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����������
�������

Citation: Yalsuyi, A.M.; Vajargah,

M.F.; Hajimoradloo, A.; Galangash,
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Abstract: Pesticides can induce changes in behavior and reduce the survival chance of aquatic
organisms. In this study, the toxic effects of glyphosate suspension (Glyphosate Aria 41% SL, Tehran
Iran) on behavior and tissues of common carp (Cyprinus carpio) were assessed. For this purpose, a
96 h LC50 of glyphosate suspension (68.788 mL·L−1) was used in the toxicity test. All individuals
were divided into control and treatment groups with four replicates. Exposure operations were
performed under two conditions: increasing concentration of suspension from 0 to 68.788 mL·L−1;
then, decreasing to the first level. The swimming pattern was recorded by digital cameras during
the test and tissue samples were collected at the end of the test. There were significant differences
between the swimming pattern of treated individuals and control ones during both steps. The
sublethal concentration of glyphosate led to hypertrophy, hyperplasia and hyperemia in the gill of
fish. However, changes were obvious only after sampling. The exposed fish also displayed clinical
signs such as darkening of the skin and increasing movement of the operculum. Moreover, glyphosate
suspension affected swimming patterns of fish suggest that the swimming behavior test can indicate
the potential toxicity of environmental pollutants and be used as a noninvasive, useful method for
managing environmental changes and assessing fish health conditions by video monitoring.
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1. Introduction

The projection is that the world population will excess seven billion people and will
reach nine billion by 2050 [1]. Population growth will overcome agriculture product growth
by 2030. A series of factors (land degradation, falling cropland per person, global climate
change, water crisis, uneven distribution of resources and reduced yields per hectare) in
some continents and areas (i.e., Africa and west Asia) of the world already threaten human
food safety [2–4]. Plant pests are one of the important contributing factors in reducing
agriculture production. Global statistics show that an average of 35% of agricultural
products is lost due to the effects of preharvest pests [5,6]. However, the use of pesticides
appears to become less effective on crop pests [5]. As an example, Raven et al. [7] showed
that even though agriculture production and use of pesticides significantly increased (about
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33%) after the 1940s in the USA, the percent of agricultural waste lost because of pests
has not changed significantly. The fold increase went up to 15–20 in recent years [5,8]
and the total annual cost spent by farmers to supply and buy pesticides is about USD
40 billion [9]. It was observed that pesticides near the target organism, affect a large number
of the nontarget organisms. These effects are not limited only to the death of the nontarget
organisms, but are also linked to changes in organism fitness (reproduction, survival
and longevity) [10–16]. Environmental pollutants can affect behavior and life history
parameters including growth and reproductive functions of nontarget organisms. Thus,
there are serious concerns about the increased use of pesticides as a way to increase crop
yield [17–19].

Among herbicides, glyphosate (C3H8NO5P—41% SL) is one of the most commonly
used. In recent years, due to its impressive effect on weeds, the use of glyphosate has
rapidly increased worldwide, especially in developing countries [20,21]. Glyphosate is
sold in over 100 countries and its global use reached more than 800,000 tons in 2014 [22].
It is a type of herbicide that displays an effect on the activity of 5-enolpyruvylshikimate-
3-phosphate synthase (EPSP) and inhibits or impairs the synthesis of aromatic amino
acids in plant cellulose [20,23]. Aquatic environments are often the last destination for
this pollutant [24–26], and due to its high solubility and relatively long half-life, it is
usually present in water ecosystems. It leaches into water through several routes such as
rainfall, river and soil erosion [27]. The growing trend in its usage has led to an increase
in residues and adverse effects of this herbicide on biotic and abiotic components of the
ecosystems [28]. The results of previous studies pointed out that glyphosate can be toxic
to nontarget organisms. Evans et al. [16] studied the toxicity effect of glyphosate-based
herbicides on the behavior and survival rate of nontarget organisms (spiders and ground
beetles). Results of their study showed that glyphosate suspension, apart from affecting
arthropod community dynamics, can significantly change behavior (prey behavior) and
reduced the survival chance of spiders and ground beetles. In this study we used the
common carp (Cyprinus carpio) as a model organism. Exposure of the common carp to
glyphosate can reduce the rate and survival chance [29–32].

