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Abstract: Background: Infectious diseases represent a significant global strain on public health
security and impact on socio-economic stability all over the world. The increasing resistance to the
current antimicrobial treatment has resulted in the crucial need for the discovery and development
of novel entities for the infectious treatment with different modes of action that could target both
sensitive and resistant strains. Methods: Compounds were synthesized using the classical organic
chemistry methods. Prediction of biological activity spectra was carried out using PASS and PASS-
based web applications. Pharmacophore modeling in LigandScout software was used for quantitative
modeling of the antibacterial activity. Antimicrobial activity was evaluated using the microdilution
method. AutoDock 4.2® software was used to elucidate probable bacterial and fungal molecular
targets of the studied compounds. Results: All compounds exhibited better antibacterial potency
than ampicillin against all bacteria tested. Three compounds were tested against resistant strains
MRSA, P. aeruginosa and E. coli and were found to be more potent than MRSA than reference
drugs. All compounds demonstrated a higher degree of antifungal activity than the reference drugs
bifonazole (6–17-fold) and ketoconazole (13–52-fold). Three of the most active compounds could
be considered for further development of the new, more potent antimicrobial agents. Conclusion:
Compounds 5b (Z)-3-(3-hydroxyphenyl)-5-((1-methyl-1H-indol-3-yl)methylene)-2-thioxothiazolidin-
4-one and 5g (Z)-3-[5-(1H-Indol-3-ylmethylene)-4-oxo-2-thioxo-thiazolidin-3-yl]-benzoic acid as well
as 5h (Z)-3-(5-((5-methoxy-1H-indol-3-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)benzoic acid can
be considered as lead compounds for further development of more potent and safe antibacterial and
antifungal agents.

Keywords: 4-oxo-2-thioxothiazolidine; antibacterial; antifungal; microdilution method; biological
activity prediction; docking; MurB; CYP51
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1. Introduction

During the last century, several dozen infections have grown and affected the health of
millions of people all over the world [1]. In addition to emerging infections, antimicrobial
resistance accounts for at least 50,000 deaths each year in Europe and the United States and it
is expected that drug resistant infections will be responsible for even larger losses worldwide
in the near future [2,3]. Resistant pathogens threaten patients in medical facilities and may
emerge in the general population due to the irrational use of antimicrobial agents [4]. More-
over, microbes can transit to the biofilm-growing form to mitigate the harsh environmental
conditions or tolerate the presence of a drug. Existing antimicrobial treatment often fails to
prevent or eliminate such biofilms [5,6].

Unfortunately, only few novel classes of antibacterial agents (i.e., oxazolidinones, pleu-
romutilins, tiacumicins, diarylquinolines lipopeptides and streptogramins) have been mar-
keted in the recent decades to solve these problems. Most of them are for the management of
Gram-positive bacterial infections [7,8]. However, drug discovery and development is still
one of the major ways to ease the burden of microbial infections. Thus, novel molecules with
antimicrobial activity are needed and knowledge on their activity profile including both
bacterial and molecular targets and off-targets is needed too to provide the possibility to fix
such problems as emerging novel infections, drug resistance and tolerance in a rational way.

Among the natural compounds, there are some indole alkaloids, such as echinulin (1),
cristatumin A (2), cristatumin D (3) and tardioxopiperazine A (4) from Eurotium cristatum
EN-220 that were able to inhibit the growth of Escherichia coli and S. aureus bacteria [9]
(Figure 1).
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Figure 1. Structure of some indole alkaloids.

It is known that rhodanin is one of the most notorious key materials for the develop-
ment of effective antibiotics. The favorable antimicrobial activity of rhodanines is due to
the similarity of their structure with the chemical structure of penicillin, which has been
proved by several researchers [10–13]. Rhodanine-3-alkanecarboxylic acid derivatives with
p-N,N-benzylidenedialkyl (phenyl)amine moieties on benzene ring 5 were found to be
active against staphylococcus, micrococcus and streptococcus strains [14]. Rhodanines
bearing N-arylsulfonylindole fragment derivatives 6 exhibited inhibitory activity against
S. aureus including methicillin resistant strains (MRSA) [15], while rhodanine 7 was found
to be potent against methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis,
Staphylococcus aureus, Enterococcus sp. and Mycobacteria (Figure 2).

It is also known that synthetic thiohydantoin (rhodanine) analogues 8, 9, in addition to
antitumor and anti-HIV activity, exhibit pronounced antibacterial properties [16], along with
some hetarylidene thiazolidines containing pyridine 9 [17] and furan 10 [12,18] fragments
in the side chain being beta-lactamase inhibitors (Figure 3).
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Furthermore, 5-arylidene derivatives of rhodanines were found to possess various types
of activity, in particular antitumor [19], antiviral [20,21], anti-inflammatory, antidiabetic [22–24],
antioxidant [25], LOX and cholinesterase inhibitory activities [26,27], as well as aldose reduc-
tase inhibitor activity [28]. There are many references in the literature regarding antimicrobial
activity of rhodanine derivatives [14,29–32].

Prompted by everything mentioned above, as well as based on our previous results [33,34],
we designed and synthesized new derivatives incorporating two pharmacophores in the
frame of one molecule, indole and thiazolidinone, using a hybridization approach. The aim
of this approach is mainly to improve the activity profile and reduce undesired side effects.

As is known, rhodanine derivatives are synthesized by several methods, in particular
by dithiocarbamate, bis(carboxymethyl)trithiocarbonate (the Holmberg method), and thio-
cyanate [35]. The starting 3-arylrhodanines were synthesized using the Holmberg method,
making it possible to obtain compounds based on arylamines in high yields and sufficient
purity, avoiding the formation of thiourea impurities. To obtain the target products, the
interaction of 3-arylrhodanines with aldehydes under the conditions of the Knoevenagel
reaction was used [36].

2. Results and Discussion
2.1. Chemistry

The starting materials for the synthesis of the described products were 3-aryl-2-
thioxothiazolidin-4-ones 3a–e. They were obtained by the reaction of aromatic amines
1a–e with bis (carboxymethyl) trithiocarbonate 2 (Scheme 1). In the second step, the
3-aryl-2-thioxothiazolidin-4-ones further undergo Knovenagel condensation with 1H-
indole-carbaldehyde to give the title compounds 5a–l. We used the optimized procedure to
do this; the details of the procedure are given in Table 1. Unfortunately, we were not able
to obtain 2-hydroxy-4-(4-oxo-2-thioxo-thiazolidin-3-yl)-benzoic acid 3f using 4-amino-2-
hydroxybenzoic acid as the starting material 1f, since spontaneous decarboxylation with
the formation of 3a occurred under the reaction conditions.
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Table 1. Formation of 3-aryl-2-thioxothiazolidin-4-ones 3a–e.

No Starting Amin Reaction Product Solvent Reaction Time (Hours) Yield, %

1 1a 3a i-PrOH:H2O/1:2 8 72
2 1b 3b i-PrOH:H2O/1:1 8 85
3 1c 3c i-PrOH:H2O/1:2 8 83
4 1d 3d H2O 5 89
5 1e 3e DMFA: i-PrOH:H2O/1:1:1 5 61
6 1f 3a i-PrOH:H2O/1:2 6 70

We studied the interaction of 3-aryl-2-thioxothiazolidin-4-ones 3a–e with 1H-indole-3-
carbaldehydes 4a–d. It was found that, when these reagents are boiled in acetic acid in the
presence of ammonium acetate, 3-aryl-5-(1H-indol-3-ylmethylene)-2-thioxothiazolidin-4-
ones 5a–l are formed in good yields (Scheme 1).

An analysis of the results of obtaining the initial three and target five substances makes
it possible to detect a correlation between the substituents’ nature and the products’ yields.
Thus, para-substituents in the aromatic ring in position 3 of thiazolidine have a positive
effect on the yields compared to the corresponding meta-substituents. In this case, the
nature of the substituent also matters. Hydroxyl substituents have a more favorable effect
on yields than carboxyl substituents.
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The structures of all synthesized compounds were confirmed by 1H and 13C NMR
spectroscopy. In the 1H NMR spectra, signals of all protons were present in regions that
correspond to the structure of the obtained compounds. In particular, the signals of the
methylene group of 3-aryl-2-thioxothiazolidin-4-ones 3a–e are in the range 4.33–4.40 ppm.
Signals of the methylidene proton of 3-aryl-5-(1H-indol-3-ylmethylene)-2-thioxothiazolidin-
4-ones 5a–l resonate at 7.99–8.17 ppm, which indicates the Z configuration of the double
bond at the 5th position of the thiazolidine ring [37,38]. The signals of hydroxy groups were
observed at 9.49–9.87 ppm, while those of the NH group were observed at 11.97–12.37 ppm.
The indol ring protons appeared in the aromatic area in the range of 6.73–8.15 ppm. The
detailed explanation is given in the experimental part.

2.2. PASS-Based In Silico Assessment of Compounds’ Activity

Activities of twelve chemical structures had been assessed using PASS [39] and
PASS-based web applications to predict antifungal, antibacterial, and kinase inhibitory
activity [37,38].

PASS predicted some activities associated with antibacterial and antifungal effects. The
antibacterial activity itself has been predicted for each of the 12 structures. Pa-Pi values were
in the range from 0.003 to 0.577. According to the PASS assessments, the most probable
mechanism of antibacterial effect of studied chemical compounds are:

(1) Inhibition of Enoyl-[acyl-carrier-protein] reductase (predicted for 12 compounds with
Pa-Pi values in range from 0.136 to 0.577).

(2) Inhibition of (R)-Pantolactone dehydrogenase (predicted for five compounds with
Pa-Pi values in the range from 0.02 to 0.247).

(3) Either with lower Pa-Pi values or for the smaller number of compounds, the several
other mechanisms were predicted: inhibition of D-Ala-D-Ala ligase and histidine
kinase, antagonism with para-aminobenzoic acid, and antagonism with human tumor
necrosis factor-alpha.

AntiBac-Pred assessed the probable activity for 12 structures against multiple bacterial
strains and species with Pa-Pi values ranging from 0.0001 to 0.387. Overall, some bacteria
were predicted as targets for each of the 12 molecules. However, Pa-Pi values were low, only
for seven compounds out of 12 did they exceeded 0.3. These assessments were obtained for
the activity of compounds against the Bacillus subtilis subsp. subtilis str. 168.

PASS predicted general antifungal activity as well as some putative mechanisms of
antifungal action (Heat shock protein 90 antagonist, Kinase inhibitor) for all 12 compounds
with Pa-Pi = 0.005 ÷ 0.612. Application of AntiFun-Pred, however, did not allow identifica-
tion of the specificity of antifungal action against the particular fungi strains.

Among the PASS-predicted mechanisms of antibacterial and antifungal activities,
inhibition of some kinases was identified. To estimate the action on the studied compounds
on 20 kinases in more detail, we applied the KinScreen web application. As a result, for
all twelve compounds, inhibitory activity was predicted against one or more kinases with
Pa-Pi > 0.5. For six compounds, inhibition of three kinases (serine/threonine-protein kinase
haspin, serine/threonine-protein kinase Nek11, and serine/threonine-protein kinase SRPK1)
was estimated with Pa-Pi ≥ 0.7. Therefore, the studied compounds’ antibacterial action may
be also due to kinases’ inhibition, including those belonging to the host (human) organism.

