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Abstract. The study was conducted on the Danube River, within the project Joint Danube Survey 3 (JDS3). The main 

aim was to estimate the quantity of microplastics in aquatic ecosystems through passive biological monitoring. Three 

freshwater species were used for microplastic (MP) isolation from different taxonomic groups of organisms: 

Mollusca, Oligochaeta, and Chironomidae (Diptera), with the following species: Lithoglyphus naticoides (C. Pfeiffer, 

1828), Limnodrilus hoffmeisteri (Claparede, 1862), and Chironomus acutiventris (Wülker, Ryser & Scholl, 1983), 

respectively. The samples were collected from 6 sites along the Danube River where 540 specimens were examined. 

The samples were digested by alkaline method (incubation in 10% KOH solution at 60 ⁰C for 24 h) and filtered 

through a mill silk, 10 µm mesh size. Collected particles were categorized as: fibre, hard plastic, nylon, rubber, or 

miscellaneous. Categories were divided into subcategories based on the coloration of the particles. Particles ingested 

by organisms were represented mostly by fibres and fragmented hard plastics, within the size range were from 0.03 to 

4.87 mm. A total of 678 MP particles were collected with an average of 4.64 ± 1.59; 1.64 ± 0.46 and 1.24 ± 0.34 

items/organism isolated from L. hoffmeisteri, L. naticoides and C. acutiventris, respectively. According to results, L. 

hoffmeisteri, L. naticoides and C. acutiventris could be used as proper bioaccumulators of MP pollution in the 

Danube River. 
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Introduction 

The presence of plastic nowadays has been estimated as 

ubiquitous. Annual production of plastic has rapidly 

increased since the 1950s, with constantly increasing 

rates ever since. Estimated at 1.5 million metric tons 

(MT) in 1950, the world’s production of plastic has 

reached 368 million metric tons (MT) in 2019 [1]. Con-

stantly increasing world’s production over time, durabil-

ity and low recycling rates of plastic resulted in their 

high presence and accumulation in the environment [2]. 

MP is an organic polymer derived from fossil feed-

stocks within the size 1 µm [3] up to 5 mm [2]. Primary 

MPs are manufactured in microscopic size as industrial 

pellets, exfoliating microbeads in personal care products 

[4], abrasives in blasting, or as a component of paints 

[5−6]. Secondary MP has primarily been macroscopic 

size, manufactured as plastic demands of the buyers, 

with the dominance of packaging items (plastic bags, 

containers, bottles) and building and construction [1]. 

Any physical, chemical, or biological process causes 

degradation of macroplastics into microplastics [7]. The 

plastic polymers have residual monomers and chemical 

additives, capable of absorbing toxins from the envi-

ronment such as persistent organic pollutants (POPs), 

polychlorinated biphenyls (PCBs), organo-halogenated 

pesticides, nonylphenol, PAHs, and dioxins [8−10]. In 

addition, additives such as phthalate-based plasticizers 

and bisphenol A (BPA) amplify the toxicity of the plas-

tic particles [11].  

MP became a great concern due to potential availa-

bility to a wide range of organisms because of similar 

size fractions as sediment and food particles [12]. Stud-

ies on plastic contamination in natural ecosystems have 

reported MPs within freshwater ecosystems such as 

rivers [13−16] lakes [17−22] and shoreline sediments 

[23−24], estuarine areas [25], indicating rivers as path-

ways for marine plastic debris [26−28], but with incom-

parably fewer data, and conducted researches. In addi-

tion to its presence in the aquatic environment, MPs can 

cause a mechanical hazard [29] to organisms or be a 

vector for opportunistic pathogens [30−31], persistent 

organic pollutants (POPs) [8−10] and heavy metals [32] 

or invasive species [33], which may result in harmful 

algal bloom (HAB) [34]. 

Annex VIII of the Water Framework Directive 

(WFD) is focusing on the identification of ‘Specific 

Pollutants’, such as MPs,  to derive Environmental 

Quality Standards (EQSs) for targeted chemicals to 

achieve Good Surface Water Status [35]. 