There are various methods to evaluate the possible toxicity of the pesticide. Most of
them require sacrificing a great number of individuals, especially for the LC50 96 h test,
which is based on finding the lethal concentration that kills half of the population [18].
Histopathological testing on the other hand has some limitations, such as: time-consuming
processes for sampling, fixation and preparing of tissue sections; need to use different
chemical substance and relatively expensive tools [33]. Behavioral tests are a noninvasive
method for evaluation of adverse effects of stressor parameters and do not require killing
fish or the use of expensive tools [34,35]. Behavior is the result of the interaction between
internal and external stimuli [36]. Hence, behavioral studies are based on behavioral
changes of the organism that are exposed to a wide range of stressor parameters such as
pollutants, prey, hunter, acute or chronic changes of water physicochemical parameters
and pathogens [37,38]. Finally, this type of studies can provide useful and new informa-
tion about the effects of pollutants on an organism that could not be found with other
methods [36,39].

The present study aims to evaluate behavioral changes and tissue damages of common
carp (Cyprinus carpio) exposed to sublethal and lethal concentrations of glyphosate. We
also investigate the possible use of the swimming pattern of fish as a behavior parameter
in toxicological studies and environmental quality assessment [34].

2. Materials and Methods

All steps of the present study were performed according to ethical standards and valid
regulations. The protocol of the study was according to guidelines issued by the Gorgan
University of Agricultural Sciences and Natural Resources Research Ethics Committee (No.
IR-GAUEC207s-2020).
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2.1. Preparing

For the experimental procedure, 100 fingering common carp (Cyprinus carpio) with
an average weight of 4.85 ± 0.6 g were bought and transferred to the research center
(laboratory of the Faculty of Natural Resources, University of Guilan, Guilan province,
Iran) The fish were randomly divided into 4 tanks (250 L— 25 fish in each tank). In order to
adapt to the laboratory conditions, the fish were maintained in these tanks for 2 weeks. They
were fed a commercial diet (produced by Faradaneh Co., Tehran, Iran) at 3% of biomass
weight, twice a day, during the adaptation period. Physicochemical parameters of water
were measured every day and they were the same in all tanks (pH 6.7–7.4, temperature
25 ± 1 ◦C, DO 8 mg·L−1, NH3 < 0.02 mg·L−1 and total hardness 185 mg CaCO3). The pH
and temperature, dissolved oxygen (DO), NH3 concentration and total hardness of water
(CaCO3 concentration) were measured by a digital soil and substrate pH meter (S500 pro,
Aqua Masters, Burbank, CA, USA), a dissolved oxygen meter for aquaculture (HI9147,
HANNA Instruments, Bertoki, Slovenia) and multiparameter photometers (7100, Palintest
Co., Gateshead, UK) twice a day, respectively.

2.2. Toxicity Test

According to Vajargah et al. [8] and Hedayati et al. [18], after the adaptation period,
60 fingerling fish (average of weight 4.85 ± 0.62 g) were divided into 4 groups with
3 replicates (12 aquariums 100 × 40 × 50 cm) and exposed to 4 concentrations of commercial
formulation of glyphosate suspension (glyphosate Aria 41% SL, Tehran, Iran). Nominal
concentrations of glyphosate were 0, 50, 100 and 150 mL·L−1 and the test duration was
96 h. The fish mortality rate was calculated at 24, 48, 72 and 96 h after exposure. Fish were
transferred into the test tank 16 h before beginning the test and they did not feed during the
toxicity test. Water physicochemical parameters were kept the same as one of the adaptation
periods (pH 6.7–7.4, temperature 25 ± 1 ◦C, DO 8 mg·L−1, NH3 <0.02 mg·L−1 and total
hardness 185 mg CaCO3). The LC50 96 h test was a static system. Finally, glyphosate
concentrations were added manually and the pesticide was distributed by water circulation
inside the aquarium.