Taken together, the results of PASS-based activity evaluation suggest that the studied
compounds may exhibit antibacterial and antifungal activities. Relatively low, but not neg-
ative, Pa-Pi, values obtained with PASS Online, AntiBac-Pred and AntiFun-Pred indicate
that either the studied compounds (1) have a significant structural novelty compared to the
compounds from the available training sets or (2) structurally similar compounds may be
found among both active and inactive examples in the training set. Experimental studies
in antibacterial assays could clarify the selectivity of the compounds’ action on particular
bacteria. In turn, docking of the studied chemical structures to the targets could clarify
molecular mechanism of their action.
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2.3. Pharmacophore Modelling Study

Taking into account the well obtained antibacterial results against S. aureus of the
synthesized compounds of our previews work [34], we selected these molecules for the
pharmacophore modelling study in order to search for more active compounds. The
structures of the training set (1–9) and test set compounds (10–14) are displayed in Table 2.
In order to evaluate the common features of these compounds, crucial for the antibacterial
activity, the LigandScout program was used.

Table 2. Structure of compounds of the training and test sets.

No Structure No Structure

1
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Conformation generation within 20 kcal/mol energy range were generated and sub-
mitted to the alignment procedure. Pharmacophore run resulted in the generation of
10 hypothesis models categorized by their rank score and mapping into all training set
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Table 3. Generated pharmacophores of the antibacterial activity against S. aureus.

Hypothesis Features Rank Score

Model-1 HHAAAADP 0.9345
Model-2 HHAAAADP 0.9338
Model-3 HHAAADP 0.9240
Model-4 HHAAADP 0.9197
Model-5 HHAAAAD 0.9191
Model-6 HHAAADP 0.9177
Model-7 HHAAADP 0.9125
Model-8 HHAAAAP 0.9035
Model-9 HHAAAAP 0.8975
Model-10 HHAAAP 0.8832

All compounds (training and test sets) were mapped onto model-1 with scoring of
the orientation of a mapped compound within the hypothesis features using a “fit value”
score. As a primary validation of model-1, mapping of all compounds revealed a good
correlation between the biological activity and the fit value score (Table 4). The compounds
with the higher antibacterial activity showed a range of fit values of 123.59–108.35, while the
rest showed a range of fit values of 97.23–85.10. This primary correlation encouraged us
to generate a linear model based on “fit value” in order to predict the antibacterial activity
of the understudy compounds. This model (Equation (1), Figure 5) showed good statistics
with R2 = 0.807. Thus, based on these findings, we use this linear model in order to calculate
the activity of the tested compounds (5a–5l) (Table 5).

−logMIC(µM) = 22.105 fitvalue-840.56, R = 0.898, R2 = 0.807

n = 14, st error: slope = 3.120, Y-intercept = 327.5, 1/slope = 0.04524
(1)

where n is the number of compounds and R is the multiple correlation coefficient.
The best aligned poses of the most active compounds 1 and 2 and the less active 14,

superposed with model-1, are presented in Figure 6. As is obvious, some structural features
play a key role for the activity. The 1H-indole moiety is thought to be critical for activity.
Additionally, the absence of hydrophobic groups can partially explain their lack of activity.
The other features that are common for all compounds are three HBA features and the
positive ionizable interaction of carboxyl group.

Table 4. Correlation between the biological activity and the fit value score against S. aureus.

Compounds MIC (µM × 10−2) −log MIC (µM) Fit Value Pred. −log MIC (µM) Residual

1 0.56 2.251 123.59 1.994 −0.257
2 1.96 1.707 118.60 1.857 −0.150
3 1.99 1.701 117.83 1.836 −0.135
4 2.94 1.531 109.00 1.594 −0.063
5 3.69 1.432 109.00 1.594 −0.162
6 3.71 1.430 107.82 1.562 −0.132
7 3.98 1.400 108.25 1.573 −0.173
8 4.14 1.382 97.19 1.270 0.112
9 4.16 1.380 97.23 1.271 0.109

10 2.26 1.645 107.87 1.563 0.082
11 3.99 1.399 107.42 1.551 −0.212
12 7.68 1.114 86.95 0.990 0.124
13 8.61 1.064 85.78 0.958 0.106
14 8.66 1.062 85.10 0.939 0.123
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Figure 5. Negative logarithm of the MIC in µM (dependent value) against the LigandScout program
output fit value (independent value).

Table 5. Experimental and estimated MIC values of tested compounds based on pharmacophore
model-1 against S. aureus.

Compounds Fit Value Pred. −log MIC (µM) MIC (µM × 10−2) −log MIC (µM) Residual

5a 106.27 1.508 3.78 1.422 0.158
5b 105.12 1.483 3.00 1.522 −0.039
5c 104.20 1.462 3.92 1.406 0.056
5d 87.66 1.097 7.03 1.153 −0.056
5e 78.83 0.901 8.51 1.070 −0.169
5f 86.25 1.065 7.64 1.116 −0.051
5g 97.89 1.345 3.94 1.404 −0.059
5h 97.12 1.306 3.55 1.449 −0.143
5i 77.70 0.876 7.89 1.102 −0.226
5j 88.23 1.109 5.36 1.270 −0.161
5k 88.62 1.118 5.57 1.254 −0.136
5l 87.49 1.093 5.16 1.287 −0.194
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As we mention above, we use this model in order to predict the antibacterial activ-
ity of synthesized compounds 5a–5l. Results are presented in Table 4 and revealed that
compounds 5a–c have the highest fit value score and therefore probably the highest ac-
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tivity. Indeed, the experimental data revealed that the predicted by linear model and the
experimental MIC of each compound were in the same range (Table 5).

2.4. Biological Evaluation
2.4.1. Antibacterial Action

Compounds 5a–5l were tested for antimicrobial activity against the panel of Gram-
positive, Gram-negative bacteria as well as eight fungal species.

The determination of minimal inhibitory and minimal bactericidal/fungicidal activity
was performed using the microdilution method. The evaluation revealed that all com-
pounds showed antibacterial activity with MIC at 3.78–12.77 µmol/mL × 10−2 and MBC
at 4.09–17.03 µmol/mL × 10−2 (Table 6).

Table 6. Antibacterial activity of title compounds (MIC/MBC in µmol/mL × 10−2).

R.br B.c M.f S.a L.m En.cl P.a S.t E. coli

5a
MIC 7.57 ± 0.06 11.35 ± 0.1 3.78 ± 0.02 7.57 ± 0.1 3.78 ± 0.02 3.78 ± 0.02 11.35 ± 0.1 7.57 ± 0.02
MBC 15.14 ± 0.1 15.14 ± 0.2 7.57 ± 0.06 15.14 ± 0.2 7.57 ± 0.06 7.57 ± 0.06 15.14 ± 0.2 15.14 ± 0.1

5b
MIC 8.19 ± 0.04 8.19 ± 0.04 3.00 ± 0.01 6.00 ± 0.04 3.00 ± 0.01 6.00 ± 0.02 6.00 ± 0.02 12.28 ± 0.1
MBC 16.31 ± 0.1 16.31 ± 0.1 4.09 ± 0.02 8.19 ± 0.1 4.09 ± 0.02 8.19 ± 0.04 8.19 ± 0.04 16.31 ± 0.1

5c
MIC 7.84 ± 0.04 7.84 ± 0.04 3.92 ± 0.02 7.84 ± 0.05 3.92 ± 0.02 3.92 ± 0.02 5.75 ± 0.04 11.77 ± 0.2
MBC 15.69 ± 0.08 15.69 ± 0.08 7.84 ± 0.04 15.69 ± 0.1 7.84 ± 0.04 7.84 ± 0.04 7.84 ± 0.08 15.69 ± 0.1

5d
MIC 7.03 ± 0.04 10.55 ± 0.1 7.03 ± 0.04 10.55 ± 0.1 7.03 ± 0.04 7.03 ± 0.04 7.03 ± 0.04 10.55 ± 0.2
MBC 14.07 ± 0.2 14.07 ± 0.2 14.07 ± 0.2 14.07 ± 0.2 14.07 ± 0.1 14.07 ± 0.2 14.07 ± 0.2 14.07 ± 0.2

5e
MIC 8.51 ± 0.04 12.77 ± 0.1 8.51 ± 0.04 8.51 ± 0.08 3.12 ± 0.01 8.51 ± 0.04 8.51 ± 0.1 8.51 ± 0.08
MBC 17.03 ± 0.08 17.03 ± 0.08 17.03 ± 0.08 17.03 ± 0.08 4.26 ± 0.02 17.03 ± 0.2 17.03 ± 0.08 17.03 ± 0.1

5f
MIC 7.64 ± 0.06 11.77 ± 0.1 7.64 ± 0.06 7.64 ± 0.06 5.75 ± 0.06 7.64 ± 0.06 11.77 ± 0.1 11.77 ± 0.1
MBC 15.69 ± 0.2 15.69 ± 0.2 15.69 ± 0.1 15.69 ± 0.2 7.64 ± 0.08 15.69 ± 0.1 15.69 ± 0.1 15.69 ± 0.1

5g MIC 3.94 ± 0.02 7.89 ± 0.06 3.94 ± 0.02 7.89 ± 0.02 3.94 ± 0.04 3.94 ± 0.02 7.89 ± 0.04 11.83 ± 0.1
MBC 7.89 ± 0.04 15.77 ± 0.1 7.89 ± 0.08 15.77 ± 0.2 7.89 ± 0.08 7.89 ± 0.08 15.77 ± 0.2 15.77 ± 0.2

5h
MIC 7.31 ± 0.04 5.36 ± 0.04 3.55 ± 0.02 7.31 ± 0.04 3.55 ± 0.02 3.55 ± 0.02 7.31 ± 0.04 10.96 ± 0.1
MBC 14.62 ± 0.2 7.31 ± 0.08 7.31 ± 0.08 14.62 ± 0.2 7.31 ± 0.04 7.31 ± 0.04 14.62 ± 0.2 14.62 ± 0.2

5i
MIC 7.89 ± 0.08 7.89 ± 0.08 7.89 ± 0.08 7.89 ± 0.04 7.89 ± 0.08 1.97 ± 0.04 7.89 ± 0.08 11.83 ± 0.1
MBC 15.77 ± 0.2 15.77 ± 0.2 15.73 ± 0.2 15.77 ± 0.1 15.77 ± 0.2 3.94 ± 0.04 15.77 ± 0.1 15.7 ± 0.2

5j MIC 7.31 ± 0.08 5.36 ± 0.04 5.36 ± 0.04 7.31 ± 0.04 7.31 ± 0.08 7.31 ± 0.08 7.31 ± 0.08 10.96 ± 0.1
MBC 14.62 ± 0.2 7.31 ± 0.08 7.31 ± 0.08 14.62 ± 0.08 14.62 ± 0.1 14.62 ± 0.1 14.62 ± 02 14.62 ± 0.2