As MP is a global problem, the Directives on pack-

aging waste ([94/62/EC), waste (2008/98/EC), landfills 
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(1999/31/EC), and sewage sludge (86/278/EEC) [36−37] 

established monitoring of plastic sources of freshwater 

ecosystems in Europe. In 2013, the European Commission 

developed ‘Green paper on a European strategy on plastic 

waste in the environment’ [37], European strategy on 

plastic waste in the environment, especially on MP waste, 

as a wider review of waste legislation. In 2015, the Plastic 

Bags Directive was adopted with the aim of reducing its 

consumption through pricing, taxes, and levies [38]. Since 

the concern for this synthetic pollution is rising, the 

Union's chemicals legislation (1907/2006/EC) applied 

relevant production volumes of plastic monomers and 

additives used in manufacturing processes [39]. The 

European Commission adopted a Circular Economy 

Package in 2015 for using the resources in a more 

sustainable way which refers to plastic, among five priority 

sectors [38]. As it can be concluded from the enclosed 

data, MP is a serious issue nowadays. 
According to Framework of the European Water 

Framework Directive [35], macroinvertebrates are used 
in monitoring studies to assess the ecological water 
quality as a group of different bioindicators of organic 
pollution. Despite the huge problem posed by MPs in 
the environment, there are no indicators developed for 
passive monitoring of MPs in aquatic ecosystems. In 
Annex VIII there is a list of the main pollutants, among 
others, ‘persistent and bioaccumulative organic toxic 
substances’ and ‘persistent hydrocarbons’ which may 
include synthetic polymers [35]. 

MP has reached a significantly high level of abun-
dance during the past few decades. Since the first report 
on MP debris from 1972 [40] in the aquatic ecosystem 
(marine ecosystem) popularization has been rising con-
stantly. In this article, we present results from the sur-
vey on plastic debris in the Danube River in Serbia. The 
main aim of the study was to estimate the amount of 
microplastics in aquatic ecosystems through passive 
biological monitoring. To that end, we set the following 
tasks: (1) to quantify the number of MP particles per 
organism and per biomass and (2) to estimate the distri-
bution of particles per categories and subcategories, 
based on their shape and color. 

Materials and Methods 

Sampling Site and Procedure 

The study was conducted on the Danube River, which 

flows into the Black Sea and is the second largest river 

in Europe [41]. This international river basin occupies 

the territory of 19 countries, with an area of 817.000 

km2 and gathering 83 million inhabitants near it. The 

Danube River System is situated in nine ecoregions and 

classified as a special case study in terms of conserva-

tion and management issues [42]. In this study three 

species from different groups of organisms (Mollusca, 

Oligochaeta, and Chironomidae (Diptera)) were used 

for MPs isolation: Lithoglyphus naticoides (C. Pfeiffer, 

1828), Limnodrilus hoffmeisteri (Claparede, 1862) and 

Chironomus acutiventris (Wuelker, Ryser & Scholl, 

1983), respectively. Within the JDS3 project, the most 

diverse components of the total community were Chi-

ronomidae (Diptera), Oligochaeta, and Mollusca [43]. L. 

hoffmeisteri (Naididae:Tubificidae) represents one of 

the most dominant species along the whole stretch of 

the Danube River, tolerant to organic pollution [44]. L. 

naticoides has Ponto-Caspian origin and it is considered 

as cryptogenic for the upper and middle stretch of the 

Danube, while it is native to the Lower Danube [45]. C. 

acutiventris one representative of the chironomids, 

which are considered as useful bioindicators suitable for 

determining the biological effects of different pollutants 

in the aquatic environment [46]. Since chironomids are  

non-specific feeders, ingestion of MPs instead of food 

particles is very common [47]. 

Samples were collected between August and Sep-

tember 2013, at six sites along the Danube. Following 

the multi-habitat procedure [48], macrozoobenthos was 

sampled using a hand net (ap. 25 cm× 25 cm, mesh size 

500 μm) by the kick & sweep (K&S) sampling tech-

nique (EN 27828:1994). For the deep water area, a tri-

angle shaped dredge (ap. 25 x 25 cm, mesh size 500 μm) 

was pulled five times per sampling site in a length of 80 

cm. Each transect was considered as a separate sample. 

A detailed description of the sampling methodology is 

presented in Liška et al. [49]. The samples of 

macrozoobenthos were sorted in the laboratory and the 

specimens of Oligochaeta, Mollusca, and the larvae of 

Chironomidae were counted, separated, and identified to 

the lowest possible taxonomic level, by the use of the 

following identification keys: Moller Pillot [50−51], 

Schmid [52], Vallenduuk and Moller Pillot [53], Pfleg-

er, [54], Timm [55]. 

Methodology of Isolation MPs  

from Macroinvertebrate 

Although numerous approaches have been devel-

oped for the extraction of MPs, all are classified into six 

protocol groups within the following methods: acidic 

[56−57], alkaline [58-59], oxidizing [60−61], and en-

zymatic methods [58]. Dehaut et al. [62] have tested all 

of the protocols and found out that five out of six have 

shown significant degradation of plastic particles or 

insufficient tissue digestion. The alkaline method ap-

peared to be the best protocol for isolating MPs from 

biological samples and for later identification.  

