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for Biological Research "Siniša Stanković", National Institute of Republic of Serbia,
Belgrade, Serbia; 12School of Ecology and Environmental Science, Yunnan
University, Kunming, China; 13Hokkaido University Museum, Hokkaido University,
Sapporo, Japan; 14Biological Laboratory, Sapporo College, Hokkaido University of
Education, Sapporo, Japan; 15Graduate School of Science and Engineering, Ehime
University, Matsuyama, Japan; 16Department of Biology, University of Kentucky,
Lexington, United States; 17Department of Biology, Indiana University, Bloomington,
United States; 18Neurobiology and Genetics, Theodor Boveri Institute, Biocentre,
University of Würzburg, Würzburg, Germany; 19Institute of Entomology, Biology
Centre, Academy of Sciences of the Czech Republic, Prague, Czech Republic;
20Department of Molecular and Integrative Physiology, University of Kansas Medical
Center, Stowers Institute for Medical Research, Kansas City, United States; 21School
of Life Science, University of Nevada, Las Vegas, United States

Abstract Over 100 years of studies in Drosophila melanogaster and related species in the genus

Drosophila have facilitated key discoveries in genetics, genomics, and evolution. While high-quality

genome assemblies exist for several species in this group, they only encompass a small fraction of

the genus. Recent advances in long-read sequencing allow high-quality genome assemblies for tens

or even hundreds of species to be efficiently generated. Here, we utilize Oxford Nanopore

sequencing to build an open community resource of genome assemblies for 101 lines of 93
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drosophilid species encompassing 14 species groups and 35 sub-groups. The genomes are highly

contiguous and complete, with an average contig N50 of 10.5 Mb and greater than 97% BUSCO

completeness in 97/101 assemblies. We show that Nanopore-based assemblies are highly accurate

in coding regions, particularly with respect to coding insertions and deletions. These assemblies,

along with a detailed laboratory protocol and assembly pipelines, are released as a public resource

and will serve as a starting point for addressing broad questions of genetics, ecology, and

evolution at the scale of hundreds of species.

Introduction
The rise of long-read sequencing alongside the continuously decreasing costs of next-generation

sequencing have served to greatly democratize the process of genome assembly, making it feasible

to assemble high-quality genomes at a previously unthinkable scale. Currently, a number of large

consortia are leading well-publicized efforts to assemble the genomes of many taxa throughout the

Tree of Life. Some often overlapping examples include the Vertebrate Genomes Project (Rhie et al.,

2021), the Bird 10,000 Genomes Project (Feng et al., 2020), the Zoonomia Project

(Zoonomia Consortium et al., 2020), the Darwin Tree of Life (Threlfall and Blaxter, 2021), the

Earth Biogenome Project (Lewin et al., 2018), and the 5000 Arthropod Genomes Initiative

(Robinson et al., 2011a). In addition to establishing new standards for modern large-scale genomics

projects and opening avenues for genomic research that were previously only feasible in model

organisms across a multitude of species, these projects are creating an opportunity to study genetic

variation and address fundamental biological questions at a scope that was simply not possible

before.

In many respects, the foundation for modern genomics was built by those studying the vinegar

(also called fruit or pomace) fly Drosophila melanogaster and related species in the family Drosophili-

dae. As a premier model organism for genetic and biological research since the foundational work

of Morgan and colleagues, D. melanogaster was, after C. elegans, the second metazoan organism

to undergo whole-genome sequencing (Adams et al., 2000). At that time, the completion of the D.

melanogaster genome proved the viability of shotgun sequencing approaches and paved the way

for larger, more complicated genomes (Hales et al., 2015). The genomic tractability that made dro-

sophilids attractive for this work has led to their continued widespread use as model organisms in

the genomic era: the whole-genome sequencing of 12 Drosophila species (Clark et al., 2007) and

the characterization of functional elements in Drosophila genomes (Roy et al., 2010) are prominent

milestones in the history of modern genomics.

As it is a popular model system, an extensive collection of genomic resources exists for drosophil-

ids today. Excluding genomes from this study, there are representative genome assemblies available

on NCBI databases (GenBank and RefSeq) for about 75 different drosophilid species

(Hotaling et al., 2021). About a third of these genomes are provided as chromosome-level scaf-

folds. Along with this diverse catalog of whole-genome sequences are collections of expression and

regulation data (Chen et al., 2014; Roy et al., 2010), maps of constrained (i.e. functional) sequences

inferred with comparative genomics tools (Stark et al., 2007), and population genomic data (e.g.

Guirao-Rico and González, 2019; Lack et al., 2016; Signor et al., 2018). Well-studied D. mela-

nogaster was among the first species to have high-quality genomes assembled for multiple individu-

als, revealing population variation in structural variants (Chakraborty et al., 2019; Long et al.,

2018). Yet even with the intense scientific interest and effort thus far, only a small portion of the

remarkably diverse drosophilids, a family which includes over 1600 described and possibly thousands

of other undescribed species (O’Grady and DeSalle, 2018), is available for genomic study today.

There is much scientific potential to be unlocked by improving the catalog of genomic diversity

within this group, and the simplification that long reads bring to the genome assembly process is

key. Long reads have proved to be a way to quickly generate affordable yet high-quality genomes,

in fact the cost of a highly contiguous and complete Drosophila assembly based on long-read

sequencing was recently estimated to be about $1,000 US dollars (Miller et al., 2018;

Solares et al., 2018), orders of magnitude less than the first D. melanogaster genome. While a num-

ber of studies have already used long reads to assemble the genomes of one or a few drosophilid

species (Bracewell et al., 2019; Chakraborty et al., 2021; Comeault et al., 2020; Flynn et al.,
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2020; Hill et al., 2020; Mai et al., 2020; Miller et al., 2018; Paris et al., 2020; Rezvykh et al.,

2021; Solares et al., 2018), a sequencing and genome assembly project at a scale similar to that of

the large genome assembly consortia, especially without similar resources and funding, remains chal-

lenging even with the benefits of long reads. Yet, there continue to be rapid improvements to long-

read sequencing that may alleviate some of these logistical challenges. Long-read sequencing costs

have dropped significantly in the past few years as protocols, kits, and the underlying technology

improves. Ultra-long (50–100 kb or longer) reads are obtainable with Oxford Nanopore (ONT)

sequencing and under the right conditions should allow entire chromosomes to be fully assembled

without additional time-consuming and costly scaffolding methods (e.g. Nurk et al., 2021). By sim-

plifying the genome assembly process and reducing the cost of genome assembly even further,

these techniques finally make it possible to assemble tens or hundreds of drosophilid genomes at a

time.

Here, we present another step toward a comprehensive drosophilid genome dataset: a commu-

nity resource of 101 de novo genome assemblies from 93 drosophilid species. These genomes were

assembled using lines contributed by Drosophila researchers from across the world, and represent a

diversity of ecologies and geographical distributions. We improve upon the Nanopore-based hybrid

assembly (Nanopore plus Illumina) approach for Drosophila lines (Miller et al., 2018) to substantially

increase the sequencing throughput contained in ultra-long reads while reducing overall costs. The

contiguity, completeness, and quality of these genomes is assessed. We show that under ideal con-

ditions, about two Drosophila lines (assuming an average 180 Mb genome) can be sequenced to at

least 30� depth of coverage per ONT r9.4.1 (rev D) flow cell, at an approximate cost of 350 US dol-

lars per line. Along with this manuscript and data, we provide a detailed Nanopore sequencing labo-

ratory protocol specifically optimized for Drosophila lines, along with containerized computational

pipelines. These genome assemblies and technical resources should facilitate the process of con-

ducting large-scale genome projects in this key model clade and beyond.

Results and discussion

Taxon sampling
Our selection of species and strains for sequencing (Table 1) improves the geographic, ecological,

and phylogenetic diversity of genomic data from the family Drosophilidae. Most (99 of 101) of the

genome assemblies presented here are from 14 species groups in subgenera Drosophila and Sopho-

phora of the subfamily Drosophilinae (Toda, 2020). One species of each of the genera Leucophenga

and Chymomyza, both contained in less-studied sister subfamily Steganinae, have also been

sequenced. We note some taxonomic inconsistencies arising from the paraphyly or polyphyly of cer-

tain drosophilid taxa (Finet et al., 2021; O’Grady and DeSalle, 2018; Yassin, 2013) but will make

no attempt to address those issues here. The sequenced species originate from mainland and island

locations in North America, Europe, Africa, and Asia; are distributed from northern (e.g. D. tristis, D.

littoralis) to equatorial (e.g. D. bocqueti) latitudes; represent two independent transitions to leaf-

mining herbivory (Scaptomyza and Lordiphosa); and for some species, like the pest Zaprionus indi-

anus, represent reproductively isolated populations taken from throughout the range. For difficult to

culture species, for instance Leucophenga varia and some Lordiphosa spp., only wild-caught flies

were sequenced. Finally, we have sequenced lines in active research use. Additional genomic resour-

ces like gene expression or population data should be expected in the near future to accompany

many of these assemblies. For species where multiple lines were assembled, we have selected a rec-

ommended line to use based on genome quality and denote this recommendation in Table 1.

Near chromosome-scale assembly with ultra-long reads
We sequenced the fly samples using a ONT 1D ligation kit approach, replacing magnetic bead

cleanups with size selective precipitation. This modified workflow is optimized for genomic DNA

extractions from 15 to 30 whole flies, increases the yield of ultra-long reads relative to the standard

ligation kit protocol, increases overall sequencing throughput, and significantly reduces the cost of

library preparation. Sequencing runs varied with sample quality and type, and in general read

lengths and throughput increased over the course of this work with improved iterations of the proto-

col. Under optimal conditions and with enough starting material (at least 2,000 ng of very high
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Table 1. Species and strain information for all samples assembled for this work.

Note: Species group and subgroup information is taken from the NCBI Taxonomy Browser with slight modifications following

O’Grady and DeSalle, 2018. Strain names along with corresponding NDSSC and Kyoto DGRC stock center numbers are provided to

the best of our knowledge. See Supplementary file 1 and Supplementary file 6 for detailed information on samples and data. When

multiple lines of a species are listed, * denotes the preferred assembly.