2.3. Histopathological Test

The gill samples of fish were collected at 24, 48, 72 and 96 h after exposing the fish
to glyphosate (one sample for each replication) and they were fixed by diluted Formalin
solution (Formaldehyde 10% v/v, Sigma®, St. Louis, MO, USA). Formalin of the gill
samples was replaced 24 h after sampling [8]. The second gill arch from the fish’s left
side was selected for sampling. The samples were placed in a series of alcohols (50, 70,
80 and 96%) for half an hour. Immediately after that, the gill sample was washed with
1-butanol alcohol (for 2 h) and then they were placed into chloroform for clarifying for 1 h.
After this step, the gill samples were placed into an incubator at 37 ◦C for paraffinization
and softening using a solution of chloroform and paraffin (1:1). Then, samples were
incubated in pure paraffin at 54 ◦C and were prepared for tissue incisions after cooling.
The tissue incisions were obtained with an automatic tissue processor machine (TP1020,
Leica Microsystems Inc., Buffalo Grove, IL, USA) and their thickness was 6 µm. The tissues
incisions were stained by hematoxylin–eosin [33]. Tissue damages were observed and
evaluated by light microscopy (Model RH-85 UXL, UNILAB®, Mumbai, India). Organ
damages were analyzed according to Vajagah et al. [8] and compared with each other.

2.4. Behavioral Test

According to Kang et al. [34] and Kane et al. [36], after measurement of the 96 h LC50
of the glyphosate suspension (glyphosate Aria 41% SL, Tehran, Iran) the behavior test
was performed. The selection of fish was based on a completely random design, namely:
8 fingering common carp (Cyprinus carpio) with an average weight of 5.93 ± 0.8 g were
selected and divided into 2 groups (control and glyphosate treatment) with 4 repetitions
and maintained in 8 test tanks (the volume of water was 5 L in the test tank, one fish in each



Vet. Sci. 2021, 8, 218 4 of 14

tank). Fishes were transferred into the test tanks 12 h before beginning the behavior test for
adaptation and were not feed during the behavioral test. The test tanks had a water inlet
and an outlet, and the water flow rate was the same in these tanks. The rate of water flow
was chosen so that the nominal concentration of the commercial formulation of glyphosate
could reach 96 h LC50 at 12 h. The water flow rate was 416.667 mL·h−1. For the glyphosate
treatment, the nominal concentration of suspension was increased from 0 mL·L−1 to the
96 h LC50 during the first step (12 h). Finally, in order to evaluate behavioral responses of
fish to a return or improvement of environmental parameters, the nominal concentration
of suspension was reduced from the 96 h LC50 to 0 mL·l−1 (12 h) during the second step
(Figure 1b). The water flow rate of the control group tank was similar to the glyphosate
treatment. In addition, water physicochemical parameters were similar to the adaptation
period (pH 6.7–7.4, temperature 25 ± 1 ◦C, DO 8 mg·L−1, NH3 <0.02 mg·L−1 and total
hardness 185 mg CaCO3). The nominal concentration of the commercial formulation of
glyphosate was 0 mL·L−1 during both steps of the behavioral test. The water flow and the
glyphosate concentration were maintained constant during the test by adjustable valves
and a mixer and a precision pump (BT300-2J medium flow rate peristaltic pump, Longer
Precision Pump Co., Ltd., Baoding, China), respectively. The water surface was fixed in the
test tanks and water physicochemical parameters were checked every 6 h. Finally, all of the
analyses were conducted in one day.
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Figure 1. Schematic description of the test environment and its stages. (a) System design and components of the test.
(b) Steps of the test; concentration of glyphosate suspension was increased and reached the 96 h LC50 during step 1, then
was decreased and reached 0 mL·L−1 during step 2. (c) The timeline of the behavioral test: each step was 12 h and there
were 26 time points. The behavior test was a dynamic test. The fish swimming was recorded at these time points of 1 min
duration. The water flow during the test was 416.667 mL·h−1.

