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����������
�������

Citation: Marković, M.; Cheema, J.;
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Abstract: Understanding the relationship between land use and land cover and thermal environment
has recently become an emerging issue for urban planners and policy makers. We chose Belgrade,
as a case study, to present a cost- and time-effective framework for monitoring spatiotemporal
changes of green spaces in relation to the land surface temperature (LST). Time series analysis
was performed using Landsat 5 TM and Landsat 8 OLI/TIRS imagery from 1991 to 2019 with an
approximate 5-year interval (18 images in total). Spectral vegetation indices and supervised land
cover classifications were used to examine changes of green spaces. The results showed a fluctuating
trend of the normalized difference vegetation index (NDVI) and the normalized difference water
index (NDWI). The highest values were recorded in 2019, indicating vegetation recovery in the last
decade. A significant positive correlation was determined between the spectral vegetation indices
and the amount of precipitation during growing season. The land cover classification showed that the
share of vegetated and bare land decreased by 11.74% during the study period. The most intensive
conversion of green and bare land into built-up land cover occurred in the first decade (1991–2000).
To assess spatiotemporal changes in the LST, Landsat Collection 2 Surface Temperature products
were used. We found a negative correlation between change in the spectral vegetation indices and
change in the LST. This indicates that the reduction in vegetation was associated with an increase in
the LST. The municipalities that were the most affected in each decade were also identified with our
framework. The findings of this study are of great relevance for actions targeting an improvement in
urban thermal comfort and climate resilience.

Keywords: optical remote sensing; green space; NDVI; NDWI; land cover change; land surface
temperature

1. Introduction

Urban areas are characterized by higher air temperatures compared to rural areas
mainly due to an altered surface cover [1,2]. Artificial materials absorb and store a signifi-
cant amount of solar heat during the day, which is slowly realized during the night due to
their high thermal inertia. Vegetation mitigates urban heat through evapotranspiration,
shading and absorption of air pollutants [3–5]. Consequently, the role of vegetation and
water bodies to regulate local climate in cities is of crucial importance for the well-being of
the city residents.
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In the last few decades, the number of heat waves in Europe significantly increased and
metropolitan areas are regarded as particularly vulnerable [6]. Therefore, understanding
the relationship between land use and land cover (LULC) and thermal environment has
recently become an important task for urban planners and policy makers [7,8]. We chose
the city of Belgrade as a case study, as it is one of the largest metropolitan regions in south-
eastern Europe that is experiencing urban growth and expansion. During the transition
from socialism to capitalism (over the last 3 decades), suburbanisation took place rapidly
without a coherent planning policy. Massive transformations of non-urban into urban land
has mainly been driven by the rural-to-urban migration of economically disadvantaged
citizens in search of better economic conditions [9,10]. Although it is well known that
vegetation is the first to suffer during urban growth and expansion [11], changes in green
spaces in Belgrade during the transitional period have not been sufficiently explored.

Thermal infrared remote sensing has been widely used for the estimation of land
surface temperature (LST) and the assessment of the surface urban heat island [12,13].
Landsat data products have provided medium resolution observations of land surface
since the early 1980s and are available free of charge, making them a great choice for
long-term monitoring of the LST and land cover characteristics. Numerous studies have
investigated the relationship between LST and vegetation abundance or health, using the
normalized difference vegetation index (NDVI) [8,14–17] and the normalized difference
water index (NDWI) [18,19]. The inverse relationship of LST with the NDVI and the
NDWI determined in these studies suggests that vegetation has a mitigative effect on the
surface urban heat island. However, studies dealing with large spatial and/or temporal
scales have reported contradictive results regarding the relationship between LST and
land cover characteristics, depending on the year, season, time of the day or geographic
location [20–24]. This indicates the complexity of this relationship and the importance of
its continuous monitoring at a local level.

Spatial and temporal patterns of the LST retrieved from satellite records for Belgrade
were the subject of a study conducted by Pongrácz et al. [25], but only for a short time
period (2001–2003) and in a 1 km spatial resolution. To the best of the authors’ knowledge,
the relationship between LST and land cover characteristics for the observational area of
Belgrade has not been investigated so far. With the General Urban Plan of Belgrade 2021
(accepted in 2003/last updated in 2016, Official Gazette of the City of Belgrade No.11, 2016),
the problem of the loss and degradation of green spaces was addressed and guidelines
for sustainable urban development were proposed. The main goal of this study was to
support ecologically based urban planning, with a novel framework for the monitoring of
spatiotemporal changes of green spaces and the LST. This study addresses the following
questions:

1. How have green spaces changed in Belgrade in the last 3 decades (1991–2019)?
2. What was the relationship between vegetation indices (the NDVI and the NDWI) and

climate factors?
3. What was the relationship between the change in vegetation indices (the NDVI and

the NDWI) and change in the LST in different municipalities?