Subgenus Group Subgroup Species Sex Strain name NDSSC

Kyoto
DGRC/
Ehime Additional notes

Sophophora

melanogaster melanogaster D. melanogaster MF ISO-1
GENOME

14021-0231.36 NA BDGP reference strain

D. mauritiana F NA 14021-0241.01 NA Miller et al., 2018

D. simulans F NA 14021-0251.006 NA Miller et al., 2018

D. sechellia F NA 14021-0248.01 NA Miller et al., 2018

D. teissieri * M 273.3 NA NA

D. teissieri M CT02 NA NA

D. yakuba F NA 14021-0261.01 NA Miller et al., 2018

D. erecta F NA 14021-0224.01 NA Miller et al., 2018

eugracilis D. eugracilis F NA 14026-0451.02 NA Miller et al., 2018

suzukii D. subpulchrella M L1 NA NA

D. biarmipes MF 361.0 iso1 l-11
GENOME strain 1

14023-0361.10 NA modENCODE strain

takahashii D. takahashii F IR98-3 E-12201 NA E-
912201

inbred derivative of
Ehime stock IR98-3

ficusphila D. ficusphila F 631.0-iso1 l-10
GENOME

14025-0441.05 NA modENCODE strain

rhopaloa D. carrolli MF KB866 NA NA

D. rhopaloa MF BaVi067
GENOME

14029-0021.01 E-
24701

modENCODE strain

D. kurseongensis F SaPa58 NA NA

D. fuyamai F KB-1217 14029-0011.01 NA

elegans D. elegans F HK0461.03
GENOME

14027-0461.03 NA modENCODE strain

suzukii D. oshimai M MT-04 NA NA

montium D. bocqueti M YAK3_mont-66 NA NA

D. sp aff
chauvacae

M mont_up-71 NA NA

D. jambulina MF st-2 14028-0671.01 NA

D. kikkawai F 561.0-iso4 l-10
GENOME

14028-0561.14 NA modENCODE strain

D. rufa F EH091 iso-C L_3 NA 914802 inbred derivative of
Ehime stock EH091

D. triauraria F NA 14028-0691.9 NA Miller et al., 2018;
previously mis-identified
as
D. kikkawai

ananassae D. malerkotliana
pallens

F palQ-isoG NA NA

D. malerkotliana
malerkotliana

MF mal0-isoC 14024-0391.00 NA inbred derivative of strain
14024-0391.00

D. bipectinata MF 4-4-2-3-1-1-1-1-1 BackUp 14024-0381.04 NA Inbred derivative of
NDSSC strain

D. parabipectinata MF par2-isoB 14024-0401.02 NA inbred derivative of strain
14024-0401.02 (now
extinct)

D. F Wau 125 NA NA
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Table 1 continued

Subgenus Group Subgroup Species Sex Strain name NDSSC

Kyoto
DGRC/
Ehime Additional notes

pseudoananassae
pseudoananassae

D.
pseudoananassae
nigrens

F VT04-31 NA NA

D. ananassae F 14024-0371.13 NA NA Miller et al., 2018

D. varians MF CKM15-L1 NA NA

D. ercepeace MF 164-14 14024-0432.00 NA

obscura obscura D. ambigua M R42 NA NA isofemale strain from the
wild

D. tristis M D2 NA NA isofemale strain from the
wild

D. obscura M BZ-5 NA NA isofemale strain from the
wild

D. subobscura M Küsnacht NA NA standard laboratory strain

pseudoobscura D. persimilis F NA 14011-0111.01 NA Miller et al., 2018

D. pseudoobscura F NA 14011-0121.94 NA Miller et al., 2018

willistoni willistoni D. willistoni
(Uruguay) *

M L-G3 14030-0811.17 NA

D. willistoni F NA 14030-0811.00 NA Miller et al., 2018

D. paulistorum L06
*

M (Heed) H66.1C 14030-0771.06 NA

D. paulistorum L12 M L12 14030-0771.12 NA

D. tropicalis M (Heed) H65.2 14030-0801.00 NA

D. insularis M jp01i NA NA isofemale line from J.
Powell

bocainensis D. sucinea M 49.15 14030-0791.01 NA

D. nebulosa M H176.10 14030-0761.01 NA

saltans saltans D. saltans M (Heed) H180.40 14045-0911.00 NA

D. prosaltans M (Heed) H29.6 14045-0901.02 NA

neocordata D. neocordata M 2536.7 14041-0831.00 NA

sturtevanti D. sturtevanti F H191.23 14043-0871.01 NA

Lordiphosa miki L. clarofinis MF Guizhou062018LC NA NA Line inbred for 2
generations in the lab
before sequencing

L. stackelbergi MF UCILTSSapporo052019LS NA NA Pool of 50 wild-caught
flies

L. magnipectinata MF UCKTSapporo052019LM NA NA Pool of 50
wild-caught
flies

fenestrarum L. collinella MF UCKTSapporo052019LC NA NA Pool of 30
wild-caught
flies

L. mommai MF MMSapporo052014LM NA NA

Drosophila

Zaprionus vittiger Z. nigranus M st01n NA NA line derived from wild
collection

Z. camerounensis M jd01cam NA NA isofemale line from J.
David

Z. lachaisei M jd01l NA NA line derived from wild
collection
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Table 1 continued

Subgenus Group Subgroup Species Sex Strain name NDSSC

Kyoto
DGRC/
Ehime Additional notes

Z. vittiger M jd01v NA NA isofemale line from J.
David

Z. davidi M jd01d NA NA isofemale line from J.
David

Z. taronus M st01t NA NA line derived from wild
collection

Z. capensis M jd01cap NA NA isofemale line from J.
David

Z. gabonicus M jd01gab NA NA isofemale line from J.
David

Z. indianus RCR04 M RCR04 NA NA

Z. indianus
16GNV01

M 16GNV01 NA NA

Z. indianus BS02 * M BS02 NA NA

Z. indianus CDD18 M CDD18 NA NA

Z. africanus M BS06 NA NA

Z ornatus M jd01o NA NA isofemale line from J.
David

tuberculatus Z. tsacasi M car7-4 NA NA

Z. tsacasi * M jd01t NA NA isofemale line from J.
David

inermis Z. kolodkinae M jd01k NA NA isofemale line from J.
David

Z. inermis M 18BSZ10 NA NA

Z. ghesquierei M jd01ghe NA NA isofemale line from J.
David

cardini dunni D. dunni M H254.21 15182-2291.00 NA

D. arawakana M MONHI050227(B)-104 15182-2261.03 NA

cardini D. cardini M NA 15181-2181.03 917701

funebris funebris? undescribed (Sao
Tome mushroom)

M st01m NA NA undescribed species
collected on mushroom,
Sao Tome

funebris D. funebris M fst01 NA NA line derived from wild
collection

immigrans immigrans D. immigrans * F FK05-19 15111.1731.12 NA

D. immigrans
kari17

M kari17 NA NA

(incertae sedis) D. pruinosa M iso-A1 l-9 NA NA

quadrilineata D. quadrilineata M quad-TMU NA 914402

tumiditarsus D. repletoides M ISZ-isoB I-10 NA NA

Scaptomyza Scaptomyza S. montana MF iso-CA-L1 NA NA

S. graminum F TMU-2019 NA NA 30 wild-caught females

Parascaptomyza S. pallida MF iso-CA-L1 NA NA

Hemiscaptomyza S. hsui MF iso-CA-L1 NA NA

Hawaiian
Drosophila

orphnopeza D. sproati MF DKPTOMS02 NA NA Pool of wild-caught flies

D. murphyi MF DKPHETFM01 NA NA Flies from recently
established but not
inbred lab line

grimshawi D. grimshawi F NA 15287-2541.00 NA Same line as caf1
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molecular weight DNA) to prepare at least three library loads (~1200–500 ng total prepared library,

350–500 ng per load), along with regular DNAse flushes to maintain yields, Nanopore sequencing

runs following the supplied protocol should net 12–15 Gb of data per R9.4.1 flow cell with a read

N50 greater than 20 kb, and about 30% of data in reads longer than 50 kb. We generated paired-

end, 150 bp Illumina reads for most strains unless public datasets were available.

Deep (average 52�) sequencing coverage with a substantial fraction of ultra-long reads

(Supplementary file 1) resulted in high-quality genome assemblies that were comparable to and

often better than currently available reference genomes in terms of contiguity and completeness

(Figure 1, Figure 1—figure supplement 1, Supplementary file 2). We chose Flye

(Kolmogorov et al., 2019) as our assembler based on superior contiguity and favorable runtimes

relative to Miniasm (Li, 2016) and Canu (Koren et al., 2017; Figure 1—figure supplement 2). To

provide standardization for measures of contiguity, we estimated genome size for each assembly

using long-read coverage over single-copy BUSCO loci (Supplementary file 2).

Of 101 total assemblies, 94 contain over 98% of the assembly in contigs larger than 10 kb, and

both contig N50s and NG50s exceed 1 Mb for these genomes (Figure 1A, Figure 1B, Figure 1—

figure supplement 3, Supplementary file 2). Assembly sizes were highly correlated with estimated

genome sizes (Figure 1—figure supplement 4). In addition to meeting the megabase contig N50

standard for new genomes proposed by the Vertebrate Genomes Project (Rhie et al., 2021), these

statistics show that most of the genome is present in the assembly in megabase-sized contigs. In

other words, the assemblies are nearly at the chromosome level. For comparison, of the 76 repre-

sentative drosophilid genomes that were previously available on NCBI (Hotaling et al., 2021), only

25 have an N50 greater than 1 Mb (Figure 1—figure supplement 1). Moreover, many of these

highly contiguous NCBI genomes are scaffolded, an additional step that would have added a signifi-

cant amount of time and additional expenses to this study. Even when DNA was extracted from

pools of wild-caught flies or a single fly (Leucophenga varia) resulting in sub-optimal read lengths

and output, the assembly was comparable to existing short read assemblies (Figure 1A, Figure 1B).