The protocol is based on using 10% potassium hy-

droxide (KOH) solution as a medium for the samples 

and incubation at 60 ⁰C during a 24 h period. This leads 

to an efficient decomposition of biological tissues with 

no significant degradation on all tested polymers, except 

for cellulose acetate [62]. They suggested it for the im-

plementation in further monitoring studies on MPs.  

For each species, 180 specimens were randomly se-

lected from 6 sites, 30 specimens per site. One sample 

contained 10 specimens, meaning three replicates per 

site. In total, 540 specimens were measured on an ana-

lytic scale in order to estimate potential MP litter per 
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biomass (Table 1). In the experiment setting, the control 

did not contain any single entity. 

The samples were treated by the suggested alkaline 

method, using a 10% solution of KOH and incubation at 

60 ⁰C for a 24 h in a water bath. The samples of C. 

acutiventris remained undigested after the suggested 

incubation time, due to the presence of the chitin. For its 

degradation, samples were additionally treated with the 

double volume of nitrate acid (HNO3) in controlled 

conditions - vials with the samples were placed in the 

digester in cold water with ice and 3 ml of HNO3 was 

added carefully by micropipette. This reaction formed 

potassium nitrate (KNO3), which started an instant reac-

tion with the chitin and dissolved the tissue of C. 

acutiventris. The samples were filtered through a mill-

ing silk, as filter, with a 10 µm mesh size. The filtered 

material was treated with 30% hydrogen peroxide to 

remove the remaining organic matter if needed. The 

particles were carefully collected, photographed and 

categorized, based on their shape (Fig. 1). Subcategories 

were defined according to the colorization of the particle. 

Particles were counted manually with a Leica MZ16A 

stereomicroscope (10 X/21 B ocular; from 20 X to 50 X 

objective magnification), photographed with a Leica 

DFC320 Digital Camera system, and measured in program 

ImageJ [63]. Fibres from the air were excluded.  

Results 

The collected particles were assigned to one of 5 major 

categories: fibre, hard plastic, nylon, rubber, or miscel-

laneous (Fig. 2). In the present study, fibres were the 

dominant group of MPs with 49.48 % of the total count 

and the second major category was hard plastic with the 

percentage share of 43.21 % of collected particles in total 

(Fig. 3). Measurement of particles by the longest length has 

shown that fibres had a length from 0.19 to 4.87 mm and 

hard particles from 0.046 to 0.23 mm (Table 2). 

 
Fig. 2 Types of MPs collected form Litogliphus naticoides, 

Limnodrilus hoffmeisteri and Chironomus 

acutiventris. 

Table 1 Total and average weight of species. Total 

weights are in grams. 
 

L. naticoides L. hoffmeisteri  C. acutiventris 

Total number 

of individuals 

180 180 180 

Total weights 1.74 0.07 0.26 

Average 0.097 0.004 0.015 

SD* 0.004 0.07 0.006 
* Standard deviation 

 

Fig. 1 Photographs of particles from 5 major categories: a) fibre; b) hard plastic; c) nylon; d) rubber; e) miscellaneous. 
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Fig. 3 Main categories with precentage share in total 

number of collected particles. 

A total of 678 MPs were collected, whereas majority 

of the particles were isolated from L. hoffmeisteri (61.6 

%), followed by L. naticoides (21.8 %) and C. acutiven-

tris (16.6 %). An average, 4.64 ± 1.59; 1.64 ± 0.46 and 

1.24 ± 0.34 items/organism or 0.000421 ± 0.000409; 

0.009661 ± 0.005247 and 0.001465 ± 0.000598 items/g 

wet weight were isolated from L. hoffmeisteri, L. na-

ticoides and C. acutiventris, respectively. 

Discussion 

There is still scarce information assessing microplastic 

pollution in the freshwater environments due to a lack 

of data on the presence and quantities of MPs within the 

bodies of freshwater biota. In this study, MPs were rec-

orded in the tissue of L. naticoides, L. hoffmeisteri and 

C. acutiventris in the Danube River, thus supporting 

earlier reports on the worldwide presence of MPs  

[64-66].  
Although there are no data on microplastic ingestion 

of L. naticoides, L. hoffmeisteri and C. acutiventris, 
other representatives of the groups of Mollusca, Oligo-
chaeta, and Chironomidae (Diptera) have been used in 
studies of MP ingestion. The categorization of the parti-