The findings presented in this paper could help urban planners and ecologists to gain
new insights into vegetation change and its impact, and it could guide decision and policy
making towards the establishment of a high-quality, multifunctional and interconnected
system of green and blue spaces, thus maintaining and enhancing the benefits delivered by
those spaces.

2. Materials and Methods
2.1. Study Area and Population

The city of Belgrade is the capital of Serbia and one of the largest cities in south-
eastern Europe, with nearly 1.7 million inhabitants and an administrative area of 3234 km2.
The urban growth (increase in population) of Belgrade was accompanied by an urban
expansion of 23.56% for the period 1991–2011 [9,10]. The study area includes the territory
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of Belgrade within borders defined by the General Urban Plan of Belgrade 2021 and covers
778.51 km2 (Figure 1). This area is a part of the wider administrative unit of Belgrade
and is divided into 12 municipalities. Changes in population density for municipalities
according to the censuses from 1991, 2002 and 2011 are visualized on maps using QGIS
version 3.16 (QGIS Geographic Information System, Open Source Geospatial Foundation
Project, http://qgis.org, accessed on 22 November 2020) (Figure 2).

Figure 1. Administrative unit of Belgrade (dashed line) and study area defined by the General Urban
Plan of Belgrade 2021 (solid line). Map credit: Google Maps, 2021.

Figure 2. Changes in population density for 12 municipalities, according to censuses from 1991, 2002
and 2011.

Belgrade is located on the confluence of the Sava and Danube rivers and in the contact
zone of the southern ridge of the Pannonian basin and the northern border of the Balkan
Peninsula. North of the rivers, the terrain consists of alluvial plains and loess plateaus. The
terrain rises gradually from north to south, and the southern part of Belgrade lies on hilly
terrain, with the highest point at Avala Mountain (511 m a.s.l.). The territory of Belgrade is
characterized by a temperate–continental climate with local variations. The mean annual

http://qgis.org
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air temperature is 11.7 ◦C and the average annual precipitation is 666.9 mm. The conditions
for vegetation growth are favorable because most of the annual precipitation falls in May
and June (when plants need it most). June is the month with the highest precipitation
(an average of 86.6 mm), while July is the warmest month with a mean temperature of
22.1 ◦C [26]. According to the General Urban Plan of Belgrade 2021, forests cover 7.2%,
whereas public green spaces (parks, squares, green spaces along the banks of the Danube
and Sava, protective green belts, green corridors, wetlands and nurseries) occupy 1.8% of
the total urban area. The estimated green space per capita (forests and public green spaces)
is 52 m2. However, the share and dynamics of green spaces associated with different land
uses (aside from forests and public green spaces) are unknown.

2.2. Satellite Imagery

Landsat time-series data from 1991 to 2019 with (approximate) 5-year intervals was
selected for extracting information on land cover and LST in Belgrade. Collection 2
Level-2 Landsat products were acquired from the US Geological Survey through the
EarthExplorer data portal (https://earthexplorer.usgs.gov/, accessed on 4 August 2021). In
total, 18 images were downloaded for the selected years captured under clear atmospheric
conditions during the growing season (May–September). Important details of Landsat data
products used in this study, as well as climate data, are presented in Table 1.

Table 1. Remote sensing and climate data used in the study.

Image ID Observation Date
[DD/MM/YY] Sensor LST 1

[◦C]
AT 2

[◦C]
P 2

[mm]

LT05_L2SP_186029_19910610_20200915_02_T1 10/06/1991
8:45 a.m. Landsat 5 TM 28.1

19.2 338.8
LT05_L2SP_186029_19910712_20200915_02_T1 12/07/1991

8:45 a.m. Landsat 5 TM 33.5

LT05_L2SP_186029_19910930_20200915_02_T1 30/09/1991
8:45 a.m. Landsat 5 TM 26.6

LT05_L2SP_186029_19950723_20200912_02_T1 23/07/1995
8:26 a.m. Landsat 5 TM 32.8

19.7 357.6
LT05_L2SP_186029_19950808_20200912_02_T1 08/08/1995

8:25 a.m. Landsat 5 TM 32.7

LT05_L2SP_186029_19950824_20200912_02_T1 24/08/1995
8:24 a.m. Landsat 5 TM 28.8

LT05_L2SP_186029_20000517_20200907_02_T1 17/05/2000
8:57 a.m. Landsat 5 TM 37.1

21.8 157.3

LT05_L2SP_186029_20000602_20200907_02_T1 02/06/2000
8:57 a.m. Landsat 5 TM 31.4

LT05_L2SP_186029_20060721_20200831_02_T1 21/07/2006
9:14 a.m. Landsat 5 TM 37.1 20.1 353.6