High contiguity resulted in benchmarking universal single-copy ortholog (BUSCO) completeness

(Seppey et al., 2019; Simão et al., 2015) in the range of 97–99+% for all but the three most frag-

mented genomes (Figure 1C). As with contiguity, the completeness of these genomes is compara-

ble to reference genomes on NCBI (Figure 1—figure supplement 1).

Estimates of sample diversity
We have utilized a variety of fly samples, from highly inbred lab lines to wild-caught flies, for genome

assembly. We therefore sought to quantify the level of diversity inherent to each sample and use var-

iant calls to estimate the error rate for each assembly. Long and short reads (if available) were

Table 1 continued

Subgenus Group Subgroup Species Sex Strain name NDSSC

Kyoto
DGRC/
Ehime Additional notes

genome

virilis virilis D. virilis F NA 15010-1051.87 NA Miller et al., 2018

D. americana M 3367.1 15010-0951.00 NA Also called Anderson
strain

D. littoralis M Kilpisjärvi 1 NA NA Originally misidentified
as D. ezoana (Lankinen
1986, J Comp Physiol A
159: 123-142)

repleta repleta D. repleta M kari30 NA NA

mulleri D. mojavensis F 15081-1352.22 NA NA Miller et al., 2018

genus: Leucophenga L. varia M nc01v NA NA Sequenced single wild-
caught fly, no
amplification

genus: Chymomyza C. costata M Sapporo NA NA

* denotes the genome of best quality when multiple assemblies are available for a species.
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mapped separately to each finished genome and variant calling was performed with PEPPER-Mar-

gin-DeepVariant (Shafin et al., 2021) for long reads and BCFtools (Danecek et al., 2021; Li, 2011)

for short reads. After quality filtering and masking genomic regions annotated as repeats, the counts

of single nucleotide polymorphisms (SNPs), indels, and the fraction of sites with a non-reference

SNP were computed (Figure 2, Supplementary file 3). Note, when short reads were not from the

Figure 1. Nanopore-based assemblies are highly contiguous and complete. (A,B) Assembly contiguity is compared to the D. melanogaster v6.22

reference genome (blue) as well as five recently published, highly contiguous Illumina assemblies (red lines, D. birchii, D. bocki, D. bunnanda, D.

kanapiae, D. truncata; Bronski et al., 2020). (A) Nx curves, or the (y-axis) size of each contig when contigs are sorted in descending size order, in

relation to the (x-axis) cumulative proportion of the genome assembly that is covered. (B) The distribution of contig N50, the size of the contig at which

50% of the assembly is covered. (C) Assembly completeness assessed by BUSCO v4.0.6 (Seppey et al., 2019). Note, D. equinoxialis was evaluated with

BUSCO v4.1.4 due to an issue with v4.0.6. L. stackelbergi has >10% missing BUSCOs. Individual assembly summary statistics are provided in

Supplementary file 2.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Nanopore-based assemblies compare favorably to representative genomes on NCBI.

Figure supplement 2. Large improvements in assembly contiguity from an updated assembly workflow.

Figure supplement 3. Contiguity metrics standardized by the estimated genome size.

Figure supplement 4. Estimated genome size is similar to assembly size.
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same strain as used for the assembly, short read polishing was used to only correct indels, and called

SNPs will not accurately represent the variation in the sample that was sequenced with Nanopore.

Also note that SNP calls from Nanopore data should be relatively accurate but indel calls will not

(Shafin et al., 2021).

Large variation in sample diversity over several orders of magnitude was observed. Estimated

SNP heterozygosity, the number of heterozygous SNPs divided by the number of callable sites,

ranged from 0.00035% to 1.1% from long reads and 0.0015% to 2.1% from short reads, and hetero-

zygosity estimated from long reads was systematically lower than that from short reads, particularly

when sample diversity was high (Figure 2, Figure S6). Qualitative patterns of heterozygosity gener-

ally tracked the history of the samples (e.g. the highly inbred reference strains had very low diver-

sity). Conditioning on datasets where both long and short reads were generated from the same

sample, heterozygosity estimates from both types of reads were positively correlated (Pearson corre-

lation R2=0.50, p=1.13�10–12). If we ignore Lordiphosa, the group with wild-caught or recently col-

lected samples that was consequently the most challenging to assemble, this correlation is greatly

increased (Pearson correlation R2=0.81, p<2.2�10–16). Interestingly, we did not observe a signifi-

cant relationship (p=0.30) between estimated heterozygosity and assembly contiguity (Figure 2—

figure supplement 1). The number of heterozygous non-reference variants almost always exceeded

the number of homozygous variants (Supplementary file 3), as would be expected from residual

diversity in the sequenced lines.

Estimates of sequence quality
Next, we estimated the genome-wide error rates in our assemblies using both the variant calls

obtained previously and a reference-free method (Supplementary file 4). For the first approach,

Phred-scaled (Ewing et al., 1998) consensus quality (QV) was estimated by assuming all sites with a

Figure 2. Estimated heterozygosity in the data used for genome assembly. Per-site SNP heterozygosity (number of heterozygous SNPs/number of

callable sites) is plotted for each of the 101 assembled lines. Blue dots represent heterozygosity estimates from Nanopore reads with PEPPER-Margin-

DeepVariant (Shafin et al., 2021). Orange dots represent heterozygosity estimates from short reads with BCFtools (Li, 2011). The genomes on the

right are for species that did not have available short-read data. Numerical values for these estimates are provided in Supplementary file 4.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Assembly contiguity is not related to sample heterozygosity.
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non-reference variant were an error. The error rate was then computed by dividing the number of

sites with at least one non-reference variant by the total number of callable bases. As expected from

the patterns of heterozygosity estimated from long and short reads, there was a large amount of

variability in quality scores. Estimates from short reads ranged from QV17 to QV45 and from long

reads were slightly higher, from QV19 to QV52 (Supplementary file 4).

This method is likely to be biased by assembly features that affect the quality of read mapping,

for example, we remove sequences annotated as repeats when filtering the variant calls. To address

this bias, we employed the reference-free approach implemented in Merqury (Rhie et al., 2020) for

the 94 assemblies which had some kind of short-read data available (Figure 3A, Supplementary file

4). Estimated quality scores ranged from QV16 to QV40, and once again, samples for which reads

from a different strain or a genetically diverse sample (i.e. wild samples or recent isolates) were used

had the lowest estimated QV. Merqury-estimated QV was on average higher than consensus quality

estimated by the variant calling methods, but the relative ranking of QV estimates remained largely

consistent with QV based on short-read (Spearman’s �=0.642, p<2.2e-16) and long-read (Spear-

man’s �=0.684, p<2.2e-16) variant calls.

While these estimates showed our genomes to mostly fall below the often-recommended QV40

threshold for reference genomes (Koren et al., 2019; Rhie et al., 2021), there are many reasons to

expect that sequence quality in certain regions of the genome will be far better than the average.

As expected, we found that QV estimates were particularly low when short-read data from a differ-

ent sample was used for the estimation, as any true variation between strains will inflate the error

rate. Because we sequenced pools of flies, residual polymorphism will be found in the data even

when long and short reads are sampled from the same pool of flies. In these cases QV might be con-

sidered as a lower bound estimate of the true accuracy of the assembly. Additionally, complex cod-

ing sequences are likely to be far more accurate than other regions of the genome, like repeats, due

to better short-read mapping. The single genome-wide estimates of QV we report obscure this

variation.

Nanopore-based assemblies are highly accurate in coding regions
For these reasons, we found it critical to further examine how errors are distributed in Nanopore

assemblies. Of particular concern is the accuracy of coding sequences. Gene annotation is an impor-

tant and obvious next step after assembling a new genome, but Nanopore sequences are known to

systematically contain indels in homopolymer runs that cannot be called accurately when a run

exceeds the size of the nanopore reader head. Indel disruptions to otherwise highly accurate coding

sequences would have a disproportionately large negative impact on protein prediction

(Watson and Warr, 2019). On the other hand, it is likely that coding sequences are generally more

accurate than the rest of the genome since short-read mapping is generally more reliable there. In

theory, most exons should be free of errors somewhere between a genome-wide quality of QV30 to

QV40 (Koren et al., 2019), but many of our assemblies do not appear to reach this benchmark.

Reference-based quality assessments were used to better understand how error rates vary across

different genomic elements. We downloaded the 8 NCBI RefSeq genome assemblies for which we

had a Nanopore genome of the same species and strain: D. biarmipes, D. elegans, D. ficusphila, D.

grimshawi, D. kikkawai, D. melanogaster, D. mojavensis, and D. rhopaloa. Using the ONT Pomoxis

software, we aligned each Nanopore assembly to its corresponding reference genome and esti-

mated QV in non-overlapping 100 kb windows, using the entire sequence, then only coding sequen-

ces, introns, intergenic regions, and repeats, using gene and repeat definitions provided through

NCBI RefSeq. All differences between query and reference assemblies were considered to be errors.

As expected, we found that sequence accuracy varied greatly within each genome assembly (Fig-

ure 3—figure supplement 1). Mean genome-wide QV ranged from QV15 to QV24 while median

QV across the 100 kb windows ranged from QV14 to QV36. When looking only at coding sequences,

mean QV ranged from QV23 to QV29, while the median window accuracy, with the exceptions of D.

grimshawi (QV25) and D. rhopaloa (QV30), indicated complete identity (>QV50) between assembly

and reference. For D. grimshawi and D. rhopaloa, SNVs were the primary contributor to the error

rate and the number of indels was similar to the other genomes (median QV(indel)>50). Sequence

accuracy was lower when looking at introns, intergenic regions, and repeats, in that order. However,

regardless of the genomic element type, median QV across the windows always exceeded mean

QV, often by more than QV10, or an order of magnitude difference in the error rate. In other words,
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differences between Nanopore and reference assemblies were clustered heavily into a few genomic

regions, and most coding sequences were very accurate despite the seemingly high mean error rate

(Figure 3B, Figure 3C, Figure 3D). Further caution is warranted in the interpretation of these quality

scores: we have assumed that all differences between our Nanopore-based genomes and the refer-

ence genomes are errors in the Nanopore assembly, rather than errors in the reference, or true dif-

ferences between the two sequenced samples. We will shortly show that reference-based

comparisons might be heavily biased against the Nanopore assemblies.