5k
MIC 7.57 ± 0.08 5.55 ± 0.04 5.57 ± 0.08 7.57 ± 0.08 7.57 ± 0.04 7.57 ± 0.04 7.57 ± 0.08 3.78 ± 0.04
MBC 15.14 ± 0.2 7.57 ± 0.08 15.14 ± 0.2 15.14 ± 0.1 15.14 ± 0.1 15.14 ± 0.2 15.14 ± 0.2 7.57 ± 0.08

5l
MIC 7.03 ± 0.05 10.55 ± 0.1 5.16 ± 0.04 7.03 ± 0.08 5.16 ± 0.04 5.16 ± 0.04 7.03 ± 0.08 10.55 ± 0.1
MBC 14.07 ± 0.1 14.07 ± 0.1 7.03 ± 0.08 14.07 ± 0.2 7.03 ± 0.08 7.03 ± 0.08 14.07 ± 0.02 14.07 ± 0.02

Am
MIC 24.80 ± 0.3 24.80 ± 0.2 24.80 ± 0.2 37.20 ± 0.4 24.8 ± 0.3 74.4 ± 0.9 24.80 ± 0.3 37.2 ± 0.4
MBC 37.20 ± 0.4 37.20 ± 0.4 37.20 ± 0.2 74.40 ± 0.8 37.2 ± 0.3 124.0 ± 2 49.2 ± 0.6 49.2 ± 0.4

Str
MIC 4.30 ± 0.08 8.60 ± 0.1 17.20 ± 0.2 25.80 ± 0.4 4.3 ± 0.03 17.20 ± 0.3 17.2 ± 0.3 17.2 ± 0.3

MBC 8.60 ± 0.1 17.20 ± 0.2 34.40 ± 0.4 51.60 ± 0.4 8.6 ± 0.06 34.40 ± 0.3 34.4 ± 0.3 34.40 ± 0.3

B.c.—B. cereus, M.f.—M. flavus, S.a.—S. aurues, l.m.—L. monocytogenes, En.c.—En. cloacae, P.a.—P. aeruginosa,
S.t.—S. typhimurium, E.c.—E. coli.

The antibacterial potency of tested compounds can be presented as follows: 5b > 5h >
5g > 5c > 5l > 5a > 5j > 5k > 5i > 5d > 5f > 5e. The best activity was observed for compound
5b with MIC and MBC at 3.00–12.28 µmol/mL × 10−2 and 4.09–16.31 µmol/mL × 10−2,
respectively, while compound 5e displayed the lowest activity with MIC in the range of
3.12–12.77 µmol/mL × 10−2 and MBC at 4.26–17.03 µmol/mL × 10−2. It should be noticed
that bacteria, in general, showed different sensitivity towards the compound tested.

Thus, the sensitivity of S. aureus, the most sensitive bacterium among Gram-positive
bacteria, can be presented as: 5b > 5h > 5a > 5c > 5g > 5l > 5j > 5d > 5k > 5f > 5e > 5i. Some
similarities in sensitivity with S. aureus was observed for En. cloacae, the most sensitive
Gram-negative bacterium: 5b > 5e > 5h > 5a > 5c > 5g > 5l > 5f > 5d > 5j > 5k > 5i. Sensitivity
towards compounds of B. cereus, the most resistant Gram-positive bacterium appeared to
be completely different: 5g > 5d = 5l > 5h = 5j > 5a = 5k > 5f > 5c > 5i > 5b > 5e, while
for the most resistant Gram-negative bacterium, E. coli the sensitivity can be presented as:
5k > 5a > 5d = 5l > 5h = 5j > 5e > 5c = 5f > 5g = 5i > 5b. In this case too some similarities
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were observed. Thus, both bacteria B. cereus and E. coli exhibited the same sensitivity to
compounds 5h and 5j, as well as 5d and 5l.

Compounds 5a–5d and 5g exhibited good activity against En. cloacae with MIC values
in the range of 3.12–3.94 µmol/mL × 10−2 and MBC at 4.09–7.89 µmol/mL × 10−2. Some
of these compounds (5a, 5b, 5g) also showed good activity against P. aeruginosa with MIC
and MBC at 3.0–3.94 µmol/mL × 10−2 and 4.26–7.89 µmol/mL × 10−2, respectively, while
compound 5b and 5g displayed good activity against S. aureus as well (MIC/MBC at
3–3.94/4.09–7.89 µmol/mL × 10−2).

S. aureus was found to be the most sensitive bacteria among all bacteria involved in
the study, whereas E. coli was the most resistant one.

Precisely, for Gram-positive bacteria, the range of MIC and MBC was 3.00–12.77 µmol/mL
× 10−2 and 7.57–17.03 µmol/mL × 10−2, respectively, while for Gram negative bacte-
ria the MIC and MBC were in range from 3.78 to 14.07 µmol/mL × 10−2 and 7.57 to
28.14 µmol/mL × 10−2, respectively, indicating that tested compounds are more potent
against Gram-positive bacteria than against Gram-negative bacteria.

All compounds were more potent than ampicillin (MIC at 24.8–74.4 µmol/mL × 10−2

and MBC at 37.2–124.0 µmol/mL × 10−2) and almost all compounds were more potent
than streptomycin. This is true for almost all bacterial species, except for B. cereus and
S. typhimurium.

Four the most active compounds were tested against three resistant strains: methicillin-
resistant S. aureus, MRSA, P. aeruginosa and E. coli (Table 7). Two of these strains MRSA and
P. aeruginosa belong to ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Kleb-
siella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species).
Tackling the problem of MRSA is a top priority for public health systems worldwide. As
far as P. aeruginosa is concerned, the incidences of diseases caused by it are fairly low in
the general population, but are higher in hospital inpatients, especially those which are
immunocompromised.

Table 7. Antibacterial activity against resistant strains (µmol/mL × 10−2) and the effect on biofilm
formation (inhibition percentage), * NE—no effect.

Compounds
Resistant Strains Biofilm Formation

MRSA P.a. E.c. MIC 0.5MIC

5b
MIC 136 ± 16 34 ± 2.7 136 ± 14.2

11.59 NEMBC 272 ± 33 68 ± 5.2 272 ± 31

5h
MIC 122 ± 16.4 30.5 ± 2.8 122 ± 15.1

NE NEMBC 244 ± 28 61 ± 7 244 ± 22.8

5g MIC 31.5 ± 2.7 31.5 ± 3.8 126 ± 14.7
18.19 NEMBC 63 ± 8.1 63 ± 4 252 ± 28

Streptomycin MIC 17.2 ± 2.1 8.6 ± 1.2 17.2 ± 2.1
71.94 55.42MBC - 17.2 ± 1.4 34.4 ± 4.2

Ampicilline MIC - 57.2 ± 6.4 57.2 ± 7.8
67.36 30.35MBC / / /

E.c.—E. coli, P.a.—P. aeruginosa.

All compounds appeared to be more potent against MRSA than ampicillin, display-
ing better bactericidal activity also against resistant strains P. aeruginosa and E. coli than
ampicillin, which did not show any bactericidal effect. These compounds were tested also
for their effect on biofilm formation. The antibiofilm effect of selected compounds was
less promising compared to their potential to inhibit growth of planktonic bacterial cells.
Compounds 5b and 5g had a slight effect on biofilm inhibition, 11.59 and 18.19% inhibition,
respectively (Table 7).

The structure–activity relationship revealed that the presence of the methyl group
in the indole ring as well as the hydroxy group in position 3 of benzene ring (5b) of (Z)-
3-(3-hydroxyphenyl)-5-((1-methyl-1H-indol-3-yl)methylene)-2-thioxothiazolidin-4-one is
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beneficial for antibacterial activity. Displacement of the methyl group by hydrogen in
the indole ring and at the same time introduction of the 5-MeO group to the indole ring
from one hand and replacement of the 3-OH group in the benzene ring by 3-COOH gave
compound 5h, second in the order of activity. On the other hand, removal of methyl
as a substituent on the nitrogen and the 5-OMe group of the indole ring resulted in
compound 5g, with decreased activity being the third one in the order of activity of
compounds. In general, among 5-OMe- indole derivatives more favorable for activity is the
presence of 3-COOH (5h) than the 3-OH group (5c) in benzene ring. On the other hand,
shifting of the 3-OH group to position 4 of benzene ring was negative, leading to one of the
less potent compounds 5f, whereas removal of the 5-MeO group of compounds 5f appeared
to be detrimental, resulting in the less active compound 5e. In case of 6-OMe derivatives,
the presence of 4-OH, 3-COOH substitution is (5l) beneficial, while the opposite 3-OH, 4-
COOH (5d) was negative. On the other hand, substitution in position 4 of the benzene ring
with the hydroxy group resulted in compound (5j), with increased activity compared to
5d. From all these compounds mentioned above, it is clear that the antibacterial activity of
designed and synthesized compounds depends not only on substituents and their position
in the indole ring but also on substituents and their position in the benzene ring.

All the compounds, except 5g, were additive with streptomycin (FICI 1.5, Table 8),
implying that efficient combination with this antibiotic might be further developed. Com-
pound 5g was indifferent in combination with streptomycin (FICI 2).

Table 8. FICI indexes of combinations of selected compounds with streptomycin.

Compound FICI

5b 1.5
5g 2
5h 1.5

2.4.2. Efficient P. aeruginosa Bactericidal Effect after 1 h

Application of the selected compounds has significantly reduced the number of viable
P. aeruginosa colonies (Figure 7). After 2 h of application, the number of viable P. aeruginosa
colonies was reduced for more than 84% (5b and 5h) and more than 74% (5g). All of the
examined compounds, after 6h of treatment, reduced the number of P. aeruginosa CFU by
more than 98%.
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It should be mentioned that even the less active compound 5b appeared to be able to
reduce the number of P. aeruginosa CFUs.
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2.4.3. Antifungal Action

The ability of compounds to inhibit fungi growth is presented in Table 9 and follows
the order 5k > 5l > 5f > 5g > 5a > 5h > 5i > 5c > 5j > 5b > 5d > 5e. The minimum inhibitory
concentration of compounds was in the range of 0.97–34.05 mmol/mL × 10−2, while the
minimal fungicidal concentration (MFC) varied from 1.95 to 68.1 µmol/mL × 10−2. The
best antifungal activity was achieved by compound 5k with MIC and MFC in range of
1.88–3.52 µmol/mL × 10−2 and 3.52–7.03 µmol/mL × 10−2, respectively. The lowest
activity was observed for compound 5e with an MIC at 3.12–34.05µmol/mL × 10−2 and
MFC at 4.26–68.10µmol/mL × 10−2.

Ketoconazole demonstrated antifungal potency with an MIC in the range of 38–475 µmol/mL
× 10−2 and MFC at 95–570 µmol/mL × 10−2, whereas MIC and MFC of bifonazole were
at 48–64 mmol/mL × 10−2 and 64–80 µmol/mL × 10−2, respectively.