The swimming patterns of fish were recorded by 8 digital cameras (Canon, SX230 Hs,
5.0–70 mm) at 26 time points, 1 min apart (Figure 1c). Each camera was on top of a test
tank (Figure 1a). The height of the cameras was 10 cm from the water surface. The total
time of the recording parts for each fish was 26 min (26 separate 1 min pieces) and their
format was MP4 (.mp4)

2.5. Data Analysis

The lethal concentration of glyphosate at intervals of 24, 48, 72 and 96 h (24 h, 48 h, 72 h
and 96 h LC50 of glyphosate) were estimated through probit tests with a 95% confidence. To
find the correlation between different nominal concentrations of commercial formulations
of glyphosate and mortality we used a Spearman test (2-tail).

The video data were analyzed by Adobe After Effects software (AAE CS6) on a
Windows platform (Windows 7 Ultimate, Microsoft corporation©, Redmond, WA, USA).
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This software program converted selected video data (resolution 640 × 480, 30 frames per
second) to 1 frame per second and indicated the position of the fish in each frame through
the location of the fish head (Figure 1a). The output file format of this software was a FLV
video file (.flv). The total movement and distance from the center in different sections
were measured by Digimizer (Version 4.6.1, MedCalc Software, Ostend, Belgium) on a
Windows platform [40]. The differences between average measured indicators of treatment
at different concentrations and the control group were calculated through a LSD test with a
95% confidence by SPSS software (SPSS Statistics 20, IBM, Armonk, NY, USA). Finally, the
correlations between swimming parameters were checked with Pearson’s and Spearman’s
two-tailed significance tests using SPSS software (SPSS Statistics 20, IBM).

The clinical signs of fish were reported by direct observation of recorded videos,
counting of the average movements of the gill operculum in 1 min and a comparison of the
color of the object (fish) for a period of time by Adobe After Effects software (AAE CS6,
Adobe Co., Mountain View, CA, USA).

Behavioral changes of fish were characterized through the analysis of the average
swimming speed (A.S.), total movement (T.M.), percent movement (P.M.), fastest movement
(F.M.), average angular change of movement (A.C.) and the average distance from the
center (D.C.); these parameters of swimming patterns were selected and modified according
to Kane et al. [37] and Yalsuyi et al. [40] (Table 1).

Table 1. Parameters of swimming patterns of fish, that are used in the present study as characteristics of behavioral responses
of common carp (Cyprinus carpio) exposed to acute changes of environmental parameters (ammonia and temperature).

Swimming Pattern Parameters Definition

Average speed swimming (A.S.)
The average speed of the fish in t seconds, when the fish move to X cm(

V = (x1+x2+x3+....+xt)
t

)
.

Total movement (T.M.)
Total movement of the fish in t seconds:

XT = t((x1v1) + (x2v2) + (x3v3) + . . . + (xtvt)). The movement is the
displacement of the fish body by about two-thirds of their body length

Percent movement (P.M.) Percent of movement is total movement time (t) to total time (T) multiply by 100(
P.M = t

T × 100
)

Fastest movement (F.M.) The total distance that fish in that time (1 s) has more than double the average
swimming speed.

Average angular change of movement (A.C.) The angle differences from points t2 to t1 when the point t0 is beginning to move.

Average distance from the center (D.C.) Average distance of specific region of fish (i.e., fish head) from the center of the test
tank in t time.

Note: all parameters were selected according to Kane et al. [37] and modified.