To better understand the nature of putative indel errors in coding sequences, we focused on the

D. melanogaster reference strain, where we have the best information about the genome from

Figure 3. Nanopore-based Drosophila assemblies are accurate, particularly in coding regions. (A) Genome-wide, Phred quality scores estimated with

the reference-free, k-mer based approach implemented in Merqury (Rhie et al., 2020). Merqury requires a short-read dataset to perform the

evaluation. Filled circles represent QV estimates with short-read data from the same strain used for Nanopore sequencing, and empty circles denote

estimates using short-read data from a different strain than used for Nanopore sequencing. (B, C, D) Phred quality score cutoffs for the bottom 10th

percentile of 100 kb genomic windows, as evaluated with a reference-based approach, in coding sequences only. Quality scores are capped at 60 for

visualization purposes. At least 90% of 100 kb windows are this accurate. Only Nanopore assemblies with an NCBI RefSeq genome counterpart of the

same strain were evaluated. Accuracy is shown for SNVs (B), insertions (C), and deletions (D) separately. Additional details on quality score estimates are

provided in Figure 3—figure supplement 1 and Supplementary file 4.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Variation in sequence accuracy within the genome assemblies.

Figure supplement 2. Large insertions account for nearly all differences between the Nanopore-based and reference D. melanogaster assembly.
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multiple independent high-quality assemblies (Kim et al., 2014; Koren et al., 2017; Solares et al.,

2018). While D. melanogaster is a best-case scenario for genome assembly with a fly line, we think it

reasonable to expect errors in other assemblies, for which we have utilized the same genome assem-

bly workflow, to be similar in nature. Across the 22,209,264 bp of our D. melanogaster genome that

aligned to reference coding sequences, our assembly contained 15 insertions and 17 deletions in 21

out of 13,913 (0.15%) queried protein-coding genes, with a total of 10,092 inserted and 46 deleted

base pairs relative to the reference. All deletions (15 out of 15) were under 50 bp, 8 out of 15 inser-

tions were under 50 bp, and the remaining 7 out of 15 insertions ranged from 120 bp to 4410 bp

(Figure 3—figure supplement 2, Supplementary file 5). These larger insertions account for nearly

all (99.3%) of the coding sequence differences between our genome and the reference. There is a

clear, disproportionate impact of these large insertions in an otherwise nearly identical protein-cod-

ing genome.

We followed up on each of these 32 coding indels through manual curation with the genome

browser IGV (Robinson et al., 2011b). Using the Release 6 D. melanogaster genome

(Hoskins et al., 2015) as the reference, we aligned Nanopore and Illumina reads, a different Nano-

pore-based de novo assembly of the reference strain (Solares et al., 2018), a PacBio-based de novo

assembly (Kim et al., 2014; Koren et al., 2017), and our assembly. We were particularly interested

in the two other long-read assemblies, as we wondered if they might independently support any of

the large variants in our assembly. RepeatMasker annotations for the Nanopore-based assembly

were lifted over into Release 6 coordinates to see if these indels overlapped with a repetitive

element.

This manual curation process revealed that the coding indels, in addition to being exceedingly

rare, could be straightforwardly explained by regions of poor short read mapping and the presence

of a duplicate contig in the assembly (Supplementary file 5). A series of large and small indels,

including four out of the five insertions longer than 100 bp, overlapped a tandem repeat in genes

CR44666, Mu68Ca, and Mu68E. While short reads mapped poorly to this region, limiting our ability

to determine accuracy locally, long reads spanning the entire region and the two other long-read

assemblies supported the large insertions. The remaining long (1414 bp) insertion was similarly sup-

ported by long reads and the other assemblies, but did not overlap with a repeat. Again, these

insertions account for more than 99% of the indel differences between our genome and the refer-

ence. The remaining indels occurred in either repetitive regions (simple repeats and long inter-

spersed nuclear element retrotransposons), in homopolymer runs in regions with poor short read

mapping, or along a single contig that appeared to be a short duplicated segment of chromosome

2L. The other contig was error-free. All indels occurred on contigs with poor short-read mapping,

suggesting they were a consequence of locally ineffective short read polishing, but also that sensible

filtering based on short read depth or map quality would prevent these issues from propagating

into downstream analyses. Importantly, these results suggest that reference-based quality analyses

can be heavily biased against long-read assemblies and further support our caution against a naive

projection of genome-wide quality score estimates onto coding regions.

A comparative genomics resource
To demonstrate the potential this dataset holds for the study of genome evolution and chromosome

organization, we revisit a classic result with our highly contiguous assemblies. Although the ordering

of genes in drosophilid chromosomal (Muller) elements has been extensively shuffled throughout

~53 million years of evolution (Suvorov et al., 2021), the gene content of each element remains

largely conserved (Bracewell et al., 2019; Ranz et al., 2001; Sturtevant and Novitski, 1941). To

examine synteny in our assemblies, many of which contain several contigs tens of megabases in

length, we constructed an undirected graph using single-copy orthologous markers (i.e. BUSCOs).

The number of times two markers were connected by assemblies determined the weight of the

graph’s edges. A graph layout method was applied to spatialize (map) these relationships, clustering

together BUSCOs that are frequently connected in the assemblies. We found that BUSCOs formed

six major clusters following the D. melanogaster chromosome arm on which they are found, consis-

tent with the expected conservation of gene content in Muller elements across drosophilids (Fig-

ure 4). Furthermore, the lack of a clear order within groups is consistent with extensive shuffling

within Muller elements. This demonstrates that our dataset can be used for studies of genome
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evolution. New reference-free, whole-genome alignment methods (Armstrong et al., 2020) should

substantially facilitate more detailed comparative analyses.

Repeat content
A large number of genome assemblies enables comparative analysis of repeat variation against a

wide range of genome assembly sizes (140–450 Mb), for example the independent expansions of

satellite repeats in D. grimshawi or retroelements in D. paulistorum, D. bipectinata, or D. subpul-

chrella (Figure 5). Within our dataset alone, RepeatMasker annotations reveal large variation in

repeat content among drosophilids (Figure 5). No correlation exists between assembly contiguity

and repeat content (Figure 5—figure supplement 1), suggesting long-read sequencing overcomes

many of the challenges to drosophilid genome assembly posed by repetitive sequences. Addition-

ally, we observe a positive relationship between the size of repetitive sequences and non-repetitive

sequences, suggesting that genome size is influenced by expansions and contractions of both

Figure 4. Gene content of Muller elements is conserved across drosophilids while gene order changes. Each node in this graph represents an

orthologous marker corresponding to single-copy orthologs annotated by BUSCOv4 (Seppey et al., 2019). An edge between two nodes represents

the number of times that BUSCO pair is directly connected within an assembly. Each BUSCO is colored by the chromosome arm in D. melanogaster

that it is found on. The ForceAtlas2 (Jacomy et al., 2014) graph layout algorithm was used for visualization.
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portions of the genome (Figure 5—figure supplement 2). Some discretion is warranted in the inter-

pretation of these results. Repeats are likely to be better annotated in genomes from well-studied

species groups, since they are more likely to be well-characterized in the repeat databases we used.

Nevertheless, the high continuity of these assemblies should allow for the proper identification of

new transposable elements in the genomes and allow for the analyses of transposable element evo-

lution at the level of individual transposable elements or transposable element families in a way that

is not feasible with more fragmented genome assemblies (Clark et al., 2007).

Figure 5. Repeat content varies greatly between drosophilid groups. For each species, the proportion of each genome annotated with a particular

repeat type is depicted. Species relationships were inferred by randomly selecting 250 of the set of BUSCOs (Seppey et al., 2019) that were complete

and single-copy in all assemblies. RAxML-NG (Kozlov et al., 2019) was used to build gene trees for each BUSCO then ASTRAL-MP (Yin et al., 2019)

to infer a species tree. Repeat annotation was performed with RepeatMasker (Smit et al., 2013) using the Dfam 3.1 (Hubley et al., 2016) and RepBase

RepeatMasker edition (Bao et al., 2015) databases. ASTRAL local posterior probabilities are reported at each node.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Assembly contiguity is not determined by repeat content.

Figure supplement 2. The non-repetitive and repetitive portions of the genome both contribute to genome size differences between drosophilids.
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Next steps
We have built an open resource of 101 nearly chromosome-level drosophilid genome assemblies,

adding to the rapidly growing number of high-quality genomes available for this model system

(Hotaling et al., 2021; Suvorov et al., 2021). We envision this dataset being used to address a

large number of outstanding questions entailing large comparative analyses among species, includ-

ing the comparison of population genomic data between a large number of species, providing

unprecedented resolution to investigate fundamental questions about the evolutionary process. In

addition, we provide detailed laboratory and computational workflows that we hope will provide a

jumping off point for future genome assembly projects in drosophilids or other taxa. While we hope

this to already be a valuable resource to the scientific community, we acknowledge there is much to

be done to build upon the resource and to improve its usability.

Despite our best efforts to improve species diversity, both the species we sequenced and the

drosophilid genomes available today are significantly biased towards well-studied, easy-to-maintain

species already in use for scientific research. Reducing sampling bias, with respect to phylogenetic

diversity, geographic distribution, and ecology should be a goal of future genome assembly projects

in this group. The high input DNA requirement for PCR-free long-read sequencing is a major limita-

tion of our assembly workflow in this context. Our protocol requires a DNA extraction from multiple

flies, ideally from an inbred line to minimize genetic diversity in the sample used for assembly. High

diversity in the sample usually results in a fragmented assembly with many duplicated sequences,

and while these issues can be addressed with computational tools, the quality of the final assembly

is still affected. However, some species, for instance the Lordiphosa spp. or Hawaiian Drosophila we

sequenced, cannot be quickly raised in the lab on standard media and thus cannot easily be inbred

like other drosophilids. Many other species are simply understudied and sample availability is limited

to a few flies collected from the wild and possibly preserved in ethanol for many years. Methods for

assembling genomes with small quantities of DNA from single insects (Adams et al., 2020;

Kingan et al., 2019; Schneider et al., 2021) or dealing with degraded specimens from older collec-

tions will be particularly important as the scope of future work expands beyond stock center and lab-

oratory lines.