LT05_L2SP_186029_20110601_20200822_02_T1 01/06/2011
9:11 a.m. Landsat 5 TM 26.4

21.7 230.3LT05_L2SP_186029_20110719_20200822_02_T1 19/07/2011
9:10 a.m. Landsat 5 TM 41.6

LT05_L2SP_186029_20110820_20200820_02_T1 20/08/2011
9:10 a.m. Landsat 5 TM 33.1

LT05_L2SP_186029_20110905_20200820_02_T1 05/09/2011
9:10 a.m. Landsat 5 TM 37.8

LC08_L2SP_186029_20150612_20200909_02_T1 12/06/2015
9:20 a.m. Landsat 8 OLI/TIRS 36.3

22.3 247.3
LC08_L2SP_186029_20150815_20200908_02_T1 15/08/2015

9:21 a.m. Landsat 8 OLI/TIRS 41.9

LC08_L2SP_186029_20150831_20200908_02_T1 31/08/2015
9:21 a.m. Landsat 8 OLI/TIRS 39.0

LC08_L2SP_186029_20190725_20200827_02_T1 25/07/2019
9:21 a.m. Landsat 8 OLI/TIRS 36.0

21.6 376.0

LC08_L2SP_186029_20190810_20200827_02_T1 10/08/2019
9:21 a.m. Landsat 8 OLI/TIRS 36.5

1 Land surface temperature in Belgrade estimated based on Collection 2 Surface Temperature product. 2 Climate data obtained from
Republic Hydrometeorological Service of Serbia (2020) based on measurements from three meteorological stations: Observatory, Košutnjak
and Surčin airport. AT—average air temperature in growing season; P—sum of precipitation in growing season.

https://earthexplorer.usgs.gov/
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The methodological workflow and steps in data analysis are described in Figure 3.

Figure 3. Methodological workflow of the study.
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2.3. Calculation of Spectral Vegetation Indices

For the remote sensing of vegetation, the most useful spectral radiances are in the
red and near-infrared (NIR) regions. Healthy vegetation strongly absorbs visible light for
photosynthesis and has high reflectance in the NIR region. Unhealthy or sparse vegetation,
on the other hand, will generally reflect more visible light and less NIR light. As the
NIR, red and short-wave infrared (SWIR) spectral regions are the most sensitive for green
vegetation and vegetation changes, these bands are employed to calculate the NDVI [27]
and the NDWI [28].

The NDVI is the difference between NIR and visible red reflectance values normalized
over total reflectance. It is calculated thus:

NIR − RED
NIR + RED

(1)

The NDVI values range from −1.0 to 1.0, where negative values generally represent
cloud, snow or water. A higher NDVI indicates a greater level of photosynthetic activity
and a greater quantity of green biomass.

The NDWI is used for remote sensing of water content of vegetation, and it is con-
sidered to be a good proxy for plant water stress [29]. The NDWI is derived from the
reflectance radiated in the NIR and SWIR bands:

NIR − SWIR
NIR + SWIR

(2)

The NDWI values vary from −1.0 to 1.0, depending on the water content, as well as
the type of vegetation and cover. The high NDWI values correspond to high vegetation
water content and to high vegetation fraction cover.

The calculation of vegetation indices was performed in QGIS. The Landsat band
designations used for the calculation of vegetation indices are presented in Table 2.

Table 2. Input data for the calculation of NDVI and NDWI.

Sensor RED NIR SWIR Spatial Resolution [m]

Landsat 5 TM Band 3 Band 4 Band 5 30
Landsat 8 OLI/TIRS Band 4 Band 5 Band 6 30

First, the NDVI and the NDWI were calculated for each image from Table 1. Then, the
average values for pixels were estimated based on all available images within one growing
season. For a summary of temporal changes in Belgrade and in the linear regression
analysis, medians were used because distributions of the NDVI and the NDWI deviate
from normal. For a summary of seasonal variations, an average value for each month was
calculated based on all available images taken in that month.

2.4. Land Cover Classification and Accuracy Assessment

In order to visualize and estimate changes of green spaces in Belgrade during the last
3 decades, land cover classification was performed for selected images from 1991, 2000,
2011 and 2019 (nearly the beginning and end of each decade).

The selection of land cover classes mainly depends on the aim of the study, the study
area and the resolution of the input data [30]. Given that the focus of this study is vegetated
areas, and the spatial resolution was constrained to 30 m, the following land cover classes
were selected: “green space”, “bare land”, “water” and “built-up land”.

