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Stojanović I, Saksida T, Miljković Đ and
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Gut-associated lymphoid tissue (GALT) is crucial for the maintenance of the intestinal
homeostasis, but it is also the potential site of the activation of autoreactive cells and
initiation/propagation of autoimmune diseases in the gut and in the distant organs. Type 3
innate lymphoid cells (ILC3) residing in the GALT integrate signals from food ingredients
and gut microbiota metabolites in order to control local immunoreactivity. Notably, ILC3
secrete IL-17 and GM-CSF that activate immune cells in combating potentially pathogenic
microorganisms. ILC3 also produce IL-22 that potentiates the strength and integrity of
epithelial tight junctions, production of mucus and antimicrobial peptides thus enabling the
proper function of the intestinal barrier. The newly discovered function of small intestine
ILC3 is the secretion of IL-2 and the promotion of regulatory T cell (Treg) generation and
function. Since the intestinal barrier dysfunction, together with the reduction in small
intestine ILC3 and Treg numbers are associated with the pathogenesis of type 1 diabetes
(T1D), the focus of this article is intestinal ILC3 modulation for the therapy of T1D. Of
particular interest is free fatty acids receptor 2 (FFAR2), predominantly expressed on
intestinal ILC3, that can be stimulated by available selective synthetic agonists. Thus, we
propose that FFAR2-based interventions by boosting ILC3 beneficial functions may
attenuate autoimmune response against pancreatic b cells during T1D. Also, it is our
opinion that treatments based on ILC3 stimulation by functional foods can be used as
prophylaxis in individuals that are genetically predisposed to develop T1D.

Keywords: type 3 innate lymphoid cells (ILC3), type 1 diabetes (T1D), gut-associated lymphoid tissue (GALT),
regulatory T cells (Treg), interleukin-22 (IL-22), interleukin-2 (IL-2)
INTRODUCTION

Type 1 diabetes (T1D) is an autoimmune disease that is characterized by low insulin concentration
and hyperglycemia. The autoimmune process in pancreatic islets can last for years before the
clinical signs of the disease appear. This process is initiated by autoreactive effector T cells
including CD4+ and CD8+ cells and it is characterized by high levels of proinflammatory cytokines
IL-1b, TNF and IFN-g (1). The described events are accompanied by decreased numbers and/or
defective function of regulatory T cells (Treg) that have an immunosuppressive role and maintain
immune tolerance by producing IL-10 and TGF-b and by other mechanisms (2). The overall
outcome is the destruction of pancreatic b cells that leads to reduced or completely absent insulin
production (1, 3).
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Many environmental factors including food ingredients (b-
casein or bovine insulin from cow’s milk, gluten), exposure to
infectious agents (enteroviruses), and intestinal microbiota
dysbiosis (due to antibiotics, alcohol abuse, inadequate diet or
chronic diseases) are believed to be the reason for the dramatic
increase in T1D incidence in people under the age of 18, but also
in older adults (4–6).

It is becoming increasingly clear that T1D pathogenesis is
linked to the complex interaction between the gut-associated
lymphoid tissue (GALT) and the gut microbiota (7). Intestinal
barrier serves as an integrator of signals coming from the gut
lumen and it is comprised of mucus layer leaning on tightly
connected epithelial cells (physical border) and mediators
secreted by epithelial cells and immune cells (functional
border). GALT cells maintain immune tolerance to food
constituents and commensal microbes. The reduction or
improper function of GALT-residing tolerogenic dendritic cells
(DC) and Treg enables the impairment of oral tolerance (8–10),
that may lead to T1D initiation mediated by autoreactive T cells
present in the intestinal lamina propria (11, 12). In such case,
antigens sampled from the gut might activate b cell-reactive
immune cells directly viamolecular mimicry or indirectly by the
bystander activation during the immune response towards gut
microorganisms (13). The close link between the gut and the
pancreas is exemplified in the finding that pancreatic lymph
nodes can drain antigens from the duodenum that leads to Treg
induction in GALT and development of oral tolerance (14).
Therefore, maintaining a balance between effector T cells and
Treg in the gut and pancreatic lymph nodes is essential for
sustaining tolerance to islet antigens and prevention of
autoreactive T lymphocytes activation and migration to the
pancreas where they can initiate b-cell destruction.
GUT-PANCREAS AXIS

The impaired function of the intestinal barrier and dysbiosis
precede the development of T1D both in humans and mice. The
loss of gut barrier integrity and low-grade intestinal inflammation
were discovered in first-degree relatives of T1D patients that are at
high-risk of disease development (15–17). The same was confirmed
in new-onset and long-term T1D patients (17, 18). The altered
microbiota content in T1D patients were found in many studies
worldwide as reviewed by Marietta et al. (19).