Some of these sequencing challenges will be better addressed by new technology and techni-

ques. While we hesitate to make specific recommendations due to the rapidly changing landscape

of long-read sequencing and genome assembly methods, there are a few clear ways in which many

recently assembled long-read genomes can be improved. Even in the short time since we performed

the sequencing for this work, there have been remarkable improvements to library preparation work-

flows, the accuracy of base calling algorithms, and assembly tools. At a minimum, we plan to itera-

tively update these assemblies using newer base calling methods to maximize the usefulness of the

dataset.

This alone is unlikely to future-proof Nanopore R9 flow cell-based assemblies when the ultimate

goal is to build genomes that are free of errors, and we recommend that a genome assembly project

initiated today look beyond a Nanopore and Illumina approach. There is ample room to reduce the

per-assembly cost while improving both contiguity and accuracy. The current major obstacle to high

genome-wide accuracy is the difficulty of calling bases accurately in homopolymer runs combined

with the limitations of short reads for correcting these errors when they occur in genomic regions

with poor short read mappability. One new strategy to address this is to generate supplementary

lower coverage data from high fidelity long read sequencing, for instance with PacBio HiFi (Nano-

pore versions are currently in development). New polishing tools are specifically designed to polish

Nanopore assemblies with higher-fidelity reads (e.g. Shafin et al., 2021) and users should see

greatly improved overall sequence accuracy.

This kind of hybrid long-read assembly approach may prove to be even more efficient than the

assembly workflow we have presented. Interestingly, we find that high contiguity can be achieved

even with minimal (10–20�) coverage of moderately long (read N50 25 kb) Nanopore reads (Fig-

ure 6). Similar coverage with even longer reads could serve as a cheap way to generate almost chro-

mosome-level contigs, which will then be polished with higher fidelity long reads or Illumina reads.

Ultra-long Nanopore sequencing is also significantly more accessible than before. Recently (as of

March 2021), Oxford Nanopore and Circulomics released new ultra-long sequencing kits that, under

ideal conditions, allows users to perform ultra-long Nanopore sequencing runs where read N50s
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exceed 100 kb while nearly doubling overall flow cell throughput compared to the sequencing runs

performed for this study. Further cost savings should be possible if sequencing is done with the

ONT PromethION or PacBio CLR, depending on the scale of the project. Both technologies have a

lower per-base cost than MinION sequencing and similarly long reads can be obtained.

Finally, we are in the process of improving the utility of this resource by generating a suite of

comparative genomics tools and annotations to be released in the upcoming months. Specifically,

we are utilizing Progressive Cactus (Armstrong et al., 2020), a reference-free whole-genome aligner

that is designed to be scalable to modern genomic datasets and that has already been applied to

hundreds of mammal and bird genomes generated by the Zoonomia (Zoonomia Consortium et al.,

2020) and Bird 10K (Feng et al., 2020) projects. These alignments will be used to create sequence

conservation maps (Hickey et al., 2013; Pollard et al., 2010; Siepel et al., 2005), the precision of

which should be close to single nucleotide resolution given the large number of drosophilid

genomes that are now available. While ultimately RNA-seq across all species will be needed for

annotation, we plan to quickly generate the first round of gene annotations using comparative anno-

tation tools. For new assemblies where a previously annotated reference genome is available, LiftOff

(Shumate and Salzberg, 2020) provides a way to quickly transfer annotations to a new genome. For

the more challenging task of gene annotation in species that do not already have a well-annotated

Figure 6. Highly contiguous assemblies can be obtained with lower coverage of ultra-long reads. The NGx curve is shown for Drosophila jambulina

assemblies at varying levels of coverage. The length of the assembly with the full data is assumed to be the genome size. Read sets used for each

assembly were obtained by randomly downsampling the basecalled reads (read N50 ~27.5 kb) to varying (5� to 30�) depth of coverage. Proportionally,

these read sets contain ~55% of total sequenced bases in reads longer than 25 kb, ~25% of bases in reads longer than 50 kb, and ~7% of bases in reads

longer than 100 kb. Near chromosome scale assemblies (N50>20Mb) were achievable even at 15� to 20� depth with this read length distribution. This

corresponds to approximately 8� to 10� depth in reads longer than 25 kb.
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reference, we are using the Comparative Annotation Toolkit (Fiddes et al., 2018), software to per-

form first-pass annotations assisted by homology information from the Progressive Cactus align-

ment. New RNA-seq data will be generated for select species in clades without a well-annotated

member (e.g. Zaprionus). These tools will provide a framework for anyone to apply iterative

improvements as new data become available.

Reproducibility
Detailed laboratory protocols, computational pipelines, and computational container recipes are

provided as a reference and to maximize reproducibility. The protocol is publicly available at Proto-

cols.io and pipeline scripts along with associated compute containers are provided in a public

GitHub repository. See Materials and methods for additional details on compute containers, acces-

sion numbers, and web links to these resources.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Strain, strain
background (Drosophila
spp. and relatives)

See Table 1 and Supplementary files 1–6 for sample information, strain designations, stock center line identifiers (when
applicable), biomaterial provider, and NCBI accession numbers.

Commercial
assay or kit

Blood and Cell
Culture DNA Mini Kit

Qiagen cat # 13323

Commercial
assay or kit

Ligation Sequencing Kit Oxford Nanopore SQK-LSK109 Superseded by SQK-LSK110

Commercial
assay or kit

Flow cell wash kit Oxford Nanopore EXP-WSH003 Superseded by EXP-WSH004

Commercial
assay or kit

Short Read Eliminator kit Circulomics SKU # SS-100-101-01

Commercial
assay or kit

Companion Module for
ONT Ligation Sequencing

NEBNext cat # E7180S

Commercial
assay or kit

Nextera XT DNA
Library Preparation Kit

Illumina cat # FC-131–1002 Superseded by version 2

Commercial
assay or kit

Kapa HyperPrep Kit Roche cat # KK8502

Software, algorithm Flye Kolmogorov et al., 2019 2.6

Software, algorithm Canu Koren et al., 2017 1.8

Software, algorithm Miniasm Li, 2016 0.3

Software, algorithm Guppy Oxford Nanopore 3.2.4

Software, algorithm Medaka Oxford Nanopore 0.9.1

Software, algorithm Minimap2 Li, 2016 2.17

Software, algorithm SAMtools Li et al., 2009 1.12

Software, algorithm Racon Vaser et al., 2017 1.4.3

Software, algorithm BUSCO Simão et al., 2015 3.0.2

Software, algorithm BUSCO Seppey et al., 2019 4.0.6

Software, algorithm Purge_haplotigs Roach et al., 2018 1.1.1

Software, algorithm npScarf Cao et al., 2017 1.9-2b

Software, algorithm Pilon Walker et al., 2014 1.23

Software, algorithm BLAST Altschul et al., 1990 2.10.0

Software, algorithm SPAdes Bankevich et al., 2012 3.11.1

Software, algorithm FMLRC Wang et al., 2018 1.0.0

Software, algorithm LINKS Warren et al., 2015 1.8.7

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Software, algorithm RepeatMasker Smit et al., 2013 4.1.0

Software, algorithm Dfam repeat databse Hubley et al., 2016 3.1 Library for RepeatMasker

Software, algorithm RepBase
RepeatMasker edition

Bao et al., 2015 20181026 Library for RepeatMasker

Software, algorithm cross_match Green, 2009 1.090518

Software, algorithm Tandem Repeat Finder Benson, 1999 4.0.9

Software, algorithm Bioawk Li, 2017 1.0

Software, algorithm GenomeScope Vurture et al., 2017 1.0.0

Software, algorithm Jellyfish Marçais and Kingsford, 2011 2.2.3

Software, algorithm Sambamba Tarasov et al., 2015 0.8.0

Software, algorithm PEPPER-Margin-
Deepvariant

Shafin et al., 2021 0.4

Software, algorithm BCFtools Li, 2011 1.12

Software, algorithm Merqury Rhie et al., 2020 1.3

Software, algorithm Pomoxis Oxford Nanopore 0.3.7

Software, algorithm bedtools Quinlan and Hall, 2010 2.30.0

Software, algorithm HALtools Hickey et al., 2013 2.1

Software, algorithm Integrative
Genomics Viewer

Robinson et al., 2011b 2.9.4

Software, algorithm MAFFT Katoh and Standley, 2013 7.453

Software, algorithm RAxML-NG Kozlov et al., 2019 0.9.0

Software, algorithm ASTRAL-MP Yin et al., 2019 5.14.7

Software, algorithm ForceAtlas2 Jacomy et al., 2014 Implemented in R package
https://github.com/
analyxcompany/ForceAtlas2

Software, algorithm ape Paradis and Schliep, 2019 5.4.1 R package

Software, algorithm Docker docker.com

Software, algorithm Singularity sylabs.io

Taxon sampling and sample collection
The selection of species used for this study was driven by several key objectives. First, we aimed to

provide data for ongoing research projects. Second, we aimed to supplement existing genomic

data, both as a benchmarking resource against well-studied references (e.g. D. melanogaster) and

to provide a technological update to some older assemblies (Roy et al., 2010). Third, we aimed to

increase the phylogenetic and ecological diversity of publically available Drosophila genome

assemblies.