3. Results
3.1. Results of the 96 h LC50 (Lethal Concentration of 50% of the Population in 96 h) Test

No mortality of fish was observed during the adaptation period. The results of the
toxicity test showed that there was a significant correlation between the mortality rate of fish
and the concentration of the commercial formulation of glyphosate (p < 0.01). Mortality was
observed in all treatment steps (except for the control group at 0 mL·l−1 of glyphosate) and
there were significant differences between mortality rates and treatment levels (p < 0.01).
The 96 h LC50 of commercial formulation of glyphosate was 68.788 mL·L−1 and its 24, 48
and 72 h LC50 were 202.132, 130.014 and 92.798 mL·L−1, respectively. According to the
results of the test of homogeneity of variance (Levene’s Test), we did not observe significant
differences between the variance of groups (p > 0.05).

Results of the Histopathological Assay

We did not find any significant tissue damages in the control group. Damages were
observed in all treatments of glyphosate (50, 100 and 150 mL·L−1) at 96 h after exposure.
There were significant correlations between tissue damages and glyphosate concentrations
(p < 0.05). The tissue damages including hyperemia, hypertrophy, hyperplasia, secondary
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lamellar adhesion, hemorrhage and necrosis were found in gill samples of fish that were
exposed to sublethal and lethal concentrations of glyphosate (Table 2). The highest damages
of gills were reported at 150 mL·L−1 of glyphosate. The gills hyperplasia (HP), hypertrophy
(HT), swollen primary gill (SPG), secondary lamellar adhesion (SLA), hyperemia (H),
hemorrhage (HR) and necrosis (N) were clearly observed in the samples (Figure 2).

Table 2. Gill damages in common carp (Cyprinus carpio) after 96 h exposure to commercial formulation
of glyphosate (glyphosate Aria 41% SL— suspension).

Nominal Concentrations (mL·L−1)

Tissue Damages 0 50 100 150

Hyperemia — ++ +++ +++
Hyperplasia — +++ +++ +++
Hypertrophy — ++ ++++ ++++

Swollen primary gill — ++ +++ +++
Secondary lamellar adhesion — +++ +++ ++++

Hemorrhage — ++ ++ +++
Necrosis — + +++ ++++

(-) No gill tissue damage could be seen; (+) there were gill tissue damages from 1 to 3; (++) there were gill tissue
damages from 3 to 5; (+++) there were gill tissue damages from 5 to 9; (++++) there were gill tissue damages from
9 to 15.
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Figure 2. Photomicrographs of common carp (C. carpio) after 96 h exposure to lethal concentrations of commercial
formulation of glyphosate (glyphosate Aria 41% SL suspension): (a) swollen primary gill (SPG) in 50 mL·L−1; (b) hyperplasia
(HP), hypertrophy (HT), secondary lamellar adhesion (SLA) and necrosis (N) of gills in 100 mL·l−1; (c) secondary lamellar
adhesion (SLA) and necrosis (N) of gills in 150 mL·L−1; (d,e) hemorrhage (HR) and hyperemia (H) in 100 and 150 mL·L−1,
respectively; (f) hemorrhage (HR) and necrosis (N) of gills in 150 mL·L−1. All pictures are magnified ×10.

The primary tissue damages were seen 24 h after exposure and they intensified during
the 96 h LC50 test. Finally, we did not see or record any significant tissue damages in
the control group (concentration 0 mL·L−1 of glyphosate suspension). The results of the
histopathological assay of the gills are shown in Table 2.
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3.2. Results of the Behavioral Assay
3.2.1. Control Group

We did not record any mortality in the glyphosate treatment and control groups
during the behavioral test. There was a significant correlation between average swimming
speeds and total movements (p < 0.01). However, there were no significant correlations
between these parameters and other swimming parameters (p > 0.05). In addition, there
were no significant differences between swimming parameters at different time points and
the test steps (Figure 3). Finally, no significant differences between the swimming patterns
of the control group fish during the test steps were observed (Table 3).
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Figure 3. Parameters of swimming pattern of the fish in the control group: (a) average speed; (b) total movement; (c) fast
movement; (d) percent of movement; (e) average angular change of movement; (f) distance from the center. Similar
lowercase letters (a) indicate nonsignificant differences between values of the same color columns (p > 0.05). Similar
uppercase letters (A) indicate nonsignificant differences between values of paired columns (p > 0.05).