The sensitivity of fungi towards tested compounds was different. The sensitivity of
the most vulnerable fungi T. viride to the compounds can be presented as follows: 5h > 5d
> 5a- = 5k > 5f > 5g = 5i > 5b > 5e > 5c > 5l > 5j, while the sensitivity of the most resistant one,
A. fumigatus, differs significantly: 5l > 5a = 5k > 5g = 5i > 5b > 5j > 5h > 5c = 5f > 5e. Species
belonging to the Aspergillus genus are among the most frequent causes of human fungal
infections, associated with significant mortality. A member of this genus, A. fumigatus, is
estimated as a cause of 90% of aspergillus infections [40], especially in individuals with
immunodeficiency. Compound 5h displayed very good activity against all Aspergilus
species, except for A. fumigatus, and Penicillium species, except for P.v.c, with MIC at
1.95 µmol/mL × 10−2 and MFC at 3.55 µmol/mL × 10−2, as well as against T. viride
(MIC/MFC at 0.97/1.95 µmol/mL × 10−2). Compound 5f showed good activity against
all fungal species except for A. fumigatus with MIC/MFC at 2.09/3.92 µmol/mL × 10−2,
while compound 5d showed very good activity against A. ochraceus and T. viride with MIC
at 1.88 µmol/mL × 10−2 and MFC at 3.52 µmol/mL × 10−2.

Table 9. Antifungal activity of title compounds (MIC/MFC in µmol/mL × 10−2).

R.br A.f A.v A.o A.n T.v P.o P.f P.v.c

5a
MIC 3.78 ± 0.04 3.78 ± 0.04 3.78 ± 0.04 3.78 ± 0.04 2.02 ± 0.04 3.78 ± 0.04 3.78 ± 0.08 3.78 ± 0.04
MFC 7.57 ± 0.08 7.57 ± 0.08 7.57 ± 0.08 7.57 ± 0.08 3.78 ± 0.04 7.57 ± 0.1 7.57 ± 0.1 7.57 ± 0.08

5b
MIC 8.19 ± 0.04 8.19 ± 0.08 3.00 ± 0.02 6.00 ± 0.08 3.00 ± 0.02 6.00 ± 0.08 6.00 ± 0.08 12.28 ± 0.1
MFC 16.31 ± 0.2 16.31 ± 0.2 4.09 ± 0.03 8.19 ± 0.08 4.09 ± 0.03 8.19 ± 0.08 8.19 ± 0.08 16.31 ± 0.12

5c
MIC 15.69 ± 0.2 3.92 ± 0.06 2.09 ± 0.02 5.75 ± 0.04 2.88 ± 0.04 3.92 ± 0.08 3.92 ± 0.04 3.92 ± 0.08
MFC 31.37 ± 0.4 7.84 ± 0.06 3.92 ± 0.03 7.84 ± 0.08 7.84 ± 0.08 7.84 ± 0.08 7.84 ± 0.1 7.84 ± 0.1

5d
MIC 29.31 ± 0.4 3.52 ± 0.04 1.88 ± 0.02 3.52 ± 0.04 1.88 ± 0.02 3.52 ± 0.02 3.52 ± 0.04 3.52 ± 0.04
MFC 56.28 ± 1.1 7.03 ± 0.06 3.52 ± 0.02 7.03 ± 0.06 3.52 ± 0.04 7.03 ± 0.06 7.03 ± 0.06 7.03 ± 0.06

5e
MIC 34.05 ± 0.6 4.26 ± 0.08 3.12 ± 0.04 4.26 ± 0.05 3.12 ± 0.04 4.26 ± 0.08 6.24 ± 0.08 8.51 ± 0.08
MFC 68.10 ± 0.8 8.51 ± 0.06 4.26 ± 0.05 8.51 ± 0.1 4.26 ± 0.05 8.51 ± 0.1 8.51 ± 0.08 17.03 ± 0.2

5f
MIC 15.69 ± 0.1 2.09 ± 0.04 2.09 ± 0.02 2.09 ± 0.04 2.09 ± 0.02 2.09 ± 0.02 2.09 ± 0.02 2.09 ± 0.04
MFC 31.37 ± 0.4 3.92 ± 0.06 3.92 ± 0.04 3.92 ± 0.04 3.92 ± 0.06 3.92 ± 0.04 3.92 ± 0.04 3.92 ± 0.06

5g MIC 3.94 ± 0.03 3.94 ± 0.04 2.10 ± 0.01 3.94 ± 0.06 2.10 ± 0.02 3.94 ± 0.06 3.94 ± 0.06 2.63 ± 0.02
MFC 7.89 ± 0.08 7.89 ± 0.06 3.94 ± 0.06 7.89 ± 0.06 3.94 ± 0.06 7.89 ± 0.08 7.89 ± 0.06 7.89 ± 0.1

5h
MIC 14.62 ± 0.2 1.95 ± 0.01 1.95 ± 0.01 1.95 ± 0.02 0.97 ± 0.02 1.95 ± 0.02 1.95 ± 0.02 7.31 ± 0.1
MFC 29.24 ± 0.4 3.55 ± 0.02 3.55 ± 0.04 3.55 ± 0.04 1.95 ± 0.04 3.55 ± 0.04 3.55 ± 0.06 14.62 ± 0.2

5i
MIC 3.94 ± 0.06 3.94 ± 0.06 2.10 ± 0.04 3.94 ± 0.08 2.10 ± 0.04 5.78 ± 0.08 3.94 ± 0.06 7.89 ± 0.06
MFC 7.89 ± 0.08 7.89 ± 0.06 3.94 ± 0.06 7.89 ± 0.08 3.94 ± 0.06 7.89 ± 0.08 7.89 ± 0.06 15.77 ± 0.2

5j MIC 14.62 ± 0.2 3.55 ± 0.06 3.55 ± 0.06 3.55 ± 0.04 5.36 ± 0.06 3.55 ± 0.05 3.55 ± 0.06 7.31 ± 0.06
MFC 29.23 ± 0.4 7.31 ± 0.1 7.31 ± 0.1 7.31 ± 0.08 7.31 ± 0.1 7.31 ± 0.08 7.31 ± 0.08 14.62 ± 0.09

5k
MIC 3.78 ± 0.04 2.02 ± 0.04 2.02 ± 0.04 2.02 ± 0.04 2.02 ± 0.02 3.78 ± 0.02 3.78 ± 0.04 3.78 ± 0.04
MFC 7.57 ± 0.08 3.78 ± 0.04 3.78 ± 0.04 3.78 ± 0.04 3.78 ± 0.08 7.57 ± 0.08 7.57 ± 0.1 7.57 ± 0.08

5l
MIC 2.58 ± 0.02 3.52 ± 0.02 2.58 ± 0.02 5.16 ± 0.06 3.52 ± 0.06 5.16 ± 0.06 3.52 ± 0.05 3.52 ± 0.04
MFC 3.52 ± 0.04 7.03 ± 0.05 3.52 ± 0.05 7.03 ± 0.06 3.52 ± 0.04 7.03 ± 0.08 7.03 ± 0.08 7.03 ± 0.08

Ketoconazole
MIC 38.0 ± 1.2 285. ± 6.8 38.0 ± 1.2 38.0 ± 0.8 475.0 ± 5.8 380.0 ± 5.8 38.0 ± 1.2 38.00 ± 1.6
MFC 95.0 ± 2.3 380. ± 8.4 95.0 ± 1.2 95.0 ± 0.6 570.0 ± 8.6 380.0 ± 4.8 95.0 ± 2.3 95 ± 2.6

Bifonazole
MIC 48.0 ± 2.2 48.0 ± 1.2 48.0 ± 2.8 48.0 ± 1.2 64.0 ± 2.8 48.0 ± 2.0 64.0 ± 1.2 48 ± 2.2
MFC 64.0 ± 3.4 64.0 ± 0.8 80.0 ± 1.8 64.0 ± 2.3 80.0 ± 3.8 64.0 ± 1.6 80.0 ± 2.1 64 ± 3.4

A.f.—A. fumigatus, A.v.—A. versicolor, A.o.—A. ochraceus, A.n.—A. niger, T.v.—T. viride, P.f.—P. funiculosum, P.o.—
P. ochrochloron, P.v.c.—P. cyclpoium var verucosum.
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In general, most compounds showed good activity against A. ochraceus and T. viride. Thus,
compounds 5a–5d, 5f–5i and 5k exhibited excellent activity against T. viride with MIC in range
of 0.97–2.12 µmol/mL × 10−2, while some of these compounds (5b–5d, 5f–5i, 5k) showed
good activity also against A. ochraceus with MIC in range of 1.88–2.10 µmol/mL × 10−2.
Four compounds 5g, 5k, 5l (MIC at 1.88–3.78 µmol/mL × 10−2) as well as 5i (MIC
3.94 µmol/mL × 10−2) showed good activity against the most resistant to compounds
tested fungal A. fumigatus.

Our results indicate that the described compounds are 13–52 times more potent than
ketoconazole and 6- to 17-fold more potent than bifonazole.

According to the study of structure–activity relationships, it seems that the presence
of 3-COOH, 3-OH groups on the benzene ring of indole derivatives (5k) is beneficial
for antifungal activity, whereas attachment of the 6-methoxy group to the indole ring of
compound 5k results in the less potent derivative 5l.

The order of activity of indole derivatives can be presented as 5k > 5g > 5a > 5i > 5e.
Thus, the combination of 3-COOH, 4-OH groups attached to benzene ring (5k) leads to the
increase in activity of indole derivatives, while the opposite (5a) is less favorable. Addi-
tionally, the 3-COOH group on the benzene ring produced a positive effect on\ antifungal
activity of indole derivatives. In the case of 5-methoxy indole derivatives, the 4-OH substitu-
tion (5f) was the most favorable, while 3-COOH (5h) and 3-OH substitution (5c) were much
less favorable. Concerning the 6-methoxy indole derivatives: the combination of 3-COOH
with 4-OH substituents in the benzene ring is favorable, whereas the combination of 3-OH
and 4-COOH produced a negative effect on antifungal activity. Thus, the antifungal activity
as, in case of antibacterial compounds, depends not only on the nature of substituents, but
also on their relative positions.

Our results indicate that antibacterial and antifungal activities have different relation-
ships with the chemical structure: the compound that showed the best antibacterial activity
(5b) appeared to be one of the least active as antifungals. On the other hand, compounds
5g, 5d and 5e expressed almost the same behavior against bacteria and fungi.

2.5. Docking Studies
2.5.1. Docking to Antibacterial Targets

In order to elucidate the probable mechanism of action of designed compound docking
studies to several antibacterial targets, such as E. coli DNA Gyrase, S. aureus Thymidylate
kinase, E. coli Primase and E. coli MurA and MurB, were performed. The docking studies
showed that the assessments of binding free energy to E. coli DNA Gyrase, Thymidylate
kinase, E. coli Primase and E. coli MurA were higher than that to E. coli MurB; therefore, it
may be resolved that the inhibition of E. coli MurB enzyme is the most probable, among the
considered mechanism of action of the compounds, where binding scores were consistent
with biological activity (Table 10).