Increased intestinal permeability and the lack of oral
tolerance to ovalbumin was found in 4-6 weeks old, insulitis-
free nonobese diabetic (NOD) mice that spontaneously develop
T1D (10). Also, these mice had diminished mucus production,
lower levels of secretory IgA and increased Th17 and type 3
innate lymphoid cells (ILC3) numbers in the small intestine
lamina propria. This coincided with the significant reduction of
tolerogenic DC and Treg in the gut-draining lymph nodes during
prediabetic stage (10).

There are very few studies that address the activation of
autoreactive cells in GALT and their causal link to pancreas
Frontiers in Immunology | www.frontiersin.org 2
autoimmunity. Our recent study implies that activation of
insulin-specific CD4+ T cells can occur in the GALT as these
cells are present in Peyer’s patches of prediabetic NOD and
healthy C57BL/6 mice (11). Also, a study that used a b cell–
specific TCR-transgenic mouse model has shown that islet-
specific T cells activated in the intestinal lamina propria
migrated to the pancreatic lymph nodes and the islets causing
autoimmune diabetes (20). Further, it was demonstrated that the
infection with Fusobacteria activates b cell-reactive CD8+ T cells
by molecular mimicry within GALT of transgenic NOD mice
(12). In addition to the possibility of autoreactive cell activation
in the GALT, it was shown that gut microbiota can migrate to the
pancreatic lymph nodes where it acts through NOD2 receptors
to accelerate the onset of streptozotocin-induced T1D in mice
(21). Human studies about the autoreactive cells activation
within the GALT indirectly suggest that ingested food or
bacterial antigens stimulate the production of b cell-specific
autoantibodies via molecular mimicry. Examples can be found
in reports of Auricchio et al. (22) and Niegowska et al. (23) where
data about crossreactivity between b cell antigens and antigens
derived from gluten or Mycobacterium avium subspecies
paratuberculosis, a bacterium found in cow’s milk, were
suggested. Also, higher density of intraepithelial CD3+ and gd
cells and activated CD25+ in lamina propria and lower numbers
of FoxP3+ cells in the jejunal mucosa of T1D patients were found
(22, 24, 25). In general, individuals with T1D exhibit increased
markers of inflammation within GALT suggesting its association
with disease development (26).

Prevention or treatment of human T1D through diet-based
interventions proved to be very difficult (27). However, a forced
change in microbiota content through fecal microbiota
transplantation from healthy donors to early-onset T1D
patients successfully halted a decline in endogenous insulin
production and down-regulated colonic CD4+ cell count, thus
further confirming the importance of microbiota content for
T1D control (28). In contrast to scarce data in humans,
numerous studies provide evidence about prevention or
treatment of animal T1D through diet or modulation of
microbiota (29, 30). To mention a few: NOD mice fed with a
fiber-rich diet had decreased T1D incidence and lower
proportion of autoantigen-specific CD8+ lymphocytes in the
spleen (31), supplementation with bacterial metabolite butyrate
decreased severity of insulitis in NODmice and their offspring by
promoting Treg proliferation in GALT and their migration to the
pancreas (32, 33), administration of probiotics exerted beneficial
effects in T1D in mice (34–36).