For the future relevance of this research, it is very important to specifically define the
land class “green space”. The authors consider green space a land covered with some form
of vegetation—including forests, parks, grasslands and crops. This is the most common
definition of green space [31]. One uncertainty that arises from this classification is related
to agricultural areas under rotation systems used for annually harvested crops and fallow
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lands. If such an area is under crop at the time of observation, it will be classified as “green
space”, otherwise it will be classified as “bare land”. Built-up land cover is characterized
as an artificial and/or impervious cover, and it includes residential, commercial, industrial,
transportation and communication utilities.

Training samples were selected directly from the Landsat images using a priori knowl-
edge of the land use and Google Earth historical imagery. The samples of different land
covers were randomly chosen using the polygon of pixels sampling procedure. Around
250 training polygons were collected for each Landsat image.

Supervised classification was performed in QGIS, employing the EnMAP-box Plu-
gin [32]. A random forest was used as a classifier, and the number of trees was set to 100.
The random forests are tree-based classifiers that include k decision trees. Each individual
tree is trained over an independent random sample from the training data set and casts
a unit vote for the most popular class. Previous studies dealing with classification in a
heterogenous urban environment found that the performance of a random forest is superior
to other classifiers [33,34].

In the post-processing of the classification map, the “majority filter” tool was applied
in QGIS. It generalizes the map and reduces single pixel misclassifications. For an accuracy
assessment of the classification, a cross-validation with three-folds was employed (2/3 of
the sample was assigned as training and 1/3 as a test sample).

Based on land cover classification maps, land cover change maps were produced for
three decades: 2000–1991, 2011–2000 and 2019–2011. Land cover change maps are a very
useful instrument to assess and visualize where green spaces are under pressure or where
additional green spaces are needed in order to create an interconnected system. Of interest
to this study, there were changes from green and bare land into built-up land cover and
vice versa.

2.5. Relationship between Spectral Vegetation Indices and Climate Factors

The relationship between spectral vegetation indices and climate factors was examined
using linear regression analysis in RStudio version 1.3.1093 (The R Foundation for Statistical
Computing, https://www.r-project.org/, accessed on 20 August 2021). Regression analysis
was performed based on medians of the vegetation indices, average air temperature and
sum of precipitation in the growing season (Table 1).

2.6. LST Retrieval

In order to assess spatiotemporal patterns of LST in Belgrade, Landsat Collection 2
Surface Temperature products were utilized. These products are atmospherically corrected
and resampled to a 30 m resolution. Thermal data (Landsat 5 TM band 6 and Landsat 8
OLI band 10) was converted to radiance and temperature in Celsius. Data for around 20%
of pixels was missing from each image.

First, the LST was retrieved for each image from Table 1. Then, the average values for
pixels were estimated based on all available images within one growing season. Before the
calculation of differences between growing seasons (2000 and 1991, 2011 and 2000, 2019
and 2011), the LST was normalized following recommendations of previous studies [35,36]:

LSTi − LSTmin
LSTmax − LSTmin

(3)

where LSTi is the LST at pixel i, and LSTmax and LSTmin refer to the maximum and
minimum LST in the study area.

The LST retrieval was performed in QGIS.

2.7. Relationship between Change in the LST and Change in Spectral Vegetation Indices

The relationship between change in the LST and change in vegetation indices was
examined using linear regression analysis in RStudio. In this analysis, different municipali-
ties were compared between growing seasons (2000 and 1991, 2011 and 2000, and 2019 and

https://www.r-project.org/
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2011). The change in the LST was estimated based on the difference between two growing
seasons:

∆LST = LSTGS2 − LSTGS1 (4)

where LSTGS2 is the LST in a growing season in time point 2 and LSTGS1 is the LST in a
growing season in time point 1.

The change in vegetation indices was estimated based on the difference between two
growing seasons:

∆NDVI = NDVIGS2 − NDVIGS1 (5)

∆NDWI = NDWIGS2 − NDWIGS1 (6)

where NDVIGS2 and NDWIGS2 are vegetation indices in a growing season in time point 2,
and NDVIGS1 and NDWIGS1 are vegetation indices in a growing season in time point 1.

3. Results
3.1. Spatiotemporal Patterns of Spectral Vegetation Indices

For each growing season, the average NDVI and NDWI were calculated and are
presented in Figure 4a. During the study period (1991–2019), the NDVI and the NDWI
showed a fluctuating trend. The lowest values were recorded for 2000 (end of the first
and beginning of the second decade of the study period) and 2011 (end of the second and
beginning of the third decade). A low NDWI was also recorded in 2015. The highest values
were observed at the end of the third decade, in 2019.

Figure 4. Temporal changes (a) and seasonal variation (b) in the NDVI and NDWI for Belgrade. * Data for 2006 is based
only on one image per growing season that met the criteria of clear atmospheric conditions. ** Data for May is based only
on one image during the study period that met the criteria of clear atmospheric conditions.