The most active compound 5b in E. coli MurB enzyme showed three favorable hy-
drogen bond interactions. Two hydrogen bonds were observed between the hydroxyl
substituent of the benzene ring of the compound and the residues Tyr157 and Lys261 (dis-
tance 1.72 Å and 2.58 Å, respectively), and another hydrogen bond interaction between the
O atom of the carbonic group of the thiazolidine ring of the compound and Ser228 (distance
2.65 Å). The benzene ring interacts hydrophobically with the residues Tyr124, Gly122,
Asn232 and Arg158, while the thizolidine ring interacts hydrophobically with the residues
Tyr189 and Leu289 (Figures 8 and 9). These interactions stabilize the complex compound
enzyme and play a crucial role in the increased inhibitory action of the compound 5b.
Moreover, the hydrogen bond formation with the residue Ser228 is crucial for the inhibitory
action of this compound, because this residue takes part in the proton transfer at the second
stage of peptidoglycan synthesis [41]. Hydrogen bond interactions with the residue Ser228
were also observed for the rest of the studied compounds.
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Table 10. Molecular docking binding affinities to antibacterial targets.

No

Est. Binding Energy (kcal/mol)
I-H

E. coli MurB
Residues

E. coli MurBE. coli Gyrase
1KZN

S. aureus
Thymidylate Kinase

4QGG

E. coli Primase
1DDE

E. coli MurA
JV4T

E. coli MurB
2Q85

5a −4.52 −1.91 − −6.17 −8.59 2 Arg213, Ser228

5b −6.25 −2.48 −1.26 −8.11 −12.57 3 Tyr157, Ser228,
Lys261

5c −4.27 − − −5.28 −9.45 2 Arg213, Ser228
5d −2.74 −1.63 −2.44 −4.12 −7.02 1 Ser228
5e − − − −5.20 −6.97 1 Ser228
5f − − − −5.23 −7.12 1 Ser228
5g −5.21 −1.69 −1.37 −6.76 −9.38 2 Ser228, Lys261
5h −6.13 −1.47 − −7.04 −10.28 2 Ser228, Asn232
5i − −1.32 − −4.81 −7.55 2 Arg213, Ser228
5j −5.33 − −1.29 −6.05 −8.14 2 Arg213, Ser228
5k − − − −5.83 −7.75 2 Arg213, Ser228
5l − −2.55 − −6.21 −8.82 2 Ser228, Asn232
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2.5.2. Docking to Antifungal Targets

All the synthesized compounds and the reference drug ketoconazole were docked to
lanosterol 14a-demethylase of C. albicans and DNA topoisomerase IV (Table 11).

Table 11. Molecular docking binding affinities to antifungal targets.

N/N

Est. Binding Energy (kcal/mol)
I-H

Residues
CYP51 of

C. albicans

Interactions with
HEM601DNA TopoIV

1S16
CYP51 of C. Albicans

5V5Z

5a −1.55 −9.96 1 Tyr145 Negative Ionizable,
Hydrophobic

5b - −8.54 2 Tyr135, Tyr145 Hydrophobic
5c −3.34 −8.27 1 Tyr145 Hydrophobic

5d −1.64 −7.83 − − Negative Ionizable,
Hydrophobic

5e - −8.11 2 Tyr145, Thr315 Hydrophobic
5f - −9.93 2 Ser378, Met508 Hydrophobic

5g −4.01 −10.80 1 Tyr145 Negative Ionizable,
Hydrophobic

5h −4.17 −9.81 1 Tyr145 Negative Ionizable,
Hydrophobic

5i −1.31 −9.71 1 Th315 Negative Ionizable,
Hydrophobic

5j −1.09 −8.54 1 Tyr145 Negative Ionizable,
Hydrophobic

5k −2.41 −13.01 3 Ser378, HEM601
Negative Ionizable,
iron binding (Fe),
hydrogen bond

5l −4.25 −10.85 1 Tyr135 Negative Ionizable,
Hydrophobic

ketoconazole − −8.23 1 Tyr64 Hydrophobic,
aromatic

Docking results showed that the most active compound 5k take place inside the active
site of the enzyme interacting with the heme group of CYP51Ca throughout its –COOH
substituent of the benzene ring forming negative ionizable interactions with the heme group.
Furthermore, the oxygen of the –OH substituent interacts with the Fe iron of the heme
group and with the N atom of Heme, forming a hydrogen bond. Another hydrogen bond is
formed between the N atom of indole moiety and Ser378. Hydrophobic interactions were
also detected with the residues Thr311, Ley376, Phe233, Phe380 and Met308. Interaction
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with the heme group was also observed with the benzene ring of ketoconazole, which
forms hydrophobic and aromatic interactions (Figures 10 and 11). However, compound
5k forms more and stronger interactions than ketoconazole and a more stable complex
of the ligand with the enzyme. This is probably the reason why compound 5k has better
antifungal activity than ketoconazole.

Molecules 2022, 27, × FOR PEER REVIEW 18 of 29 
 

 

5c −3.34 −8.27 1 Tyr145 Hydrophobic 

5d −1.64 −7.83 − − 

Negative 

Ionizable, 

Hydrophobic 

5e - −8.11 2 Tyr145, Thr315 Hydrophobic 

5f - −9.93 2 Ser378, Met508 Hydrophobic 

5g −4.01 −10.80 1 Tyr145 

Negative 

Ionizable, 

Hydrophobic 

5h −4.17 −9.81 1 Tyr145 

Negative 

Ionizable, 

Hydrophobic 

5i −1.31 −9.71 1 Th315 

Negative 

Ionizable, 

Hydrophobic 

5j −1.09 −8.54 1 Tyr145 

Negative 

Ionizable, 

Hydrophobic 

5k −2.41 −13.01 3 Ser378, HEM601 

Negative 

Ionizable, iron 

binding (Fe), 

hydrogen bond 

5l −4.25 −10.85 1 Tyr135 

Negative 

Ionizable, 

Hydrophobic 

ketocon

azole 
− −8.23 1 Tyr64 

Hydrophobic, 

aromatic 

Docking results showed that the most active compound 5k take place inside the ac-

tive site of the enzyme interacting with the heme group of CYP51Ca throughout its –COOH 

substituent of the benzene ring forming negative ionizable interactions with the heme 

group. Furthermore, the oxygen of the –OH substituent interacts with the Fe iron of the 

heme group and with the N atom of Heme, forming a hydrogen bond. Another hydrogen 

bond is formed between the N atom of indole moiety and Ser378. Hydrophobic interac-

tions were also detected with the residues Thr311, Ley376, Phe233, Phe380 and Met308. 

Interaction with the heme group was also observed with the benzene ring of ketoconazole, 

which forms hydrophobic and aromatic interactions (Figures 10 and 11). However, com-

pound 5k forms more and stronger interactions than ketoconazole and a more stable com-

plex of the ligand with the enzyme. This is probably the reason why compound 5k has 

better antifungal activity than ketoconazole. 

 

Figure 10. Docked conformation of ketoconazole in lanosterol 14alpha-demethylase of C. albicans
(CYP51ca).

Molecules 2022, 27, × FOR PEER REVIEW 19 of 29 
 

 

Figure 10. Docked conformation of ketoconazole in lanosterol 14alpha-demethylase of C. albicans 

(CYP51ca). 

 

Figure 11. Docked conformation of compound 5k in lanosterol 14alpha-demethylase of C. albicans 

(CYP51ca). 

2.6. Cytotoxicity Assessment 

The assessment of cellular cytotoxicity of the compounds in normal human MRC-5 

cells was evaluated at two concentrations in culture, i.e., 1 ×10−5 M (Figure 12A,B) and 1 

×10−6 M (Figure 12B, C). No substantial effect on cell proliferation after 48 h exposure has 

been observed in cultures, since the growth was ≥80% for all the tested agents compared 

to control untreated cultures (Figure 12A,C). Moreover, the percentage of dead cells accu-

mulated in cultures was very low, since the maximum number did not exceed that of 2–

2.5% (Figure 12B,D). 

 

Figure 11. Docked conformation of compound 5k in lanosterol 14alpha-demethylase of C. albicans
(CYP51ca).

2.6. Cytotoxicity Assessment

The assessment of cellular cytotoxicity of the compounds in normal human MRC-5
cells was evaluated at two concentrations in culture, i.e., 1 × 10−5 M (Figure 12A,B) and
1 × 10−6 M (Figure 12B,C). No substantial effect on cell proliferation after 48 h exposure
has been observed in cultures, since the growth was ≥80% for all the tested agents com-
pared to control untreated cultures (Figure 12A,C). Moreover, the percentage of dead cells
accumulated in cultures was very low, since the maximum number did not exceed that of
2–2.5% (Figure 12B,D).
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Figure 12. Assessment of cell proliferation of MRC-5 cells exposed to different compounds in culture.
MRC-5 cells grown in culture were separately incubated with each of the compounds at concentrations
1 × 10−5 M (10µM) (panels A,B) and 1 × 10−6 M (1 µM) (panels C,D) for 48 h. The cell number
was measured in cultures under the microscope using the Neubauer counting chamber, as indicated
in “Methods” and expressed as % of the proliferation of control–untreated cultures (panels A,C).
Moreover, the evaluation of cell death was assessed by the trypan-blue exclusion-dye assay, as
shown in “Methods” (panels B,D). The results shown above indicate the mean numbers ± SD of two
independent biological experiments (n ≥ 3). The diagrams shown above and the t-test statistical
analysis were carried out using the GraphPad Prism 6.0 program. Notably, no statistical significance
between the control–untreated culture with each one of treated compounds was obtained.

3. Materials and Methods
3.1. Chemistry
3.1.1. General Procedure for the Synthesis 3-Aryl-2-thioxothiazolidin-4-ones 3a–e

The mixture of bis (carboxymethyl) trithiocarbonate, (0.2 mol), of aromatic amine
(0.2 mol) and 100 mL of the solvent was boiled for 5–8 h, cooled, the precipitate is filtered
off, washed successively with diluted alcohol 1: 2, water, dried and recrystallized.

3-(3-Hydroxyphenyl)-2-thioxothiazolidin-4-one (3a). Yield 70%; m.p. 194–195 ◦C (AcOH). IR
(cm−1): 3362.73 (OH), 1723.31 (C=O), 1596.98 (C=S). 1H-NMR (400 MHz, DMSO-d6, ppm)
δ 9.79 (s, 1H, OH), 7.29 (t, J = 8.0 Hz, 1H, C6H4), 6.86 (ddd, J = 8.2, 2.3, 1.0 Hz, 1H, C6H4),
6.67–6.62 (m, 2H, C6H4), 4.36 (s, 2H, CH2). 13C NMR (101 MHz, dmso) δ 203.50, 173.94,
157.94, 136.39, 129.87, 119.04, 116.20, 115.59, 37.01. Anal. Calcd. for C9H7NO2S2 (%): C 47.98;
H, 3.13; N, 6.22; S, 28.46. Found (%):C 48.06; H, 3.04; N, 6.31; S, 28.54.