The majority of available data point to the importance of
intestinal Treg and their suppressive properties in the
prevention and/or treatment of T1D (8, 9). ILC3 have
recently been identified as cells critical for maintenance and
regulation of mucosal homeostasis in mice and humans (37),
but their role in the initiation or development of T1D is largely
unknown. This Perspective review will specifically discuss ILC3
biology and their hypothetical role in pancreatic autoimmunity
along with possibilities of ILC3-targeted therapies.
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INTESTINAL ILC3

Immature ILC develop in bone marrow from common lymphoid
progenitor and they generally migrate to mucosal tissues, but can
also be found in other lymphoid tissues such as spleen and lymph
nodes and non-lymphoid organs skin, liver, brain and pancreas
(38–41). As reviewed by Guia et al. (42), ILC3 differentiation
process is similar in humans and mice. ILC3 can be identified as
the innate counterpart of Th17 cells due to their mandatory
expression of retinoid-related orphan receptor gt (RORgt). ILC3
exist in at least two subsets that differ developmentally,
transcriptionally and functionally: lymphoid tissue inducer
cells (LTi)-like ILC3 (characterized by surface expression of
CCR6) and natural cytotoxicity receptor (NCR)+ ILC3 that
express NKp46 in mice (43) and NKp44 in humans (44).
However, human ILC3 can also express NKp46 and their
distribution in skin and intestine was found very similar in
humans and mice (45). ILC3 are generally sedentary (46, 47),
although in some human pathological conditions differentiated
ILC3 were found in the bloodstream (48). Therefore, their
regular divis ions driven by different internal and
environmental signals is essential for their maintenance in the
tissues. ILC3 proliferation is stimulated by cytokines, such as IL-
18 in human tonsils (49), or combination of tumor necrosis
factor-like cytokine 1A, IL-1b, IL-23 and IL-2 in both human
and mouse intestinal tissue (50, 51). The major environmental
stimuli for murine intestinal ILC3 proliferation are short chain
free fatty acids (SCFA) and vitamins A and D (52, 53).

Mature ILC3 develop in the lamina propria of the intestine
due to specific differentiation factors (retinoic acid, polyphenols
and microbiota) (37). Mouse studies indicate that intestinal ILC3
express integrin a4b7. Their specific signature is the expression
of GPR183, a receptor for oxysterols that recruits ILC3 to the
small intestine and regulates their migration to the cryptopatches
and positioning in the mesenteric lymph nodes. The expression
of GPR109A (a receptor for butyrate) dictates ILC3 distribution
in Peyer’s patches, while distinct pattern of chemokine receptors
drives their migration to the specific sites in the GALT such as
mesenteric lymph nodes (CCR7), microvilli (CXCR6) or lamina
propria (CCR9) (reviewed in 54). In addition, intestinal ILC3
exhibit high free fatty acid receptor (FFAR) expression in
contrast to spleen ILC3, for example (55).

Intestinal human and mouse ILC3 are critical for the
generation of the organized lymphoid tissue in the intestinal
wall during development (LTi-like cells) and they regulate
microbiota content and the integrity of the intestinal barrier
(46, 56). Mouse ILC3 sense environmental cues either coming
from the food or microbiota metabolism products by expressing
numerous receptors: retinoic acid receptor (RAR) (57), vitamin
D receptor (VDR) (58), aryl hydrocarbon receptor (AhR) (56,
59), or FFAR (55). Also, gut ILC3 respond to cytokines
predominantly produced by myeloid cells (IL-1b, IL-23, IL-18
and TNF). In response to these triggers, ILC3 produce several
cytokines, including IL-22, IL-17A/F, GM-CSF and IL-2.

IL-22 maintains barrier integrity through stimulation of
epithelial cells turnover (60, 61), induction of tight junction
proteins production, anti-bacterial peptides and mucins (62, 63).
Frontiers in Immunology | www.frontiersin.org 3
Vitamins A or D are potent inducers of IL-22 production by
murine ILC3 (57, 58), while human ILC3 produce IL-22 after
microbial stimulation of phagocytes (64). AhR activation is
mandatory for IL-22 expression in mouse ILC3 due to its
protein-protein interaction with RORgt (59). For example, L-
kynurenine (produced by gut epithelial cells) after ligation to
AhR stimulates the proliferation of IL-22+ ILC3 (65). Another
stimulus for IL-22 production is the activation of G-protein-
coupled receptors FFAR on murine ILC3 by the action of SCFA
(66, 67). The signaling cues that come from FFAR2 can indirectly
affect IL-22 through augmenting expression of the IL-1 receptor
and ILC3 responsiveness to IL-1b (66). What is more, IL-23
produced by myeloid cells as a part of an anti-microbial response
has the same effect on ILC3 (68).

