indicating the more
prominent role of sexual selection. On the other hand, strong modularity in females,
regardless of size, is the result of strong natural selection on reproductive function.
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