3-(4-Hydroxyphenyl)-2-thioxothiazolidin-4-one (3b). Yield 85%. m.p. 250–252 ◦C (AcOH). IR
(cm−1): 3442.77 (OH), 1742.6 (C=O), 1596.02 (C=S). 1H-NMR (400 MHz, DMSO-d6, ppm)
δ 9.82 (s, 1H, OH), 7.05–6.99 (m, 2H, C6H4), 6.88–6.83 (m, 2H, C6H4), 4.34 (s, 2H, CH2). 13C
NMR (101 MHz, dmso) δ 203.93, 174.16, 157.90, 129.67, 126.39, 115.69, 36.69. Anal. Calcd.
for C9H7NO2S2 (%): C 47.98; H, 3.13; N, 6.22; S, 28.46. Found (%):C 47.89; H, 3.06; N, 6.15;
S, 28.41.
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3-(4-Oxo-2-thioxothiazolidin-3-yl)benzoic acid (3c). Yield 83%. m.p. 252–254 ◦C (AcOH-DMFA).
IR (cm−1): 1740.67 (C=O), 1688.6 (C=O), 1586.38. (C=S). 1H-NMR (400 MHz, DMSO-d6,
ppm) δ 13.24 (s, 1H, COOH), 8.06–8.01 (m, 1H, C6H4), 7.87 (t, J = 1.7 Hz, 1H, C6H4), 7.66 (t,
J = 7.8 Hz, 1H, C6H4), 7.54 (ddd, J = 7.9, 2.1, 1.2 Hz, 1H, C6H4), 4.37 (s, 2H, CH2). 13C NMR
(101 MHz, dmso) δ 203.72, 174.00, 166.37, 135.84, 133.29, 131.96, 129.97, 129.76, 129.60, 37.28.
Anal. Calcd. for C10H7NO3S2 (%): C 47.42; H, 2.79; N, 5.53; S, 25.32. Found (%): C 47.54; H,
2.68; N, 5.41; S, 25.41.

4-(4-Oxo-2-thioxothiazolidin-3-yl)benzoic acid (3d). Yield 89%. m.p. >270 ◦C (AcOH-DMFA).
IR (cm−1): 1722.35 (C=O), 1697.28 (C=O), 1503.44. (C=S). 1H-NMR (400 MHz, DMSO-d6,
ppm) δ 13.12 (s, 1H, COOH), 8.10–8.05 (m, 2H, C6H4), 7.45–7.39 (m, 2H, C6H4), 4.40 (s, 1H,
CH2). 13C NMR (101 MHz, dmso) δ 203.35, 173.81, 166.55, 139.30, 131.53, 130.16, 129.11,
37.29. 13C NMR (101 MHz, dmso) δ 203.95, 174.06, 171.02, 161.26, 135.86 (s), 130.69, 126.52,
117.93, 113.50, 36.99.Anal. Calcd. for C10H7NO3S2 (%): C 47.42; H, 2.79; N, 5.53; S, 25.32.
Found (%): C 47.36; H, 2.71; N, 5.62; S, 25.22.

2-Hydroxy-5-(4-oxo-2-thioxo-thiazolidin-3-yl)-benzoic acid (3e). Yield 61%. m.p. >270 ◦C (AcOH-
DMFA). IR (cm−1): 1748.39 (C=O), 1672.2 (C=O), 1486.08. (C=S). 1H-NMR (400 MHz,
DMSO-d6, ppm) δ 7.71 (d, J = 2.6 Hz, 1H, C6H3), 7.39 (dd, J = 8.8, 2.6 Hz, 1H, C6H3), 7.09 (d,
J = 8.8 Hz, 1H, C6H3), 4.33 (s, 2H, CH2). Anal. Calcd. for C10H7NO4S2 (%): C 44.60; H, 2.62;
N, 5.20; S, 23.81. Found (%): C C 44.73; H, 2.55; N, 5.13; S, 23.90.

3.1.2. General Procedure for the Synthesis
3-Aryl-5-(1H-indol-3-ylmethylene)-2-thioxothiazolidin-4-ones 5a–l

A mixture of 3-aryl-2-thioxothiazolidin-4-one 3a–e (5 mmol), the corresponding 1H-
indole-3-carbaldehyde 4a–d (6 mmol) and ammonium acetate (5 mmol, 0.39g) in acetic
acid (10 mL) was heated to boiling for 2 h, cooled, the precipitate is filtered off, washed
successively with acetic acid, alcohol and water, dried and recrystallized with AcOH-
DMFA mixture.

(Z)-3-(3-Hydroxyphenyl)-5-(1H-indol-3-ylmethylene)-2-thioxothiazolidin-4-one (5a). Yield 78%;
m.p. 271–273 ◦C. 1H-NMR (400 MHz, DMSO-d6, ppm) δ 12.38 (s, 1H, NH), 9.83 (s, 1H, OH),
8.09 (s, 1H, CH = ), 7.97 (dd, J = 9.3, 5.2 Hz, 2H, H4 +H7, indole), 7.53 (d, J = 7.8 Hz, 1H, H2
indole), 7.37–7.19 (m, 3H, C6H4 + H5 +H6, indole), 6.90 (ddd, J = 8.3, 2.4, 0.9 Hz, 1H, C6H4),
6.82–6.73 (m, 2H, C6H4). 13C-NMR (101 MHz, DMSO-d6, ppm) δ 192.73, 166.58, 157.99,
136.45, 136.39, 130.46, 129.90, 126.75, 125.86, 123.34, 121.48, 119.13, 118.54, 116.27, 115.68,
115.28, 112.55, 111.11. MS (ESI): m/z = 353.0 [M + H]+. Anal. Calcd. for C18H12N2O2S2 (%):
C, 61.34; H, 3.43; N, 7.95; S, 18.20. Found (%): C, 61.45; H, 3.36; N, 7.86; S, 18.29.

(Z)-3-(3-Hydroxyphenyl)-5-(1-methyl-1H-indol-3-ylmethylene)-2-thioxothiazolidin-4-one (5b). Yield
92%; m.p. >275 ◦C. IR (cm−1): 3356.94 (OH), 1707.88 (C=O), 1670.27 (C=O), 1595.05 (C=C),
1572.87 (C=S). 1H-NMR (300 MHz, DMSO-d6, ppm) δ 9.49 (s, 1H, OH), 8.02 (s, 1H, CH = ),
7.89 (d, J = 7.6 Hz, 1H, H4 indole), 7.85 (s, 1H, H7 indole), 7.50 (d, J = 7.9 Hz, 1H, H2 indole),
7.36–7.20 (m, 3H, C6H4 + H5 +H6, indole), 6.94–6.88 (m, 1H, C6H4), 6.72–6.66 (m, 2H, C6H4),
3.99 (s, 3H, CH3N). 13C-NMR (101 MHz, DMSO-d6, ppm) δ 192.66, 166.54, 157.98, 136.92,
136.42, 133.76, 129.92, 127.24, 125.17, 123.39, 121.80, 119.12, 118.62, 116.26, 115.65, 114.98,
110.90, 110.09, 33.38. MS (ESI): m/z = 367.2 [M + H]+. Anal. Calcd. for C19H14N2O2S2 (%):
C, 62.27; H, 3.85; N, 7.64; S, 17.50. Found (%):C, 62.34; H, 3.77; N, 7.59; S, 17.41.

(Z)-3-(3-Hydroxyphenyl)-5-(5-methoxy-1H-indol-3-ylmethylene)-2-thioxothiazolidin-4-one (5c).
Yield 82%; m.p. 268–270◦C. IR (cm−1): 3247.01 (OH), 3263.4 (NH) 1676.06 (C=O), 1591.2
(C=C), 1572.87 (C=S) 1H-NMR (300 MHz, DMSO-d6, ppm) δ 12.08 (s, 1H, NH), 9.55 (s, 1H,
OH), 8.07 (s, 1H, CH = ), 7.68 (d, J = 2.4 Hz, 1H, H4 indole), 7.40–7.25 (m, 3H, C6H4 + H2
+H7, indole), 6.89 (d, J = 7.9 Hz, 1H, C6H4), 6.82 (d, J = 9.5 Hz, 1H, H6 indole), 6.70–6.61
(m, 2H, C6H4), 3.86 (s, 3H, CH3O). 13C-NMR (101 MHz, DMSO-d6, ppm) δ 192.68, 166.53,
157.99, 155.27, 136.51, 131.16, 130.50, 129.91, 127.76, 126.45, 119.13, 116.24, 115.68, 114.40,
113.55, 113.33, 111.22, 100.37, 55.48. MS (ESI): m/z = 383.2 [M + H]+. Anal. Calcd. for
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C19H14N2O3S2 (%): C, 59.67; H, 3.69; N, 7.32; S, 16.77. Found (%): C, 59.51; H, 3.74; N, 7.26;
S, 16.85.

(Z)-3-(3-Hydroxyphenyl)-5-(6-methoxy-1H-indol-3-ylmethylene)-2-thioxothiazolidin-4-one (5d).
Yield 87%; m.p. 272–274 ◦C. IR (cm−1): 3343.44 (OH), 3263.4 (NH) 1683.78 (C=O), 1592.16
(C=C), 1570.95 (C=S) 1H-NMR (300 MHz, DMSO-d6, 1H-NMR (300 MHz, DMSO-d6, ppm)
δ 11.97 (s, 1H, NH), 9.55 (s, 1H, OH), 7.99 (s, 1H, CH = ), 7.72 (d, J = 8.6 Hz, 1H, H4 indole),
7.61 (s, 1H, H2 indole), 7.29 (t, J = 8.1 Hz, 1H, C6H4), 6.95 (s, 1H, H7 indole), 6.89 (d, J = 8.0
Hz, 1H, C6H4), 6.81 (d, J = 8.2 Hz, 1H, H5 indole), 6.66 (s, 2H, C6H4), 3.84 (s, 3H, CH3O).
13C-NMR (101 MHz, DMSO-d6, ppm) δ 192.66, 166.55, 157.98, 156.84, 137.31, 136.46, 129.90,
129.55, 126.11, 120.68, 119.33, 119.12, 116.26, 115.66, 115.06, 111.44, 111.28, 95.36, 55.27. MS
(ESI): m/z = 383.2 [M + H]+. Anal. Calcd. for C19H14N2O3S2 (%): C, 59.67; H, 3.69; N, 7.32;
S, 16.77. Found (%): C, 59.75; H, 3.76; N, 7.27; S, 16.64.

(Z)-3-(4-Hydroxyphenyl)-5-(1H-indol-3-ylmethylene)-2-thioxothiazolidin-4-one (5e). Yield 94%;
m.p. >275 ◦C. IR (cm−1): 3382.98 (OH, NH) 1679.92 (C=O), 1592.16 (C=C), 1574.8 (C=S)
1H-NMR (400 MHz, DMSO-d6, ppm) δ 12.37 (s, 1H, NH), 9.86 (s, 1H, OH), 8.09 (s, 1H, CH
= ), 8.00–7.92 (m, 2H, H4 +H7, indole), 7.53 (d, J = 8.0 Hz, 1H, H2 indole), 7.32–7.19 (m, 2H,
H5 +H6, indole), 7.16 (d, J = 8.8 Hz, 2H, C6H4), 6.89 (d, J = 8.8 Hz, 2H, C6H4). 13C-NMR
(101 MHz, DMSO-d6, ppm) δ 193.15, 166.78, 157.98, 136.38, 130.39, 129.76, 126.75, 126.43,
125.77, 123.32, 121.46, 118.51, 115.70, 115.19, 112.54, 111.10. MS (ESI): m/z = 353.2 [M + H]+.
Anal. Calcd. for C18H12N2O2S2 (%): C, 61.34; H, 3.43; N, 7.95; S, 18.20. Found (%): C, 61.30;
H, 3.29; N, 7.99; S, 18.12.