ILC3-mediated production of IL-17A/F is important for the
induction of antimicrobial peptides and tight junction proteins
in epithelial cells (69). However, data obtained from both human
and murine studies imply that the major role of ILC3-derived IL-
17 is to attract neutrophils to the intestinal tissue in response to
bacterial (Mycobacterium tuberculosis and Clostridium difficile)
and fungal infections (70–72).

Secretion of GM-CSF and IL-2 from ILC3 is triggered by IL-
1b from intestinal macrophages. Mouse ILC3-derived GM-CSF
was shown to act upon intestinal macrophages and dendritic
cells to promote their production of IL-10 and retinoic acid, that
in turn stimulate the induction and enable maintenance of Treg
(73). However, ILC3 in the intestine of inflammatory bowel
disease patients produce large amounts of GM-CSF that causes a
loss in ILC3 and exacerbation of the disease (74). Recently, a very
interesting finding was published identifying a population of
mouse and human ILC3 that produce IL-2 and are involved in
the preservation of oral tolerance through stimulation of Treg
differentiation (51). Along with cytokine-mediated activity, ILC3
can modulate adaptive immune response through antigen
presentation via class II MHC. Namely, ILC3 have the ability
to present microbial antigens and to limit CD4+ cell response by
inducing their cell death (75). The reduction in the specific
MHCII+ ILC3 population in the intestine is associated with
Crohn’s disease in pediatric patients (76).
ILC3 IN T1D

The precise contribution of intestinal ILC3 to the onset and
progression of T1D has not been investigated, so far. However,
there are some data that emphasize ILC3 as important players in
shaping GALT environment for T1D initiation or progression.
First, decreased frequency of ILC3 was found in the duodenum
of T1D patients (77). The human data are in contrast to total
ILC3 increase found in small intestine lamina propria of
prediabetic NOD mice (10) and in 20 weeks old NOD mice
(our unpublished data). So, the second key statement for
hypothetical ILC3 relation to T1D pathology comes from the
investigation of ILC3 function. Namely, our preliminary data
show lower numbers of potentially protective IL-2-producing
ILC3 in small intestine lamina propria in 20 weeks old NOD
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mice with insulitis and in diabetic C57BL/6 mice with
streptozotocin-induced T1D. This was accompanied by down-
regulation of FoxP3+ Treg number and IL-22 and GM-CSF
mRNA expression in the intestine suggesting a causal
relationship between IL-2+ ILC3 and Treg (unpublished
results). Higher number of ILC3 and lower of IL-2-producing
ILC3 could point to the pro-inflammatory environment in
GALT that is related to T1D pathogenesis. The observed ILC3
reduction in human intestinal biopsies from patients with T1D
(77) could be associated with ILC3 ability to convert to IFN-g-
producing ILC1 in the inflammatory environment, a process
found both in humans and mice (78, 79). That was surely the
case in these T1D patients, as the numbers of ILC1 were
significantly increased in the intestinal tissue (77).

The close relationship between gut microbiota and proper
function of ILC3 within the pancreas in the prevention of T1D
development in mice was identified by Miani et al. (41). T1D in
NOD mice was found to be associated with reduced numbers of
ILC3 in the pancreas and their down-regulated IL-22 production
that led to compromised expression of antimicrobial proteins in
the pancreas. In the same study, low IL-22-producing ILC3 were
found in pancreatic and mesenteric lymph nodes of diabetic
NOD mice. Instead of IL-22, they produced rather significant
levels of IFN-g and TNF. All mentioned findings indicate that the
transition from prediabetes to diabetes in NOD mice is
associated with impaired ILC3 function that could lead to
reduced numbers of Treg and imply the protective role of IL-
2+ and IL-22+ ILC3 against T1D. In general, there are many
pathological conditions where ILC3 play a role such as
inflammatory bowel disease, experimental autoimmune
Frontiers in Immunology | www.frontiersin.org 4
encephalomyelitis, Graves’ and Hashimoto’s thyroiditis (52,
80–82). Still, further investigation will discriminate whether
ILC3 reduction precedes or is the result of ongoing
inflammation during T1D pathogenesis.
PERSPECTIVES FOR ILC3
MODULATION IN T1D

There are at least three key ILC3 activities that can counteract
initiation and/or progression of T1D: 1. Maintenance of gut
barrier integrity; 2. Regulation of gut microbiota homeostasis; 3.
Stimulation of Treg proliferation and suppressive function.
Therefore, the preserved abundance and function of ILC3
within the intestine could largely aid T1D prevention. The
hypothetic model of ILC3 role in protection from autoimmune
process during T1D is shown in Figure 1.