Seasonal variation was presented based on the average values of all calculated vegeta-
tion indices within each month. During the growing season, the NDVI was the same in
May, June and August, and it was slightly higher in July. The NDWI was more variable
and had the peak in June. A drop in both indices was recorded in September (Figure 4b).

For the comparison of different municipalities over time, spectral vegetation indices
were summarized and are presented in Figure 5. The highest NDVI were recorded for the
municipalities of “Voždovac”, “Čukarica”, “Grocka”, “Rakovica” and “Palilula”. These
municipalities are mainly situated in the peripheral zone. The municipalities with the
lowest NDVI were “Stari Grad”, “Vračar” and “Novi Beograd”, which are located in the
central and middle zone of Belgrade. A similar pattern was recorded for the NDWI—
the highest values appeared in the peripheral municipalities of “Čukarica”, “Voždovac”,
“Grocka” and “Palilula”, and the lowest values were again in “Stari Grad”, “Vračar” and
“Novi Beograd”.
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3.2. Land Cover Change

Classification maps were generated for 1991, 2000, 2011 and 2019, practically the
beginning and end of each of the three decades (Figure 6). The classification resulted in an
overall accuracy of between 93.57% and 96.95% and a Kappa coefficient from 0.89 to 0.95
(Table 3). The lowest accuracy was determined for the differentiation between the classes
“bare land” and “built-up”, especially for 2000, indicating that these two classes have the
most similar spectral signature.
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Figure 6. Land cover classification for 1991, 2000, 2011 and 2019.

Table 3. Land cover class areas and accuracy assessment for 1991, 2000, 2011 and 2019.

Year Class
Area Accuracy

Absolute [ha] Relative [%] User’s Producer’s Overall Kappa

1991

Green space 39,779.19 51.20 99.2 99.71

96.95 0.95
Bare land 23,558.67 30.32 94.66 91.38

Water 3445.65 4.43 99.33 99.31
Built-up 10,913.94 14.05 82.01 86.6

2000

Green space 26,552.43 34.17 98.27 99.0

93.39 0.89
Bare land 30,079.8 38.71 92.53 67.41

Water 3308.76 4.26 99.85 99.95
Built-up 17,756.46 22.85 67.5 92.5

2011

Green space 34,259.22 44.09 99.53 99.63

95.10 0.92
Bare land 22,563.72 29.04 96.23 82.18

Water 3252.87 4.19 99.97 99.99
Built-up 17,621.64 22.68 77.81 95.59

2019

Green space 38,522.97 49.58 99.72 99.77

95.43 0.93
Bare land 15,694.56 20.20 96.73 73.85

Water 3144.24 4.05 99.87 99.96
Built-up 20,334.33 26.17 80.88 97.76
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Absolute and relative areas of each class were also calculated and are presented in
Table 3. A general increase in built-up land cover is noticeable during the entire study
period (from 14.05% in 1991 to 26.17% in 2019). Urban expansion toward peripheral areas
and the further densification of built-up land cover in the central city zone can be clearly
seen in Figure 6. The growth of the city was accompanied by the conversion of land
cover classes, mainly “green space” and “bare land” into “built-up”. These changes are
represented in Figure 7. The share of vegetated and bare land decreased by 11.74% from
1991 to 2019. The most pronounced conversions of the classes “green space” and “bare land”
into built-up land cover occurred during the first decade (1991–2000), while the smallest
change was recorded during the third decade (2011–2019). Reverse land cover changes
(from built-up land cover into “green space” and “bare land”) could also be observed, but
to a much lesser extent. They mainly represent abended properties undergoing natural
succession.

Figure 7. Belgrade’s land cover change maps for the last three decades.

In the spatial context, significant changes occurred on the edges of urban forests in the
middle city zone (the so-called “inner ring” of green spaces), as well as in the southern part
of Belgrade within suburbs where green spaces and agricultural areas were converted into
built-up area. In the western and northern part of Belgrade, urban expansion took place
along main traffic routes, mainly at the expense of agricultural land.

In addition, it can be noticed that many smaller green spaces within the central city
zone were converted into built-up areas over the whole study period.

3.3. Relationship between Vegetation Indices and Climate Factors

A significant positive linear relationship was found between both the NDVI and the
NDWI, and precipitation during the growing season (R2 = 0.70 and R2 = 0.55, respectively,
Figure 8). Years with a lower amount of precipitation during the growing season (2000,
2011 and 2015) were associated with a lower NDVI and NDWI, whereas 2019 was the year
with the highest amount of precipitation and the highest values of vegetation indices.

Between vegetation indices and average air temperature during the growing season, a
linear relationship was not determined (p > 0.05).
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Figure 8. Relationship between the NDVI (a) and NDWI (b) and precipitation in the last three
decades. Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001.