The results showed that fish rarely changed their swimming directions and they were
swimming near the middle of the test tanks in a circular path during the test (Figure 4a).
The area of the test tank was 660.185 cm2 and the total movement of the fish in 1 min was
usually less than half of the area of the test tanks.
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Table 3. Comparison of the average of swimming parameters of different groups in all the different
steps of the test. Parameters were average swimming speed (A.S.), total movement (T.M.), percent
movement (P.M.), fastest movement (F.M.), average angular changes of movement (A.C.) and the
average distance from the center (D.C.).

The Test Groups

Parameters Control Group Glyphosate Treatment

Step 1 Step 2 Step 1 Step 2

A.S. (cm·s−1) 3.82 ± 0.02 b 3.79 ± 0.02 b 4.85 ± 0.18 a 5.06 ± 0.05 a

T.M. (cm) 228.84 ± 1.08 b 227.31 ± 1.26 b 290.87 ± 10.85 a 303.39 ± 3.29 a

P.M. (%) 95.25 ± 0.16 b 95.06 ± 0.12 b 96.38 ± 0.21 a 96.10 ± 0.46 a

F.M. (cm) 6.14 ± 0.02 b 6.11 ± 0.02 b 14.40 ± 0.91 a 15.40 ± 0.25 a

A.C. (θ◦) 36.46 ± 0.23 b 36.57 ± 0.12 b 65.46 ± 4.10 a 61.57 ± 4.64 a

D.C. (cm) 8.47 ± 0.06 b 8.44 ± 0.02 b 11.34 ± 0.40 a 11.72 ± 0.27 a

Note: different lowercase letters (a and b) indicate significant differences (p < 0.05) between the values in the same
row (p < 0.05).
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Figure 4. Fish swimming paths at different steps of the test (1 min): (a) swimming path of the
control group at 12th time point of step 1 (nominal concentrations of glyphosate suspension was
0 mL·L−1); (b) swimming path of glyphosate treatment (treatment group) at 12th time point of
step 1 (nominal concentrations of glyphosate suspension was 63.03 mL·L−1); (c) swimming path
of glyphosate treatment (treatment group) at 2nd time point of step 2 (nominal concentrations of
glyphosate suspension was 63.03 mL·L−1). Paths measured with Digimizer (MedCalc Software,
Version 4.6.1) on a Windows platform. The yellow lines are fish swimming path.

3.2.2. Glyphosate Treatment

During the behavioral test, no mortality was reported. There were significant corre-
lations between swimming patterns parameters, the strongest correlation was between
average swimming speed and total movement (p < 0.01); also, these two parameters had
correlations with the fastest movement (p < 0.01), average angular changes of movement
(p < 0.01), the average distance from the center (p < 0.01) and percent movement (p < 0.05).
There were significant differences between the swimming pattern parameter of fish in the
same concentration of different steps (p < 0.05). However, these differences were not seen
at all concentrations (Figure 5).

Significant differences between swimming parameters of the glyphosate treatment
and the control group were seen (p < 0.05). There were no significant differences between
swimming parameters of the treatment group in step 1 and step 2 (Table 3). However, the
fish were usually swimming near the water outlet of the test tank during step 1, while they
tended to be near the water inlet during step 2 (Figure 4).
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Figure 5. Parameters of swimming pattern of the fish in the control group: (a) average speed; (b) total movement; (c) fast
movement; (d) percent of movement; (e) average angular change of movement; (f) distance from the center. Different
lowercase letters (a, b, c and else) indicate significant differences between values of the same color columns (p < 0.05).