(Z)-3-(4-Hydroxyphenyl)-5-(5-methoxy-1H-indol-3-ylmethylene)-2-thioxothiazolidin-4-one (5f).
Yield 88%; m.p. 264–266 ◦C. IR (cm−1): 3250.86 (OH, NH) 1669.31(C=O), 1570.95 (C=C),
1510.19 (C=S). 1H-NMR (300 MHz, DMSO-d6, ppm) δ 12.25 (s, 1H, NH), 9.87 (s, 1H, OH),
8.14 (s, 1H, CH = ), 7.87 (d, J = 2.9 Hz, 1H, H4 indole), 7.52 (s, 1H, H2 indole), 7.40 (d,
J = 8.8 Hz, 1H, H7 indole), 7.15 (d, J = 8.6 Hz, 2H, C6H4), 6.92–6.86 (m, 3H, C6H4 + H6
indole), 3.83 (s, 3H, CH3O). 13C-NMR (101 MHz, DMSO-d6, ppm) δ 193.08, 166.75, 157.94,
155.25, 131.12, 130.39, 129.74, 127.73, 126.48, 126.33, 115.72, 114.30, 113.51, 113.33, 111.20,
100.29, 55.45. MS (ESI): m/z = 383.2 [M + H]+. Anal. Calcd. for C19H14N2O3S2 (%): C, 59.67;
H, 3.69; N, 7.32; S, 16.77. Found (%): C, 59.71; H, 3.61; N, 7.24; S, 16.83.

(Z)-3-[5-(1H-Indol-3-ylmethylene)-4-oxo-2-thioxo-thiazolidin-3-yl]-benzoic acid (5g). Yield 82%;
m.p. >275 ◦C. IR (cm−1): 3230.61 (OH, NH), 1722.35 (C=O), 1693.42 (C=O), 1596.02 (C=C),
1577.7 (C=S).1H-NMR (300 MHz, DMSO-d6, ppm) δ 12.73 (s, COOH), 12.25 (s, NH),
8.15–8.06 (m, 2H, C6H4 + CH = ), 7.96–7.84 (m, 2H, C6H4 + H4 indole), 7.78 (d, J = 2.9 Hz,
1H, H7 indole), 7.66 (t, J = 7.8 Hz, 1H, C6H4), 7.56–7.46 (m, 2H, C6H4 + H2 indole), 7.28–7.14
(m, 2H, H5 +H6, indole). 13C NMR (101 MHz, dmso) δ 192.94, 166.54, 136.41, 135.85, 133.28,
132.18, 130.56, 130.02, 129.83, 129.58, 126.75, 126.03, 123.36, 121.51, 118.52, 115.32, 112.57,
111.09. Anal. Calcd. for C19H12N2O3S2 (%): C, 59.99; H, 3.18; N, 7.36; S, 16.86. Found (%):C,
60.08; H, 3.09; N, 7.45; S, 16.92.

(Z)-3-[5-(5-Methoxy-1H-indol-3-ylmethylene)-4-oxo-2-thioxothiazolidin-3-yl]-benzoic acid (5h).
Yield 72%; m.p. >275 ◦C. IR (cm−1): 3248.93 (OH, NH), 1706.92 (C=O), 1587.34 (C=C),
1575.77 (C=S).1H-NMR (400 MHz, DMSO-d6, ppm) δ δ 13.22 (s, 1H, COOH), 12.29 (s, 1H,
NH), 8.17 (s, 1H, CH = ), 8.07 (dd, J = 6.3, 2.5 Hz, 1H, C6H4), 7.98 (s, 1H, H4 indole), 7.90
(d, J = 2.8 Hz, 1H, C6H4), 7.73–7.66 (m, 2H, C6H4 + H7 indole), 7.54 (d, J = 2.0 Hz, 1H,
C6H4), 7.40 (t, J = 7.4 Hz, 1H, H2 indole), 6.89 (dd, J = 8.7, 2.3 Hz, 1H, H6 indole), 3.83 (s,
3H, CH3O). 13C-NMR (101 MHz, DMSO-d6, ppm) δ 192.89, 166.49, 155.30, 135.92, 133.36,
132.00, 131.16, 130.57, 130.01, 129.84, 129.62, 127.76, 126.62, 114.44, 113.54, 113.34, 111.21,
100.38, 55.48. MS (ESI): m/z = 411.2 [M + H]+. Anal. Calcd. C20H14N2O4S2 (%): C, 58.52;
H 3.44; N, 6.82; S, 15.62. Found (%):C, 58.65; H 3.33; N, 6.76; S, 15.71.

(Z)-4-[5-(1H-Indol-3-ylmethylene)-4-oxo-2-thioxothiazolidin-3-yl]-benzoic acid (5i). Yield 82%;
m.p. >275 ◦C. IR (cm−1) 3433.13 (OH), 3228.68 (NH), 1712.71 (C=O), 1689.56 (C=O), 1596.98
(C=C), 1574.8 (C=S).1H-NMR (300 MHz, DMSO-d6, ppm) δ 12.90 (s, COOH), 12.25 (s, NH),
8.15 (d, J = 8.4 Hz, 2H, C6H4), 8.09 (s, 1H, CH = ), 7.88 (d, J = 7.2 Hz, 1H, H4 indole), 7.78 (d,
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J = 3.0 Hz, 1H, H7 indole), 7.49 (d, J = 7.3 Hz, 1H, H2 indole), 7.42 (d, J = 8.4 Hz, 2H, C6H4),
7.28–7.13 (m, 2H, H5 +H6, indole). 13C-NMR (101 MHz, DMSO-d6, ppm) δ 192.61, 166.53,
139.38, 136.41, 131.58, 130.65, 130.15, 129.23, 126.76, 126.21, 123.38, 121.54, 118.54, 115.13,
112.58, 111.09. MS (ESI): m/z = 381.2 [M + H]+. Anal. Calcd. C19H12N2O3S2 (%): C, 59.99;
H, 3.18; N, 7.36; S, 16.86. Found (%):C, 60.07; H, 3.09; N, 7.28; S, 16.95.

(Z)-4-[5-(6-Methoxy-1H-indol-3-ylmethylene)-4-oxo-2-thioxothiazolidin-3-yl]-benzoic acid (5j).
Yield 84%; m.p. >275 ◦C. IR (cm−1) 3254.72 (OH), 1704.99 (C=O), 1691.49 (C=O), 1596.98
(C=C), 1576.73 (C=S).1H-NMR (300 MHz, DMSO-d6, ppm) δ 12.59 (s, 1H, COOH), 12.04
(s, 1H, NH), 8.14 (d, J = 5.6 Hz, 2H, C6H4), 8.02 (s, 1H, CH = ), 7.73 (d, J = 7.7 Hz, 1H,
H4 indole), 7.65 (s, 1H, H2 indole), 7.42 (d, J = 6.6 Hz, 2H, C6H4), 6.95 (s, 1H, H7 indole),
6.82 (d, J = 6.1 Hz, 1H, H5 indole), 3.83 (s, 3H, CH3O). 13C-NMR (101 MHz, DMSO-d6,
ppm) δ 192.54 (s), 166.51, 156.87, 139.39, 137.34, 131.54, 130.13, 129.75, 129.22, 126.46, 120.68,
119.35, 114.91, 111.49, 111.27, 95.38, 55.26. MS (ESI): m/z = 411.2 [M + H]+. Anal. Calcd.
C20H14N2O4S2 (%): C, 58.52; H 3.44; N, 6.82; S, 15.62. Found (%):C, 58.47; H 3.49; N, 6.79;
S, 15.54.

(Z)-2-Hydroxy-5-[5-(1H-indol-3-ylmethylene)-4-oxo-2-thioxothiazolidin-3-yl]-benzoic acid (5k).
Yield 93%; m.p. >275 ◦C. IR (cm−1) 3226.75 (OH, NH), 1718.49 (C=O), 1678.95 (C=O), 1597.95
(C=C), 1577.7 (C=S).1H-NMR (300 MHz, DMSO-d6, ppm) δ 12.24 (s, 1H, NH), 11.54 (s, 1H,
COOH), 8.07 (s, 1H, CH = ), 7.87 (d, J = 7.4 Hz, 1H, H4 indole), 7.76 (s, 2H, C6H3 + H7
indole), 7.49 (d, J = 7.5 Hz, 1H, H2 indole), 7.39 (dd, J = 8.8, 2.4 Hz, 1H, C6H3), 7.25–7.16 (m,
2H, H5 +H6, indole), 7.06 (d, J = 8.8 Hz, 1H, C6H3). 13C-NMR (101 MHz, DMSO-d6, ppm)
δ 193.19, 171.09, 166.68, 161.33, 136.37, 135.92, 130.76, 130.44, 126.73, 126.51, 125.89, 123.36,
121.51, 118.47, 117.94, 115.28, 113.54, 112.56, 111.07. MS (ESI): m/z = 397.0 [M + H]+. Anal.
Calcd. C19H12N2O4S2 (%): C, 57.56; H 3.05; N, 7.07; S, 16.18. Found (%):C, 57.64; H 3.12; N,
7.01; S, 16.25.

(Z)-2-Hydroxy-5-[5-(6-methoxy-1H-indol-3-ylmethylene)-4-oxo-2-thioxothiazolidin-3-yl]-benzoic
acid (5l). Yield 72%; m.p. >275 ◦C. IR (cm−1) 3247.97 (OH, NH), 1717.53 (C=O), 1677.03
(C=O), 1599.88 (C=C), 1576.73 (C=S).1H-NMR (300 MHz, DMSO-d6, ppm) δ 12.00 (s, NH),
11.52 (s, 1H, COOH), 8.00 (s, CH = ), 7.79–7.69 (m, 2H, C6H3, H4 indole), 7.62 (d, J = 2.1
Hz, 1H, H2 indole), 7.37 (dd, J = 8.8, 2.2 Hz, 1H, C6H3), 7.05 (d, J = 8.8 Hz, 1H, C6H3),
6.94 (s, 1H, H7 indole), 6.81 (d, J = 8.7 Hz, 1H, H5 indole), 3.84 (s, 3H, CH3O). 13C-NMR
(101 MHz, DMSO-d6, ppm) δ 193.15, 171.08, 166.65, 161.34, 156.84, 137.30, 135.88, 130.74,
129.55, 126.49, 126.12, 120.67, 119.29, 117.91, 115.08, 113.61, 111.46, 111.24, 95.36, 55.26. MS
(ESI): m/z = 427.0 [M + H]+. Anal. Calcd. C20H14N2O5S2 (%): C, 56.33; H 3.31; N, 6.57; S,
15.04. Found (%):C, 56.26; H 3.28; N, 6.66; S, 14.95.