As previously stated, there is a number of external stimuli that
can be used for ILC3 modulation (Figure 2). In addition to
stimulation of IL-22 production, vitamin A attracts specifically
ILC3 to the intestinal tissue in both mouse and humans (83, 84).
Although there are no data about the influence of retinoids on
ILC3 during T1D pathogenesis, their effect on Treg stimulation
and suppression of pro-inflammatory adaptive and innate
immune cells both systemically and within the pancreas was
firmly established (85, 86). Indeed, the oral or intraperitoneal
application of retinoids showed a significant preventive effect in
NOD and streptozotocin-treated C57BL/6 mice (85, 86).
Similarly, vitamin D3 (calcitriol) supplementation led to
reduced T1D incidence in NOD mice through generation of
FIGURE 1 | The hypothetical model of ILC3-mediated effects on autoimmune process during T1D. Under the influence of gut microbiota, their metabolites and food
ingredients, intestinal ILC3 produce IL-22 that stabilizes the gut barrier and GM-CSF that influences dendritic cells (DC) and macrophages (Mf). Upon activation by
microbial cues, Mf produce IL-1b that stimulates ILC3 to increase their production of IL-2 and thus promote intestinal Treg stability and proliferation. Intestinal Treg
are able to migrate to the pancreatic lymph nodes and modulate the autoimmune response by providing a suppressive environment in which cytotoxic CD8+ cells,
Th1 and Th17 cells are inhibited. The final outcome is the blockade of T cell-mediated autoimmune destruction of pancreatic b cells.
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suppressive environment, including the promotion of Treg (87,
88). Again, similarly to vitamin A, it remains unknown whether
the beneficial effect of vitamin D can be attributed to the
modulation of ILC3.

Another way of intestinal ILC3 modulation is the application of
AhR ligands. The examples of endogenous AhR ligands are
eicosanoids, indirubin, bilirubin, or 6-formylindolo[3,2-b]
carbazole (89), while exogenous ligands are mainly derived from
cruciferous plants (indole-3-carbinol derivatives) (Figure 2). In
addition to IL-22 stimulation, AhR ligands promote ILC3 survival
Frontiers in Immunology | www.frontiersin.org 5
and proliferation through Notch-dependent pathways (56, 59). The
presence of AhR is mandatory for the development of ILC3 in the
intestine as AhR-deficient mice show reduced numbers intestinal
ILC3, resulting in increased susceptibility to Citrobacter rodentium
infection (56, 59). Several studies show that AhR activation can
prevent T1D and they point to either Treg-dependent mechanisms
(90) or Treg-independent mechanisms (91). Again, the role of ILC3
in AhR-mediated protection from T1D remains unknown.

Finally, SCFA can be potent stimulators of ILC3 function.
Acetate, propionate and butyrate, gut microbiota metabolites
FIGURE 2 | Receptor-ligand interactions relevant for therapeutic targeting of ILC3. ILC3 express receptors for retinoic acid (RAR) and vitamin D (VDR) that upon
activation with respective vitamins instigate ILC3 proliferation and/or secretion of IL-22. In addition, ILC3 express AhR transcription factor that can ligate to versatile
indol-containing compounds. The activation of AhR is mandatory for the development of mature ILC3 in the intestinal lamina propria, their proliferation and IL-22
secretion. Finally, ILC3 express FFAR2 at very high levels. SCFA (propionate and acetate) as well as several synthetic compounds bind to FFAR2 with high affinity,
while Compound 1 and CTMB are selective FFAR2 agonists that promote beneficial ILC3 functions. ATRA, all trans retinoic acid; FICZ, 6-formylindolo[3,2-b]
carbazole; CFMB, S)-2-(4-chlorophenyl)-3,3-dimethyl- N-(5-phenylthiazol-2-yl)butamide; 4-CTMB, (S)-2-(4-chlorophenyl)-3- methyl-N-(thiazol-2-yl)butanamide;
SCA14, propiolic acid; SCA15, 2-butynoic acid.
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Stojanović et al. ILC3 Modulation in Diabetes
that are released during the digestion of fibers, bind to FFAR2
and FFAR3 expressed on ILC3 surface. FFAR2 is predominantly
expressed on intestinal ILC3, compared to other ILC in the gut
(55). FFAR2, unlike FFAR3 exerts higher affinity for acetate and
propionate, than for butyrate (92).