The slopes of the diagrams of swimming parameters of fish (treatment group) were
positive in step 1, but their values and slopes decreased and became negative in step 2,
respectively. However, these reductions were not significant at the beginning of step 2,
which coincides with the reduced concentrations of glyphosate (Figure 6). The average
values of parameters of the treatment group were usually higher than those of the control
group during the test, except for the average value of the percent of movement, which was
lower than that of the control group at the end of step 2 (Figure 6d).

The total movement of fish after exposure to glyphosate was significantly increased,
with a value lower than half of the test tank area (660.185 cm2). Fish that were exposed
to sublethal and lethal concentrations of commercial formulation of glyphosate showed
clinical signs, such as darkening of the skin, increasing movement of the operculum, anxiety,
jumping out of the water and swimming near the surface.
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4. Discussion

Contaminants can induce adverse physiological, behavioral and histopathological
effects on aquatic organisms over time, depending on various factors, such as concentration
and chemical structures [41–49]. Results of the present study showed that sublethal and
lethal concentrations of commercial formulation of glyphosate significantly reduce the
survival rate of fish, and can lead to significant tissue damages, such as hyperplasia of fish
gills. The toxic effects of glyphosate were also seen and recognized through changes in
the fish swimming patterns. Behavioral changes can further influence survival chances,
reproductive success, nutrition and growth behaviors of the organism [35–38].

Vajargah et al. [19] stated that the 96 h LC50 of glyphosate for fingerling common carp
(Cyprinus carpio) was 92.71 mL·L−1 and this concentration was inconsistent with the result
of the present study (68.788 mL·L−1). Nonetheless, all parameters in the present study
were very similar to those in their study; differences were very small (nonsignificant) and
were seen in the fish sizes. Body size is one of the intraspecific characteristics that could be
related to differences in lethal concentration [37]. The average weight of fish in the present
study and their study differed, and were 4.85 ± 0.62 and 7 ± 0.8 g, respectively. Thus,
results of the 96 h LC50 test are limited as they reflect laboratory conditions, but they can
be useful to determine a range of lethal concentrations of pollutants.

Glyphosate (C3H8NO5P 41% SL) acts on the activity of 5-enolpyruvylshikimate-3-
phosphate synthase (EPSP) and inhibits or impairs the synthesis of the aromatic amino
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acids in plant cells [21,23]. The results of the present study showed that glyphosate
displayed significant toxic effects on common carp (Cyprinus carpio) as an aquatic nontarget
organism, inducing histopathological damages [50]. The results of Neskovic et al. [51]
showed that exposure to 5 mg·L−1 of this pesticide can lead to epithelial hyperplasia,
hypertrophy of chloride cells and lifting and rupture of the respiratory epithelium of carp
gills. The results of their study were similar to ours. Tissue damages including hyperemia,
hypertrophy, hyperplasia, secondary lamellar adhesion, hemorrhage and necrosis were
found in gill samples of fish that were exposed to sublethal and lethal concentrations of
glyphosate. There was a dose-dependent relationship between glyphosate concentrations
and observed damages. Webster and Santos [52] stated that Roundup (common formulation
of glyphosate) led to different variations in the complex interacting signaling pathways of
juvenile female brown trout that control cellular stress response, particularly in apoptosis.
In addition, the result of their study showed increased cell proliferation, cellular turnover
and an up-regulation of metabolic processes.