In most cases, genomic DNA was collected from lab-raised flies, which were either derived from

lines maintained at public Drosophila stock centers and individual labs or, in a few cases, from F1 or

F2 progeny of flies recently collected in the wild. We collected specimens from the wild with stan-

dard fruit or mushroom-baited traps, sweep netting, and aspiration. We established isofemale lines

from individual females collected using these baits unless otherwise specified (Supplementary file

1). For species difficult to culture in the lab (all Lordiphosa spp. except Lo. clarofinis, D. sproati, D.

murphyi, Le. varia, S. graminum), either wild-caught flies or flies from a transient lab culture were

used. In accordance with domestic and international shipping laws, these flies were either fixed in

ethanol before transport (Lordiphosa spp., D. subobscura, D. obscura, C. costata, D. littoralis, D. tris-

tis, D. ambigua) or transported with permits (P526P-15–02964 to D. Matute, P526P-20–02787 and

P526P-19–01521 to A. Kopp, and Hawaii State permit I1302 to D. Price).

Of 101 total assemblies, we include 13 genomes assembled with re-analyzed sequences from

Miller et al., 2018; 60 genomes from stock center lines or established lab cultures; 22 genomes
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from lab-raised flies derived from recent wild collections; and six genomes from wild-caught flies. Of

note, 6 Zaprionus lines used in this study (Z. africanus, Z. indianus, Z. tsacasi, Z. nigranus, Z. taronus)

were assembled by Comeault et al., 2020, but updated higher contiguity assemblies are provided

with this manuscript with the exception of Z. indianus line 16GNV01 (see ‘Alternative hybrid assem-

bly process’ section below). Details on each sample including (if available) line designations and col-

lection information, are provided in Table 1 and Supplementary file 6.

DNA extraction and nanopore sequencing
A high molecular weight (HMW) genomic DNA (gDNA) extraction and ONT library prep was per-

formed for each sample, with slight variation in the protocol through time and to deal with differen-

ces in sample quality or preservation. Here, we briefly describe a recommended general protocol for

HMW gDNA extraction and library prep from 15 to 30 flies. This protocol is sufficient to reproduce

all results from this manuscript at the same or higher levels of data quality. Detailed step-by-step

instructions are provided at Protocols.io (see Data availability). We note one exception made neces-

sary by sample availability and shipping laws. Scaptomyza graminum gDNA was extracted by using

the Qiagen Blood and Cell Culture DNA Mini Kit (Qiagen, Germantown, MD) from 30 unfrozen flies

and prepared with the ONT LSK109 kit (Oxford Nanopore, Oxford, UK) without any modifications to

the manufacturer’s instructions.

Genomic DNA was prepared from about 30 flash frozen or ethanol fixed adult flies. For non-

inbred samples, we tried to use 15 flies or less to minimize the genetic diversity of the sample. In the

absence of amplification, about 1.5–3 mg of input DNA is needed to prepare 3–4 library loads with

the ONT LSK109 kit. Sufficient input DNA is particularly important when selecting for longer reads.

Ethanol preserved samples were soaked in a rehydration buffer (400 mM NaCl, 20 mM Tris-HCl pH

8.0, 30 mM EDTA) for 30 min at room temperature (~23˚C), dabbed dry with a Kimwipe, then frozen

for 1 hr at �80˚C before extraction. Frozen flies were ground in 1.5 mL of homogenization buffer

(0.1M NaCl, 30 mM Tris HCl pH 8.0, 10 mM EDTA, 0.5% Triton X-100) with a 2 mL Kimble (DWK Life

Sciences, Millville, NJ) Kontes Dounce homogenizer. The homogenate was centrifuged for 5 min at

2000 �g, the supernatant discarded by decanting, and the pellet resuspended in 100 mL of fresh

homogenization buffer. This mixture was then added to a tube with 380 mL extraction buffer (0.1M

Tris-HCl pH 8.0, 0.1M NaCl, 20 mM EDTA) along with 10 mL of 20 mg/mL Proteinase K (Thermo

Fisher Scientific, Waltham, MA), 10 mL SDS (10% w/v), and 2 mL of 10 mg/mL RNAse A (Millipore

Sigma, Hayward, CA). This tube was incubated at 50˚C for 4 hr, with mixing at 30–60 min intervals

by gentle inversion.

High-molecular-weight gDNA was purified with a standard phenol-chloroform extraction. The

lysate was extracted twice with an equal volume of 25:24:1 v/v phenol chloroform isoamyl alcohol

(Thermo Fisher Scientific, Waltham, MA) in a 2 mL light phase lock gel tube (Quantabio, Beverly,

MA). Next, the aqueous layer was decanted into a fresh 2 mL phase lock gel tube then extracted

once with an equal volume of chloroform (Millipore Sigma, Hayward, CA). The use of the phase lock

gel tube reduces DNA shearing at this stage by minimizing pipette handling. HMW DNA was precip-

itated by adding 0.1 vol of 3M sodium acetate and 2.0–2.4 volumes of cold absolute ethanol. Gentle

mixing resulted in the precipitation of a white, stringy clump of DNA, which was then transferred to

a DNA LoBind tube (Eppendorf, Hamburg, Germany) and washed twice with 70% ethanol. After

washing, the DNA was pelleted by centrifugation and all excess liquid removed from the tube. The

pellet was allowed to air dry until the moment it became translucent, resuspended in 65 mL of 1�

Tris-EDTA buffer on a heat block at 50˚C for 60 min, then incubated for at least 48 hr at 4˚C. After

48 hr, the viscous DNA solution was mixed by gentle pipetting with a P1000 tip. This controlled

shearing step encourages resuspension of HMW DNA and improves library prep yield. DNA was

quantified with Qubit (Thermo Fisher Scientific, Waltham, MA) and Nanodrop (Thermo Fisher Scien-

tific, Waltham, MA) absorption ratios were checked to ensure 260/280 was greater than 1.8 and

260/230 was greater than 2.0.

The sequencing library was prepared following the ONT Ligation Sequencing Kit (SQK-LSK109)

protocol, with two important modifications. First, we started with approximately 3 mg of input DNA,

three times the amount recommended by the manufacturer. Second, we utilized a form of size-selec-

tive polymer precipitation (Paithankar and Prasad, 1991) with the Circulomics Short Read Elimina-

tor (SRE) buffer (Circulomics, Baltimore, MD) plus centrifugation to isolate DNA instead of magnetic

beads. We found this to be necessary because magnetic beads irreversibly clumped with viscous
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HMW gDNA, decreasing library yield and limiting read lengths. The manner in which this was per-

formed was specific to the cleanup step. After the end-prep/repair step (New England Biolabs, Ips-

wich, MA), the SRE buffer was used according to the manufacturer’s instructions. After adapter

ligation, DNA was pelleted by centrifuging the sample at 10,000�g for 30 min without the addition

of any reagents, since DNA readily precipitated upon addition of the ligation buffer. Ethanol washes

were avoided past this step since ethanol will denature motor proteins in the prepared library.

Instead, the DNA pellet was washed with 100 mL SFB or LFB (interchangeably) from the ligation

sequencing kit instead of 70% ethanol. If library yield was sufficient (>50 ng/mL), the Circulomics SRE

buffer was used for a final round of size selection, replacing the ethanol wash with LFB/SFB as

described above. Of note, a cheaper and open-source alternative made with polyethylene glycol

MW 8000 (PEG 8000), although less effective at size selection, to the SRE buffer is described by

Tyson, 2020 (dx.doi.org/10.17504/protocols.io.7euhjew). A 1:1 dilution of the PEG 8000 solution

described in that protocol can be substituted for SFB or LFB in the washing steps described above.

The typical yield of a library prepared in this manner is in the range of 1–1.5 mg. Approximately

350 ng of the prepared library was loaded for each sequencing run. To maintain flow cell throughput

and read length, flow cells were flushed every 8–16 hr with the ONT Flow Cell Wash Kit (EXP-

WSH003) and reloaded with a fresh library.

Obtaining short read datasets for polishing
We performed 2�150 bp Illumina sequencing for most of the strains that did not have publicly avail-

able short read data available. Illumina libraries were prepared from the same gDNA extractions as

the Nanopore library for most samples, with some exceptions as described in Supplementary file 1.

The libraries were prepared in either of two manners. For the majority of samples, sequencing librar-

ies were prepared with a modified version of the Nextera DNA Library Kit (Illumina, San Diego, CA)

protocol (Baym et al., 2015) and sequencing was performed by Admera Health on NextSeq 4000 or

HiSeq 4000 machines. Alternatively, Illumina libraries were prepared with the KAPA Hyper DNA kit

(Roche, Basel, Switzerland) according to the manufacturer’s protocol and sequenced at the UNC

sequencing core on a HiSeq 4000 machine. In either case, all samples on a lane were uniquely dual

indexed. Illumina sequencing was not performed for D. equinoxialis, D. funebris, D. subpulchrella, D.

tropicalis, Le. varia, Z. lachaisei, Z. taronus, and the unidentified São Tomé mushroom feeder due to

material unavailability (line extinction/culling). Details for each sample, including accession numbers

for any public data used in this work, are provided in Supplementary file 1.

Choice of long read assembly program
Flye v2.6 (Kolmogorov et al., 2019) was used due to its quick CPU runtime, low memory require-

ments, excellent assembly contiguity, and its consistent performance on benchmarking datasets

(Wick and Holt, 2020). We additionally validated the performance of Flye for Drosophila genomes

using Nanopore data previously generated by Miller et al., 2018 and 60� depth of new Nanopore

sequencing of the Berkeley Drosophila Genome Project ISO-1 strain of D. melanogaster. We assem-

bled genomes with Flye v2.6 and Canu v1.8 (Koren et al., 2017) to evaluate simple benchmarks of

assembly contiguity and run time and to provide a comparison to the Miniasm (Li, 2016) assemblies

from Miller et al., 2018 Canu produced relatively contiguous assemblies, but a single assembly took

several days on a 92-core cloud server and even longer when a large number of extra-long (>50kb)

reads were present in the data. This was determined to be too costly when scaled to >100 species.

In addition to a much shorter (8–12 hr wall-clock time) runtime, Flye also produced significantly more

contiguous assemblies than those reported by Miller et al. (Figure 1—figure supplement 2). Note,

several new long read assemblers have been released and these assembly programs have been sig-

nificantly updated since this work was performed. Assembler performance should be evaluated with

up-to-date versions in any future work.