3.4. Spatiotemporal Change of the LST in Relation to Spectral Vegetation Indices

Between the change in the NDVI and the change in the LST, a significant negative
relationship was determined in all three decades (R2 = 0.75, R2 = 0.61 and R2 = 0.60,
respectively, Figure 9). In the first two decades, the municipalities with the largest decrease
in the NDVI also had the largest increase in the LST. In the third decade (2019–2011), the
NDVI increased in all municipalities. Again, the municipalities with the smallest increase
in the NDVI had the largest increase in the LST.
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Figure 9. Relationship between the change in the NDVI and the change in the LST in the last three
decades. Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001.

Between change in the NDWI and change in the LST, a significant negative relationship
was recorded in the second (2011–2000) and the third decade (2019–2011) (R2 = 0.52 and
R2 = 0.74, respectively, Figure 10). The municipalities with the largest decrease (or the
smallest increase in the third decade) in the NDWI had the largest increase in the LST.
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Figure 10. Relationship between the change in the NDWI and the change in the LST in the last three
decades. Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001.

4. Discussion
4.1. Changes of Green Spaces in Belgrade during the Last Three Decades

The diversity, composition and structure of urban vegetation primarily depend on the
ecoregion in which the city is situated, being constantly modified by the urban growth and
expansion in a given spatial and temporal frame [37,38]. The urban expansion of Belgrade
was at its most intensive in the first decade of the studied period (1991–2000), but also
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continued in the following decades. It was driven by the migration of Serbian refugees from
former Yugoslavia countries in the 1990s and the rural-to-urban migration of economically
disadvantaged citizens. Urban expansion took place in areas of small forests, forest patches,
areas under natural succession, agricultural and bare land—which are all spaces of great
importance for biogeochemical cycles [39]. Considered particularly harmful are the changes
in the “inner-ring” of green spaces in the middle city zone, which included the edges of
the urban forests “Košutnjak” and “Zvezdara”, as well as the lakeside of “Veliko blato”.
The high value of these spaces is reflected in the enhancement of living conditions, the
contribution to adaptation to climate change and biodiversity conservation (The General
Regulation Plan of the System of Green Areas of Belgrade, Official Gazette of the City of
Belgrade No. 110, 2019). Another issue to be addressed is the continuous densification of
the central city zone, despite a decline in population density. The central city municipalities
of “Stari Grad”, “Vračar”, “Novi Beograd” and “Savski venac” were areas with the lowest
NDVI and NDWI throughout the whole study period. The peripheral municipalities were
characterized by an increase in population density during the first decade, and in some of
them it continued in the following years (Surčin and Grocka). For others (Zemun, Palilula,
Čukarica and Voždovac), this trend was reversed in the second decade. It is evident that
peripheral areas of Belgrade differ in their demographic and urbanization dynamics, but
they still represent the largest reservoir of greenness in Belgrade.

Seasonal dynamics of vegetation are dependent of ecoregion and should be considered
in studies that are using remote sensing data to estimate vegetation change. Over the
past three decades, we found that the NDVI and the NDWI had its peaks in July and
June, respectively, and started decreasing in September. This indicates that maximal
photosynthetic activity was reached in July, and maximal water content was reached
in June.

Changes in green spaces in Belgrade were also driven by fluctuations in climate
factors. Climate, i.e., the seasonal course of solar radiation, temperature and precipitation,
determines the type of predominant vegetation on a continental, regional and local level,
as well as the biogeochemical conditions that also contribute to general vegetation features
(CO2 flux, carbon storage in biomass and soil) [40,41]. We found a significant positive
linear relationship between the amount of precipitation during the growing season and the
NDVI and the NDWI in Belgrade. Vegetation responds to variations of precipitation on a
long-term and short-term time scale, which is confirmed by both on-ground assessments
(numerous parameters at biological and ecological levels) and remote sensing (spectral
vegetation indices) [42]. Vegetation growth is usually positively correlated with the amount
of precipitation, monitored on inter-annual, intra-annual and seasonal scales [43]. The
effects of climate factors tend to be co-limiting for vegetation in a particular biogeographic
region, i.e., lower temperatures can be coupled with higher precipitation and limited solar
radiation. However, the global bioclimatic indices for Earth’s vegetated surface show that
water availability is the major limiting factor for vegetation growth (40%), followed by
temperature (33%) and solar radiation (27%) [44].

Maximal values of vegetation indices and an increase in greenness in 2019 may
have different explanations, including driving mechanisms of both climate (an increased
amount of precipitation) and human induced changes in LULC. The implementation of
new regulations regarding the conservation of natural areas in Belgrade appears likely to
have played a significant role in vegetation recovery.