After glyphosate exposure, the operculum movement (ventilatory frequency) and
swimming activity of the fish was increased in a study conducted by Sinhorin [53]. Those
results were in concordance to ours. In the present study, the swimming parameters,
including average swimming speed, total movement, percent movement, fastest movement,
average angular changes of movement and the average distance from the center, were
changed and their values were significantly higher in the treatment group than in the
control group. Moreover, the ventilatory frequency of fish was increased after glyphosate
suspension exposure. Glyphosate has a toxic effect on the activity of the acetylcholine
esterase enzyme and oxidative stress in common carp [54]. Results from the same authors
showed the repression effect of glyphosate on acetylcholine esterase activity in the brain and
muscles of fish and that its oxidative stress can lead to anxiety, increased fish metabolism,
fatigue of fish and decreased energy levels. We showed that individuals exposed to
glyphosate had clinical signs such as anxiety, and their percent movement significantly
decreased at the end of step 2.

Behavior responses (such as swimming performance) as a tertiary level of physiolog-
ical responses to a stressor can be used as a biomarker of stress [55]. Monitoring of the
stressor factors in the environment is important [36], because these factors reduce organisms’
fitness and survival chance [56–59]. The change of fish swimming patterns was observed
in the present study. When the glyphosate suspension concentration was increased, the
swimming speed increased, with frequent changes in the direction of swimming, and
the fish tended to be near the water outlet; conversely, a decrease in the concentration of
stressor caused the fish to swim near the water inlet.

5. Conclusions

Results of the given study clearly showed that glyphosate affects the swimming pat-
terns of fish and can induce histopathological tissue damages. Some behavioral parameters
such as swimming speed, average angular change of movement, the average distance of
fish from the tank’s center and the tendency of fish to be near the water inlet or outlet
clearly point to anxiety in the fish and its tendency to escape contamination. Our results
suggest that fish swimming parameters may be useful indicators of aquatic environments,
and unlike some monitoring methods of pollutants effect (such as the 96 h LC50 test) they
do not require killing fish, histopathological processes and fish catching. However, the data
of the present study were limited to laboratory conditions and further studies are required.
Swimming patterns were shown to be a promising method for collecting clinical signs of
fish as a response to environmental stressors (such as pollutants).
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of insecticide Lindane on intestinal tissue of grass carp (Ctenopharyngodon idella). Veter- Res. Commun. 2021, 1–8. [CrossRef]

34. Kang, I.J.; Moroishi, J.; Nakamura, A.; Nagafuchi, K.; Kim, S.G.; Oshima, Y. Biological Monitoring for Detection of Toxic Chemicals
in Water by the Swimming Behavior of Small Freshwater Fish. J. Fac. Agric. Kyushu Univ. 2009, 54, 209–214. [CrossRef]

35. Huang, Y.; Zhang, J.; Han, X.; Huang, T. The use of zebra fish (Danio rerio) behavioral responses in identifying sublethal exposures
to Deltamethrin. Inter. J. Environ. Res. Public Health 2014, 11, 3650–3660. [CrossRef]

36. Kane, A.S.; Salierno, J.D.; Gipson, G.T.; Molteno, T.C.; Hunter, C. A video-based movement analysis system to quantify behavioral
stress responses of fish. Water Res. 2004, 38, 3993–4001. [CrossRef] [PubMed]

37. Saglio, P.; Trijasse, S. Behavioral responses to atrazine and diuron in goldfish. Arch. Environ. Contam. Toxicol. 1998, 35, 484–491.
[CrossRef] [PubMed]

38. Vogel, C.; Grillitsch, B.; Wytek, R.; Spieser, O.H.; Scholz, W. Qualification of spontaneous undirected locomotor behavior of fish
for sublethal toxicity testing. Part I. Variability of measurement parameters under general test conditions. Environ. Toxicol. Chem.
1999, 18, 2736–2742. [CrossRef]

39. Zhou, T.; Weis, J.S. Swimming behavior and predator avoidance in three populations of Fudulus heteroclitus larvae after
embryonic exposure and/or larval exposure to methylmercury. Aquat Tox 1998, 43, 131–148. [CrossRef]

40. Yalsuyi, A.M.; Hajimoradloo, A.; Ghorbani, R.; Jafari, V.-A.; Prokić, M.D.; Faggio, C. Behavior evaluation of rainbow trout
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