Assembly and long read polishing
After Nanopore sequencing was performed, raw Nanopore data were basecalled with Guppy v3.2.4,

using the high-accuracy caller (option: -c dna_r0.4.1_450bps_hac.cfg). Raw Nanopore data previ-

ously generated by Miller et al., 2018 were processed in the same manner.
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Next, basecalled reads were assembled using Flye v2.6 with default settings. Genome size esti-

mates (option: –genomeSize) were obtained through a web search or taken from a closely related

species. If no such information was available, an initial estimate of 200 Mb was used. The specific

genome size estimate provided to Flye (separate from the one estimated later from BUSCO cover-

age) is provided in Supplementary file 2.

After generating a draft assembly, we performed long read polishing using Medaka following the

developer’s instructions (https://nanoporetech.github.io/medaka/draft_origin.html). Reads were

aligned to the draft genome with Minimap2 v2.17 (Li, 2016) and parsed with SAMtools v1.12

(Danecek et al., 2021; Li et al., 2009) before each round of polishing (option: -ax ont). The draft

was polished with two rounds of Racon v1.4.3 (Vaser et al., 2017) (options: -m8 -x 6 g 8 w 500) and

then a single round of Medaka v0.9.1.

Haplotig identification and removal
Next, we assessed each Medaka-polished assembly for the presence of duplicated haplotypes (hap-

lotigs) using BUSCO v3.0.2 (Simão et al., 2015; Waterhouse et al., 2018) along with the OrthoDB

v9 dipteran gene set (Zdobnov et al., 2017). If the BUSCO duplication rate exceeded 1%, haplotig

identification and removal was performed, but on the draft assembly produced by Flye rather than

the polished assembly. Purge_haplotigs v1.1.1 (Roach et al., 2018) was run on these sequences fol-

lowing the guidelines provided by the developer (https://bitbucket.org/mroachawri/purge_haplo-

tigs). Illumina reads were mapped to the draft assembly with Minimap2 (option: -ax sr) to obtain

read depth information. The optional clipping step was performed to remove overlapping (dupli-

cate) contig ends. Finally, remaining contigs were re-scaffolded with Nanopore reads using npScarf

v1.9-2b (Cao et al., 2017), with support from at least four long reads required to link two contigs

(option: –support=4). These sequences were polished with Racon and Medaka as described above.

Final polishing and decontamination
The Medaka-polished assembly was further polished with Illumina data and any contigs identified as

microbial sequences were removed. Illumina reads were mapped to the draft assembly with Mini-

map2 (option: -ax sr) and the assembly polished with Pilon v1.23 (–fixXsnps,indels)

(Walker et al., 2014). If a genome did not have an accompanying short read dataset but Illumina

reads were available from a different strain of the same species (Supplementary file 1), Pilon was

run without correcting SNVs (option: –fixXindels). We found that allowing Pilon to fix gaps or

local misassemblies in default mode introduced large spurious indels in regions where short reads

map poorly such as tandem repeats. These variants were not supported by long reads or by compar-

ison to a reference assembly. Thus, we chose to use Pilon to only fix base-level errors.

Assembly decontamination
After Pilon polishing, assembly completeness was assessed again with BUSCO v3.0.2. We used

BLAST v2.10.0 (Altschul et al., 1990) to remove any contigs not associated with at least one BUSCO

that were also of bacterial, protozoan, or fungal origin. Finally, any sequences flagged by the NCBI

Contamination Screen were excluded or trimmed.

A flow chart outline of the full genome assembly process described here is provided in Figure 7.

Alternative hybrid assembly process
Zaprionus indianus line 16GNV01 had insufficient Nanopore data for a Flye assembly. For this line

only and to consolidate all assemblies as a single resource, the same genome assembly from

Comeault et al., 2020 is both reported here and associated with the NCBI BioProject associated

with this work. An alternative assembly strategy was taken for this line. Briefly, short-read sequence

data was assembled first using SPAdes v3.11.1 (Bankevich et al., 2012) using default parameters.

Nanopore reads were corrected with Illumina data using FMLRC v.1.0.0 (Wang et al., 2018) and

subsequently used to scaffold the SPAdes assembly using LINKS v.1.8.7 (Warren et al., 2015) using

the recommended iterative approach of 33 iterations with incrementally increasing k-mer distance

threshold. The resulting scaffolds were polished with four rounds of Racon followed by four rounds

of Pilon (but without Medaka) as described above.
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Repeat annotation and masking
Each draft assembly was soft repeat masked with RepeatMasker v4.1.0 (Smit et al., 2013) at

medium sensitivity, with both Dfam 3.1 (Hubley et al., 2016) and RepBase RepeatMasker edition

(Bao et al., 2015) repeat libraries installed (options: –speciesXDrosophila –xsmall). Repeat-

Masker was initialized with cross_match v1.090518 (Green, 2009) as the sequence search engine

and Tandem Repeat Finder v4.0.9 (Benson, 1999).

Genome size estimation
Genome size was estimated with Nanopore and Illumina data separately (Supplementary file 2). To

estimate genome size from Illumina reads, we used the k-mer counting approach implemented in

GenomeScope v1.0.0 (Vurture et al., 2017). Briefly, we followed the developer-provided workflow

(https://github.com/schatzlab/genomescope) and generated a k-mer count histogram using a k-mer

size of 21 (option: -m 21) with Jellyfish v2.2.3 (Marçais and Kingsford, 2011). The histogram was

passed to the genomescope.R script to estimate the haploid genome size. We found these esti-

mates to be somewhat unreliable, particularly when we tried to estimate genome size from a non-

inbred sample. Due to this issue and because some samples were missing short read data, we took

additional steps to estimate genome size from long reads.

Since the higher error rate of Nanopore reads (5–15%) precludes the use of k-mer based refer-

ence-free approaches for genome size estimation, we instead used regions annotated as a single-

copy BUSCO gene to estimate genome size. Our rationale was that non-duplicated complete BUS-

COs in each assembly could reasonably be assumed to be true single-copy markers and serve a simi-

lar function as unique k-mers for genome size estimation. Then, genome size can be roughly

estimated from the depth of coverage across single-copy BUSCOs:

genome size ¼ total bases in Nanopore readsð Þ= coverageð Þ

To perform this estimation, Nanopore reads were aligned to the coding sequences with

Figure 7. Flow chart depiction of the assembly pipeline.
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Minimap2, only keeping primary alignments (options: –ax map-ont –secondary=no). Read depth

was computed from genomic regions annotated as a single-copy BUSCO with SAMtools. If some

proportion of the genome assembly was identified as non-fly and removed during the contaminant

removal step, we adjusted the genome size estimate based on the total length of removed

sequence:

genome size¼ total bases in readsð Þ � 1� proportion of assembly removedð Þ= mean depth of coverageð Þ

This assumes uniform Nanopore coverage across fly and contaminant sequence in the assembly

and serves only as a rough approximation.

Assessing assembly contiguity and completeness
Assembly contiguity statistics were computed using a series of custom shell and R scripts. Fasta files

were parsed with Bioawk v1.0 (Li, 2017) and summary statistics were computed in the standard man-

ner with the custom scripts. Contig N50 and NG50 were computed in the standard manner, in the

latter case using the long-read based estimates of genome size. In addition to these statistics, we

present contiguity in terms of auN. The auN statistic (Li, 2020) is the area under an Nx curve, and

can be computed by multiplying the length of each contig (Li) by the proportion of the assembled

genome it accounts for (Li /
P

Li), then summing these values for all i contigs:

auN ¼
X

i

Li
Li
P

j Lj

 !

Contig N50 represents a single point on the Nx curve and may or may not be affected by assem-

bly breaks, but auN is always sensitive to a break in the assembly. Therefore, auN is a fairer statistic

for comparison between different versions of the same assembly.

Assembly completeness was assessed with BUSCO v4.0.6 (Seppey et al., 2019), using the

OrthoDB v10 Diptera database (Kriventseva et al., 2019) (options: –mXgeno -l diptera_odb10 –

augustus_species fly). Note, the BUSCO version used here is different from what was used during

the assembly process. When this work was started, BUSCO v3 was the current version. Version 4 was

released while the project was ongoing. For consistency, version three was used during the assembly

process for all assemblies, but the completeness of all final assemblies was assessed with BUSCO v4.

For D. equinoxialis only, BUSCO v4.1.4 was used instead of v4.0.6 due to the presence of a bug that

precluded the use of earlier versions.

Computation of sample heterozygosity and sequence quality from long
and short reads
Sample diversity was estimated by counting the number of non-reference single-nucleotide polymor-

phisms (SNPs) and indels, called separately from long and short reads. We mapped ONT reads to

the finished genome with Minimap2 (option: -ax map-ont) then sorted the output with sambamba

0.8.0 (Tarasov et al., 2015). Variants were called with PEPPER-Margin-Deepvariant r0.4

(Shafin et al., 2021), following the developer’s Singularity container-based ‘Nanopore variant call-

ing’ instructions (https://github.com/kishwarshafin/pepper), to generate both variant call format

(VCF) and banded genomic variant call format (gVCF) files, that is, a variant call file including inter-

vals of invariant sites. Similarly, we mapped Illumina reads to each finished genome genome with

Minimap2 (option: -ax sr), sorted and removed duplicates with sambamba, then performed variant

calling, with output including all invariant sites, with BCFtools v1.12 (Danecek et al., 2021;

Li, 2011). For both types of variant calls, we performed additional quality filtering using BCFtools.

Only sites with minimum read depth 10, site quality score 30, and (if applicable) genotype quality

score 30 filters were kept. The number of callable sites was estimated by adding the number of sites

and the lengths of the intervals that passed these quality filters.

Sequence quality was estimated from variant calls following the standard workflow (e.g.

Koren et al., 2017; Solares et al., 2018). Error was estimated by counting the number of non-refer-

ence variants (SNPs or indels), in either heterozygous or homozygous form, then dividing this count

by the number of informative bases for variant calling: Perror = (Number of variants)/(Number of
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callable sites). A Phred-scaled quality score (QV) was computed in the standard manner: QV = �10 *

log10(Perror).