A real challenge in monitoring vegetation distribution and health with remote sensing
lies in the possibility to distinguish temporary changes caused by fluctuations in climate
factors from long-term changes. Only long-term time series analysis in finer temporal
scales, together with the analysis of multiple driving factors, could resolve this uncertainty
and provide reliable information on vegetation change [45].
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4.2. Changes of the LST in Relation to Green Spaces

The inter-dependence and dynamics of the vegetation–climate relationship are recog-
nized through the vegetation feedbacks, which contribute to the global energy and mass
fluxes and patterns of climate. In the central and eastern European domain, the evapotran-
spiration feedback dominates, resulting in overall negative feedback on temperature on an
annual average [46]. Evapotranspiration is the sum of transpiration (water transpired by
plants through stomata) and evaporation (water evaporated from the soil surface, water
bodies and canopy interception). Being a crucial part of the water cycle, evapotranspira-
tion plays a significant role in atmospheric climatic parameters [47]. The cooling effect
of transpiration is achieved by the contribution of two processes: i) energy consumed for
maintaining this system is heat energy drawn from the air, and ii) evaporation of water
through stomata cools leaf surfaces and the surrounding air. The role of transpiration in
regulating the urban thermal environment has been acknowledged, based on field data
aimed at quantifying its effect on atmospheric temperature [48–50]. The intensity of cooling
by transpiration depends mainly on the composition (i.e., percent cover) of the green space
and its spatial distribution or configuration [51,52].

The assessment of LST patterns and their relationship with land cover on an intra-
urban scale is of great importance for the improvement of urban thermal comfort and
urban climate resilience. Land covers associated with lower LST are water bodies, green
areas and bare land [53,54]. However, Gunawardena et al. [55] emphasized the benefit
provided by green spaces, because water bodies and bare land may also provide a warming
effect during summer.

We found that an increase in the LST in Belgrade was associated with a decrease
in the NDVI (in the last three decades) and the NDWI (in the last two decades). These
results showed that a reduction in vegetation had a negative impact on the urban thermal
environment. A previous study also found a negative relationship between change in the
NDVI and the LST between two summers in Beijing, China [56]. Based on the long-term
continuous data, Huang et al. [16] recorded a strong negative relationship between the
LST and the NDVI and vegetation fraction in Wuhan, China. They also pointed out the
importance of a fine-scale temporal resolution for the assessment of the LST–vegetation
relationship. Sun and Kafatos [24] found a strong negative correlation between the LST and
the NDVI over North America, but only during the warm season (from May to October).
For the temperate biome in which Belgrade is situated, the relationship between LST
and NDVI shifted from positive in spring (March–May) to negative in summer (June–
August) [21]. In the same study, the authors inferred that water availability is the main
limiting factor for vegetation growth in a temperate region.

Our framework also identified the administrative spatial units—municipalities—that
were most threatened by warming in each decade. This is very useful information for
targeted actions against urban heat.

4.3. Implications of Study on Urban Planning, Management and Policy

The presented study and many similar studies [57–59] demonstrate how freely avail-
able remote sensing observations could be applied in urban planning and management.
Each study has its own local specificities (regarding climate and LULC change dynamics)
but contributes to a global understanding of the urban climate–LULC relationship. There
has been a large geographic bias of the cities being studied in favor of Asia and North
America [13]. In Europe, the change dynamics of south-eastern cities is the least explored
by remotely sensed data and methods.

This study highlights several important issues that need to be considered in urban
planning of Belgrade and other cities with similar developmental challenges.

1. A constant decrease in green spaces and elevated LST in the central city zone nega-
tively affects the health and life quality of the inhabitants of these parts of the city.
In the past two decades, frequent heat waves have caused increased heat stress in
the urban population and have had an especially negative effect on the health of
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vulnerable groups (the elderly, children, people with diseases of the cardiovascular
and respiratory system and those with mental health issues) (Climate Change Adap-
tation Action Plan and Vulnerability Assessment, City of Belgrade, Secretariat for
Environmental Protection, 2015). The proposed measures for mitigation of the urban
heat island effect suggested development of new green spaces on built-up land cover
that is undergoing conversion, preservation of existing and formation of new tree
lines and establishment of green roofs and walls on technically feasible surfaces (the
General Urban Plan of Belgrade 2021; Action Plan and Vulnerability Assessment, City
of Belgrade, Secretariat for Environmental Protection, 2015). Besides these measures,
we suggest prioritizing the preservation of old, large trees in the central city zone.

2. In the planning and development of new green spaces, it is important to consider
that water availability is the main limiting factor in temperate biome. Therefore,
drought-tolerant autochthonous species should be selected for planting. Also, shrubs
and trees should be favored, because these forms have a larger cooling potential in
comparison to ground vegetation via both transpiration and shading [51].