To date, there are numerous studies that explored the role of
SCFA in the prevention of T1D. Oral intake of fibers or purified
SCFA decreased disease severity in animal models of T1D. This
specialized diet even prevented T1D initiation in the offspring of
treated female NOD mice (31, 32, 93–95). In general, the
mechanism of SCFA action is mainly attributed to Treg
induction. Although considerably effective in animal models,
administration of oral butyrate for one month did not affect
autoimmune response in individuals with longstanding T1D
(27). This effect might be due to the butyrate higher affinity of
binding to FFAR3 (92), and its differential effect on different
subsets of ILC3 (96). Specifically, butyrate stimulates NKp46-

ILC3 that, in addition to IL-22, produce pro-inflammatory
cytokines IFN-g and IL-17 (96).

The fact that FFAR2 is predominantly and highly expressed
in the small intestine and colon ILC3 (55) suggests that FFAR2 is
the most fitted target for the specific modulation of ILC3. As the
highest FFAR2 expression was detected in CCR6+ ILC3 subset
that predominantly produces IL-22 in response to SCFA (52), the
application of FFAR2 ligands implicate even more stringent
control of ILC3-mediated immune response within the GALT.
The importance of stimulation of ILC3 for autoimmunity
prevention or treatment resides in their FFAR2-mediated IL-22
production and proliferation, but also in the fact that this
FFAR2-mediated stimulation will not initiate IFN-g production
(97). In addition to natural ligands, several synthetic FFAR2
agonists have been identified so far: class of phenylacetamides
that include (S)-2-(4-chlorophenyl)-3,3-dimethyl- N-(5-
phenylthiazol-2-yl)butamide (CFMB) and (S)-2-(4-
chlorophenyl)-3- methyl-N-(thiazol-2-yl)butanamide (4-CTMB),
TUG-1375, propiolic acid (SCA14), 2-butynoic acid (SCA15) and
Compound 1 (patent no. WO 2011/076732 A1) (98) (Figure 2).

Application of agonists that preferentially bind FFAR2 (such
as Compound 1 and 4-CTMB) would increase the probability of
beneficial ILC3 activation (52). In contrast to SCFA that activate
FFAR2 in such a manner that it couples to either Gi/o or Gq

proteins, Compound 1-activated FFAR2 on ILC3 binds to both
proteins (52). The consequence of such FFAR2 activity is
increased AKT and STAT3 phosphorylation that lead to up-
regulated IL-22 expression in mouse colonic ILC3 (52). FFAR2
Frontiers in Immunology | www.frontiersin.org 6
agonists may expand their anti-inflammatory effects by binding
to FFAR2 expressed on colonic epithelial cells. Specifically, SCFA
administration alleviates colonic inflammation in mice by
augmenting inflammasome activation in colon epithelial cells
(99). However, FFAR2 is relatively highly expressed on mouse
pancreatic b cells where it controls (inhibits) glucose-stimulated
insulin secretion (100) implicating the use of selective
ILC3 stimulators.

Engagement of two different types of receptors on ILC3 might
provide even better output, as for example, signals through AhR
and FFAR2 integrate at the level of IL-22 expression (69).
Another benefit of this joint treatment may be synergistic
activation of Treg as they express AhR and FFAR2 as well
(52). The consumption of functional foods that contain
vitamins A and D, AhR and FFAR ligands may provide the
beneficial activation of ILC3. In addition, some of the synthetic
compounds, Compound 1 for example, exert rather selective
effects on intestinal ILC3 when applied orally (52). The
perspective of such compounds is immense as they can control
complex cellular interaction within GALT and intestinal barrier
and consolidate the anti-inflammatory environment that can
lead to prevention or blockade of autoimmunity in pancreas, as
well as at other distant sites.
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