Reference-free consensus quality scores
Reference-free quality score estimates were computed with Merqury v1.3 (Rhie et al., 2020), follow-

ing the instructions provided by the developer on the GitHub repository (https://github.com/marbl/

merqury). Briefly, we used the tools included with the installation of Merqury to estimate an optimal

k-mer size for each genome assembly, at a collision rate of 0.001. Then, we built a k-mer database

using the Illumina reads used to polish the genome assembly. Note, in some cases, Illumina reads

from a different strain were used, and polishing was only used to correct indels. Finally, we ran the

main Merqury script on the assembly of interest to estimate a genome-wide Phred-scaled consensus

quality score (QV).

Reference-based quality assessment
Reference-based quality score estimates were computed ONT Pomoxis v0.3.7 (https://github.com/

nanoporetech/pomoxis) for assemblies where a well-annotated counterpart of not only the same

species but the same strain was available through the NCBI RefSeq database. Gene and repeat

annotations were downloaded from NCBI and coding regions, introns, intergenic regions, and

repeats were parsed into BED formatted intervals with bedtools v2.30.0 (Quinlan and Hall, 2010).

Introns were computed as the within-gene complement of exons, and intergenic regions were com-

puted as the complement of genic regions. Then, we ran Pomoxis, which aligns each Nanopore-

based assembly to the reference genome and assessed differences between the two genomes in

100 kb windows (option: -c 100000). Consensus quality was estimated by counting SNVs, insertions,

and deletions and dividing the number of affected base pairs by the length of the alignment. This

computation was performed separately for exons, introns, intergenic regions, repeats, and for the

whole genome, using the genomic intervals described above.

For manual validation, we first used Pomoxis, as described above, to generate a list of all 1 bp or

longer (option: -l 1) indel differences between our Nanopore-based assembly and the Release six

assembly (Hoskins et al., 2015) of the D. melanogaster reference strain. The CA 8.2 MHAP version

of the PacBio-based (Kim et al., 2014; Koren et al., 2017) D. melanogaster ISO-1 assembly was

obtained from GenBank accession GCA_000778455.1. The iso1_onta2_quickmerge_scaffolds version

from Solares et al., 2018 was downloaded from the GitHub repository associated with that project

(https://github.com/danrdanny/Nanopore_ISO1). We aligned short reads, long reads, and each of

the non-reference genomes to the Release six reference genome using Minimap2 (option, for short

reads: -ax sr; for long reads: -ax map-ont; for genomes: -ax asm5), then sorted and parsed the out-

put into BAM format with SAMtools. Repeat annotations for the Nanopore-based assembly were

generated as described previously, then lifted over into reference coordinates. The liftover was per-

formed with HALtools v2.1 (Hickey et al., 2013). Specifically, we aligned our Nanopore assembly to

the Release six assembly with Minimap2 (options: –cx asm5 –cs long), converted the PAF alignment

to MAF with Minimap2’s paftools.js program, MAF alignment to HAL with HALtools’ hal2maf pro-

gram, and executed the liftover with HALtools’ halLiftover program. Alignments and genomic inter-

vals were viewed in the Integrative Genomics Viewer v2.9.4 (Robinson et al., 2011b).

Species tree inference from BUSCO orthologs
We inferred species relationships using complete and single-copy orthologs identified by the

BUSCO analysis. Amino acid sequences were used instead of nucleotide sequences to achieve better

alignments in the face of high-sequence divergence (Bininda-Emonds, 2005). Out of 990 single-

copy orthologs present in all assemblies, we randomly selected 250 to construct gene trees. The

predicted protein sequence of each ortholog was aligned separately with MAFFT v7.453 (Katoh and

Standley, 2013), using the E-INS-i algorithm (options: –ep 0 –genafpair –maxiterate 1000).

Gene trees were inferred with RAxML-NG v0.9.0 (Kozlov et al., 2019), using the Le and Gascuel,

2008 amino acid substitution model (options: –msa-formatXFASTA –data-typeXAA –modelXLG).

The summary method ASTRAL-MP v.5.14.7 (Yin et al., 2019) was run with default settings to recon-

struct the species tree. We note that this is not intended to be a definitive phylogenetic
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reconstruction of species relationships; see Suvorov et al., 2021 for a time-calibrated phylogeny uti-

lizing 158 drosophilid whole genomes.

Analysis of chromosome organization
Syntenic comparisons were performed by representing the genome assemblies as paths through an

undirected graph. The path each genome traverses can be considered a series of connections

between single copy orthologous markers (i.e. BUSCOs). Using BUSCO v4 annotations for each final

genome, we constructed a 3285 by 3285 symmetric adjacency matrix, with row and column headers

(nodes) corresponding to 3285 possible BUSCOs from the diptera_odb10 database. Off-diagonal

entries in each matrix (edges) were the number of times two single-copy BUSCOs were found as

connected and immediate neighbors in the assemblies. Sequences of three or more BUSCOs were

not considered. The graph was then visualized in two dimensions using the ForceAtlas2 graph layout

algorithm (Jacomy et al., 2014) as implemented in the ForceAtlas2 R package (https://github.com/

analyxcompany/ForceAtlas2). While this method is primarily designed for flexible, user-friendly tun-

ing of graph visualization, it is similar in effect to other nonlinear dimensionality reduction techniques

(Böhm et al., 2020). ForceAtlas2 was run with the settings: tolerance=1, gravity=1, iterations=3000.

D. equinoxialis was omitted from this analysis due to the BUSCO v4 issues mentioned previously.

Repeat content and genome size analysis
The contribution of repeat content to genome size variation in Drosophila was examined by compar-

ing the number of bases in each genome annotated as a type of repeat (previously described) to the

number of bases not annotated as repetitive sequence. Phylogenetic independent contrasts (Felsen-

stein, 1985) were computed for the counts of bases in both categories using the R package ape

v5.4.1 (Paradis and Schliep, 2019) using the species tree described above with the root age set to

53 million years following the estimate in Suvorov et al., 2021.

Compute containers
While the overall computational demands of this work were high, the unique computational chal-

lenge we faced was the variety of computational resources used for various stages of the assembly

process. Assemblies took place across local servers, institutional clusters, and cloud computing

resources. A key factor in ensuring reproducibility across computing environments was the use of

computing containers, which is like a lightweight virtual machine that can be customized such that

sets of programs and their dependencies are packaged together. Specifically, we used the programs

Docker and Singularity to manage containers. These programs allow containers to be built and pack-

aged as an image file which is transferred to another computer. A Dockerfile, a text file containing

instructions to set up an image, is used to select the Linux operating system and the suite of pro-

grams to be installed within a Docker container. Singularity is used to package the Docker container

as an image file that can be transferred to and used in a cluster or cloud environment without the

need for administrative permissions. Standard commands are then run inside the container environ-

ment. The files and instructions necessary to build these containers, which will allow for the exact

reproduction of the computing environment in which this work was performed, are provided at:

https://github.com/flyseq/drosophila_assembly_pipelines, (copy archived at swh:1:rev:

4e40d28d0bdcd1bc7e4eabb7709f301df9ad7ead, Kim, 2021). We hope these files will facilitate the

work of researchers new to Nanopore sequencing or the genome assembly process.
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National Natural Science
Foundation of China

32060112 Jian-Jun Gao

Japan Society for the Promo-
tion of Science

JP18K06383 Masayoshi Watada

Horizon 2020 - Research and
Innovation Framework Pro-
gramme

765937-CINCHRON Giulia Manoli
Enrico Bertolini

Czech Science Foundation 19-13381S Vladimı́r Košťál
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Data availability

All sequencing data and assemblies generated by this study are deposited at NCBI SRA and Gen-

Bank under NCBI BioProject PRJNA675888. Accession numbers for all data used but not generated

by this study are provided in the supporting files. Dockerfiles and scripts for reproducing pipelines

and analyses are provided on GitHub (https://github.com/flyseq/drosophila_assembly_pipelines;

copy archived at https://archive.softwareheritage.org/swh:1:rev:

4e40d28d0bdcd1bc7e4eabb7709f301df9ad7ead). A detailed wet lab protocol is provided at

https://Protocols.io (https://doi.org/10.17504/protocols.io.bdfqi3mw).

The following dataset was generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Kim BY, Wang JR,
Kim BY, Wang JR

2020 Nanopore-based assembly of many
drosophilid genomes

https://www.ncbi.nlm.
nih.gov/bioproject/?
term=prjna675888

NCBI BioProject,
PRJNA675888

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Miller DE 2018 Sequencing and assembly of 14
Drosophila species

https://www.ncbi.nlm.
nih.gov/bioproject/
PRJNA427774

NCBI BioProject,
PRJNA427774

The Drosophila
modENCODE
Project

2011 modENCODE Drosophila
reference genome sequencing
(fruit flies)

https://www.ncbi.nlm.
nih.gov/bioproject/63477

NCBI BioProject,
63477

Yang H 2018 DNA-seq of sexed Drosophila
grimshawi, Drosophila silvestris,
and Drosophila heteroneura

https://www.ncbi.nlm.
nih.gov/bioproject/
PRJNA484408

NCBI BioProject,
PRJNA484408

Bronski M 2019 Drosophila montium Species
Group Genomes Project

https://www.ncbi.nlm.
nih.gov/bioproject/
PRJNA554346

NCBI BioProject,
PRJNA554346

Rane R 2018 Invertebrate sample from
Drosophila repleta

https://www.ncbi.nlm.
nih.gov/bioproject/
476692

NCBI BioProject,
476692

Turissini D 2017 Fly lines https://www.ncbi.nlm.
nih.gov/bioproject/
395473

NCBI BioProject,
395473

National Institute of
Genetics [Japan]

2016 Genome sequences of 10
Drosophila species

https://www.ncbi.nlm.
nih.gov/bioproject/
PRJDB4817

NCBI BioProject,
PRJDB4817

Ellison C 2019 Raw genomic sequencing data
from 16 Drosophila species

https://www.ncbi.nlm.
nih.gov/bioproject/
PRJNA550077

NCBI BioProject,
PRJNA550077
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