3. The pressure of urban development on the edges of urban forests within the “inner-
ring” of green spaces is regarded as particularly harmful. The reduction of forest edges
is threatening to diminish the energy flow between the forest and the surrounding
areas and reduce shade for adjacent surfaces, thus increasing LST [60]. Although the
protection of urban forests as natural resources and common goods is marked as a
top priority according to the General Urban Plan of Belgrade 2021, this study showed
an inconsistent application of this regulation in practice.

Finally, when it comes to urban planning and management, the main challenge is
implementation of regulations regarding sustainable development goals. Detailed large-
scale urban plans are not always harmonized with higher-order plans and do not strictly
comply with their strategic goals for the protection of green spaces. Instead, the protection
of green spaces is often compromised to meet the interest of private stakeholders. The
important issue is also a lack of measures and instruments for the implementation of
principles of green infrastructure, which are mainly discussed in documents only at the
conceptual level.

4.4. Limitations of the Study

The results of this study are of great relevance for better, more ecologically based
urban planning. However, there are a few limitations of the proposed framework that
should be considered.

The moderate spatial resolution of Landsat images (30 m) cannot entirely capture the
complex spatial patterns of the urban environment. As a result of the presence of “mixed
pixels”, i.e., the spectral reflectance mixture of different land covers within a pixel, part
of the information on land cover variability is lost [61]. In the past decades, a variety of
unmixing approaches has been introduced, which can be divided into two main categories:
linear and non-linear [62,63]. On multispectral images, the most widely used are linear
approaches because of their simplicity and flexibility in different applications. Recently,
Yang et al. [64] developed an integrated framework for mixed pixel decomposition and
decision tree classification.

Besides the presence of mixed pixels, the differentiation between bare and built-up
land cover was challenging in our study because of the similarity in the spectral signatures
of these two classes. This led to a misclassification of certain parts of pixels, especially in
2000, and had further implications on land cover change detection. However, we believe
that the overall accuracy of the supervised classification is very high and in accordance
with similar studies [35,65].

Because the LST is highly variable, the analysis of temporal trend based on Landsat
data is very limited. Landsat satellites have a revisited cycle of 16 days, but not all images
are usable due to the effects of clouds. It is also important to mention that data for around
20% of pixels was missing for Belgrade from Landsat Collection 2 Surface Temperature
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products. Therefore, multi-sensor fusion methods should be employed to obtain temporally
and spatially continuous LST data [16]. This represents a promising direction for further
research on the thermal environment of Belgrade and urban areas in general.

5. Conclusions

In this study, a cost- and time-effective framework for monitoring spatiotemporal
changes of green spaces in relation to the LST was presented. The framework is based
on freely available satellite data, open-source software and is easily applied. The city of
Belgrade was used as a case study, as one of the largest cities in south-eastern Europe that
is experiencing urban growth and expansion.

Landsat 5 TM and Landsat 8 OLI/TIRS imagery was used to assess spatiotemporal
changes of green spaces and the LST from 1991 to 2019 with an approximately 5-year
interval. Changes of green spaces were examined based on spectral vegetation indices (the
NDVI and the NDWI) and supervised land cover classification. The NDVI and the NDWI
showed a fluctuating trend during the study period. The lowest values were recorded
in 2000 and 2011, while the highest values were observed in 2019, indicating vegetation
recovery in the third decade. The central city zone was characterized by the lowest NDVI
and NDWI, throughout the whole study period, while the peripheral zone represented
the largest reservoir of greenness in Belgrade. Land cover classification was performed
for 1991, 2000, 2011 and 2019 and resulted in a very high overall accuracy (from 93.57% to
96.95% and a Kappa coefficient from 0.89 to 0.95). The lowest accuracy was recorded for
the classes “bare land” and “built-up”, meaning that differentiation between these classes
can be challenging in urban areas. During the study period, the share of vegetated and
bare land decreased by 11.74%. These conversions from green and bare land into built-up
land cover mainly occurred in the first decade (1991–2000). Spectral vegetation indices
were positively correlated with the amount of precipitation during the growing season.
Vegetation recovery at the end of the third decade may have different driving mechanisms,
including an increased amount of precipitation and the implementation of new regulations
regarding the conservation of natural areas.

The LST was retrieved from Landsat Collection 2 Surface Temperature products. The
relationship between the change in the spectral vegetation indices and the change in the
LST was examined, and we found that the reduction in vegetation had a negative impact
on the thermal environment of Belgrade. Our framework also identified the municipalities
that were most affected by an increase in the LST in each decade. This information can be
very useful for the actions targeting an improvement of urban thermal comfort and climate
resilience. To conclude, we suggest the implementation of our framework (in addition to
other freely available remote sensing data) in urban planning and management.
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