3.2. PASS and PASS-Based Web Applications

PASS predictions are based on the structure–activity relationships derived from the data
on over eight thousand biological activities of more than one million molecules included
in the training set [37,42–44]. Structure–activity relationships are examined using MNA
(Multilevel Neighborhoods of Atoms) structural descriptors [45] and modified the Naïve
Bayes approach [46]. Structural formulae presented as MDL MOL or SDF files [47] are used
as input information. PASS output is the list of predicted activities with two assessments:
Pa is the estimate of the probability of belonging to the class of active compounds, and Pi
is the estimate of the probability of belonging to the class of inactive ones [46]. The higher
the probability difference Pa-Pi, the higher the chance to confirm the prediction in the
following experiment.

Since 1999 [48], the PASS Online web application has been freely available via the
Internet. It provides an opportunity to predict several thousand biological activities with
an average probability of about 95% [39]. Comparing PASS Online with some other freely
available web services predicting biological activity profiles demonstrated its superiority
in performance [49]. Using the special training sets created based on ChEMBL data [50] we
developed several specialized PASS-based web applications: AntiBac-Pred [38,51], AntiFun-
Pred [52], KinScreen [53,54], which predict the detailed antibacterial, antifungal and kinase
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inhibitory activity profiles, respectively. These web applications differ from the standard
PASS version only by the training sets focused on the particular pharmacotherapeutic fields.
Therefore, the interpretation of the prediction results is the same as described above.

3.3. Ligand-Based Pharmacophore Modeling

The LigandScout program (Advanced version 4.4.7) [55] with default settings was
used to perform the pharmacophore modeling studies. Prior to the generation of phar-
macophore hypotheses, all tested dataset compounds were built using ChemDraw Ultra
(CambridgeSoft, version 12.0) and converted into the 3D format. The lowest energy con-
formations were generated using MMFF94 (Merck molecular force field) and the BEST
conformation model generation method was used during conformer generation with a
maximum number of 250 conformations, an energy threshold value of 20 kcal/mol above
the global energy minimum and an RMS threshold of 0.8.

Compounds 1–9 were selected for training. The training set molecules play a key
role in determining the quality of the pharmacophore models generated, while the test set
compounds serve to validate the resultant pharmacophore solutions.

Based on the feature mapping results, five matching features were selected, including
hydrophobic features (H, yellow), aromatic rings (AR, blue), hydrogen bond donors (HBD,
green), hydrogen bond acceptors (HBA, red) and negative ionizable features (red star). The
quality of generated hypotheses was ranked based on the pharmacophore fit score, which
indicates the modality of the mapping between a molecule and a model. A value of 1 reflects
the best prediction [56]. The highest rank score hypotheses for antibacterial activity were
considered statistically the best hypotheses and selected for the further analysis.

3.3.1. Pharmacophore Validation

The generated pharmacophore hypothesis was validated using a test set and leave-
one-out methods.

Pharmacophore Validation Using Test Set

The test set method is used to clarify whether the generated pharmacophore model
is capable to predict the antibacterial activity of compounds other than the training set
compounds and categorize them properly in their activity scale. For the test set, com-
pounds 10–14 were selected. For the test set compounds, the conformation generation was
performed using default values and BEST conformation analysis algorithms [57,58].

Pharmacophore Validation Using Leave-One-Out

The pharmacophore model was cross-validated by the leave-one-out method. In this
method, pharmacophore models are recomputing again by leaving one compound at a time
from the training set compounds, until each compound was left out once, and its affinity
is predicted using that new model [59]. This validation is performed to verify that the
correlation of the original pharmacophore model does not depend only on one particular
compound [57,60]. By leaving each one of the 9 training set compounds, 9 new models
were generated. Thus, we did not obtain any meaningful differences between Model-1 and
each model generated from this method, validating our pharmacophore model.

3.4. Biological Evaluation
3.4.1. Antibacterial Action

The following Gram-negative bacteria: Escherichia coli (ATCC 35210), Enterobacter cloacae
(clinical isolate), Salmonella Typhimurium (ATCC 13311), Pseudomonas aeruginosa (ATCC
27853) as well as Gram-positive bacteria: Listeria monocytogenes (NCTC 7973), Bacillus cereus
(clinical isolate), Micrococcus luteus (ATCC 10240) and Staphylococcus aureus (ATCC 6538)
were used. The organisms were obtained from the Mycological Laboratory, Department of
Plant Physiology, Institute for Biological Research “Siniša Stankovic”-National Institute of
Republic of Serbia, Belgrade, Serbia.
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The minimum inhibitory (MIC) and minimum bactericidal (MBC) concentrations were
determined by the modified microdilution method, as previously reported [34,60].

Resistant strains used in microdilution assay were isolates of S. aureus (strain isolated
from cow), E. coli (strain isolated form pig) and P. aeruginosa (strain isolated from cat)
obtained as described in Kartsev et al. [61].

3.4.2. Inhibition of Biofilm Formation

The method was performed as described [62] with some modifications. Briefly, the
P. aeruginosa resistant strain was incubated with MIC and subMIC of tested compounds
in Triptic soy broth enriched with 2% glucose at 37 ◦C for 24 h. After 24 h, each well was
washed twice with sterile PBS (phosphate buffered saline, pH 7.4) and fixed with methanol
for 10 min. Methanol was then removed and the plate was air dried. Biofilm was stained
with 0.1% crystal violet (Bio-Merieux, Lyon, France) for 30 min. Wells were washed with
water, air dried and 100 µL of 96% ethanol (Zorka, Serbia) was added. The absorbance
was read at 620 nm on a Multiskan™ FC Microplate Photometer, Thermo Scientific™. The
percentage of inhibition of biofilm formation was calculated by the formula:

[(A620 control − A620 sample)/A620 control] × 100.

3.4.3. Checkboard Assay

It was carried out with 96-well microplates containing TSB medium for the resistant
P. aeruginosa strain, supplemented with examined compounds in concentrations ranging
from 1/16 to 4×MIC as described previously [60] in the checkboard manner. The fractional
inhibitory concentration index (FICI) was calculated by the following equation as described
in our previous paper [63]:

FICI = FIC10/MIC10 + FIC20/MIC20

FIC10 and FIC20 are the MICs of a combination of tested compounds and antibiotics,
and MIC10 and MIC20, represent the MIC values of individual agents. The following
cut-offs: FIC ≤ 0.5 synergistic, >0.5 <2 additive, ≥2 <4 indifferent, and FIC > 4 antagonistic
effects were used for the discussion of obtained results.

3.4.4. Antifungal Activity

For the antifungal bioassays, six fungi were used: Aspergillus niger (ATCC 6275), As-
pergillus fumigatus (ATCC 1022), Aspergillus versicolor (ATCC 11730), Aspergillus ochraceus
(ATCC 12066), Penicillium funiculosum (ATCC 36839), Trichoderma viride (IAM 5061), Peni-
cillium verrucosum var. cyclopium (food isolate), Penicillium ochrochloron (ATCC 9112). The
organisms were obtained from the Mycological Laboratory, Department of Plant Physiology,
Institute for Biological Research “Siniša Stankovic”, Belgrade, Serbia [64,65].

3.5. Docking Studies

The AutoDock 4.2® software was used for the docking stimulation. The free energy
of binding (∆G) of E. coli DNA GyrB, Thymidylate kinase, E. coli MurA, E. coli primase,
E. coli MurB, DNA topoIV and CYP51 of C. albicans in complex with the inhibitors were
generated using this molecular docking program. Regarding the X-ray crystal structures,
data of all the enzymes used were obtained from the Protein Data Bank (PDB ID: 1KZN,
AQGG, 1DDE, JV4T, 2Q85, 1S16 and 5V5Z, respectively). All procedures were performed
according to our previous paper [66].

3.6. Assessment of Cytotoxicity

The normal human lung fibroblast MRC-5 cell line is stored and used in our laboratory
in a routine manner (passage < 40). MRC-5 cells were grown in culture (37 ◦C, humidified
atmosphere containing 5% v/v CO2) in DMEM medium supplemented with 10% v/v FBS,
1% PS penicillin–streptomycin). The compounds tested were dissolved in DMSO and
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stored in 4 ◦C. For the assessment of cytotoxicity, the cells were seeded in a 96-well plate
at an initial concentration of 5 × 104 cells/mL and allowed to attach for at least 3h before
the addition of the compounds at two different concentrations: 1 × 10−5 M (10 µM) and
1 × 10−6 M (1 µM). Note that the concentration of DMSO in culture was ≤0.2% v/v, in
which no detectable effect on cell proliferation is observed [67]. To assess the cytotoxicity
of each compound, the cells were allowed to grow for additional 48 h before their number
is estimated in culture using the Neubauer counting chamber under an optical microscope.
Cell growth in each treated culture is expressed as the percentage compared to that seen for
the untreated control cells. Moreover, the number of dead cells was also measured using
the Trypan-blue method, as previously described [65–67]. Statistical t-test analysis was
performed via the use of GraphPad Prism 6.0 program.

4. Conclusions

Twelve 3-aryl-5-(1H-indol-3-ylmethylene)-2-thioxothiazolidin-4-ones 5a–l were de-
signed, synthesized and evaluated in silico and experimentally for their antimicrobial
actions against the panel of Gram positive and Gram negative bacteria and fungi.

It should be mentioned that all compounds appeared to be more potent than ampicillin
against all bacteria tested and streptomycin against all bacteria except B. cereus, and En.
Cloacae. The most sensitive bacteria were found to be S. aureus, while L. monocytogenes was
the most resistant one. Compounds also appeared to be active against three resistant strains
MRSA, E. coli and P. aeruginosa, showing better activity against MRSA than both reference
drugs, while showing better activity against the other two resistant strains than ampicillin.

Concerning antifungal action, the tested compounds exhibited very good activity
against all the fungal species tested, being more active than ketoconazole and bifonazole.
The most sensitive fungal strain appeared to be T. viride, while the most resistant filamentous
A. fumigatus.

It can be observed that the growth of both Gram-negative and Gram-positive bacteria
and fungi responded differently to the tested compounds, which indicates that differ-
ent substituents may lead to different modes of action or that the metabolism of some
bacteria/fungi was better able to overcome the effect of the compounds or adapt to it.

Docking analysis to DNA Gyrase, Thymidylate kinase and E. coli MurB indicated a
probable involvement of MurB inhibition in the antibacterial mechanism of compounds
tested while docking analysis to 14α-lanosterol demethylase (CYP51) and tetrahydrofolate
reductase of Candida albicans indicated a probable implication of CYP51 reductase at the an-
tifungal activity of the compounds and secondary involvement of dihydrofolate reductase
inhibition at the mechanism of action of the most active compounds.

Finally, compounds 5b (Z)-3-(3-hydroxyphenyl)-5-((1-methyl-1H-indol-3-yl)methylene)-
2-thioxothiazolidin-4-one Z)-3-[5-(1H-Indol-3-ylmethylene)-4-oxo-2-thioxo-thiazolidin-3-yl]-
benzoic acid as well as 5h (Z)-3-(5-((5-methoxy-1H-indol-3-yl)methylene)-4-oxo-2-thioxothia-
zolidin-3-yl)benzoic acid can be considered as lead compounds for further development of
more potent and safe antibacterial and antifungal agents.
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