cles differs in different studies due to the lack of stand-
ardization of categories of MP particles. In the tissue of 
freshwater snail Sinotaia aeruginosa (Reeve, 1863) 
from Taihu Lake, fibres and fragments were the most 
common categories. Transparent, red and blue subcate-
gories were common within the fibres, while transparent 
subcategories were dominant within the fragments [67]. 
Akindele et al. [68] detected only fibres in the tissue of 
freshwater gastropods Melanoides tuberculata (Müller, 
1774) and Theodoxus fluviatilis (Linnaeus, 1758), and 
fibres and films in the tissue of Lanistes varicus (Mül-
ler, 1774). The majority of isolated particles from the 
tissue of Tubifex tubifex (Müller, 1774) in the Salford 
Quays basin (Manchester City, England) were repre-
sented as fibres (87 %), while fragments represented the 
rest of the particles [69]. Lin et al. [70] detected mi-
crogranules (0-28 %), microfilms (0-16 %), microfrag-
ments (3-47 %), and microfibres (40-64 %) within the 
midge larvae (Diptera: Chironomidae) among 5 sam-
pling sites in the Wu river basin, Taiwan. Su et al. [17] 
detected four categories of MP particles in the tissue of 
freshwater Asian clam Corbicula fluminea (O. F. Mül-
ler, 1774): fibre, pellet, film, and fragment, with the 
dominance of fibres (48-84% in the samples). Within the 
subcategories, blue items were dominant on the water 
surface (50-63 %), while transparent and white items were 

more common in organisms and sediments (29−44 %). 
Hohenblum et al. [71] conducted preliminary research 
in Austria on the Danube River and over 50 % of the 
extracted plastic particles consisted of fragments, 4–

10 % were pellets and 2.1−2.8 % were green lenticular 
flakes. MPs isolated from C. fluminea, collected along 
2040 km of the Danube, were represented by fibres - 
dominance of blue subcategory and fragments - dominance 
of transparent subcategory [72]. 

According to previous studies, fibres were the most 

dominant category in the soft tissue of B. aeruginosa 

[67], M. tuberculata, T. fluviatilis, L. varicus. [68], C. 

Table 2 Percentage share and length of particles divided in subcategories. Lengths are in millimeters. 

Subcategory No. of particles Percentage share 

[%] 

Minimum length 

[mm] 

Maximum length 

[mm] 
Average length [mm] ± 

SD* 
blue fibre 349 39.79 1.97 4.8 2.62 ± 0.55 
red fibre 85 9.69 0.19 4.87 1.35 ± 0.65 
red rubber  5 0.57 0.096 0.026 0.066 ± 0.025 
green rubber 3 0.34 0.085 0.11 0.097 ± 0.012 
white rubber 2 0.23 0.058 0.14 0.099 ± 0.041 
black hard plastic 79 9.00 0.05 0.16 0.083 ± 0.03 
blue hard plastic 64 7.29 0.07 0.199 0.119 ± 0.085 
white hard plastic 54 6.16 0.064 0.23 0.152 ± 0.122 
grey hard plastic 12 1.37 0.052 0.077 0.065 ± 0.008 
brown hard plastic 39 4.45 0.1 0.21 0.144 ± 0.037 
crystal hard plastic 33 3.76 0.046 0.11 0.084 ± 0.019 
transparent hard plastic 98 11.18 0.046 0.086 0.067 ± 0.013 
white nylon 3 0.34 0.11 0.15 0.127 ± 0.017 
transparent nylon 10 1.15 0.055 0.89 0.225 ± 0.239 
miscellaneous 41 4.68 0.059 0.14 0.106 ± 0.019 
* SD – standard deviation. 
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fluminea [17, 72], Thienemannimyia spp., Chironomus 

spp. and Orthocladius spp. [68], which is in concord-

ance with this study (49.48 %). Ingestion rates of B. 

aeruginosa [67], L. varicus, T. fluviatilis [68], C. 

fluminea [72] were higher than ingestion rates of L. 

hoffmeisteri, L. naticoides and C. acutiventris. Xu et al. 

[67] detected 96.67% to 100% of one or more types of 

microplastics within freshwater snail B. aeruginosa col-

lected from Taihu Lake, China, with the dominance of 

polyvinyl acetate fibres (88.0 ± 12.1%), polystyrene 

fibres (66.3 ± 17.5%), polyamides (49.7 ± 22.4%), and 

polyethylene terephthalate (30.0 ± 7.4%). Also, previ-

ous research of the Taihu Lake [17] hasdetected cello-

phane, PET, Polyester, and Polypropylene in Asian 

clam C. fluminea. Scherer et al. [46] demonstrated the 

uptake of polystyrene among different freshwater inver-

tebrate groups, including freshwater snail Physella 

acuta (Draparnaud, 1805) (Mollusca), the blackworm 

Lumbriculus variegatus (Müller, 1774) (Oligochaeta), 

and Chironomus riparius (Meigen, 1804) (Chirono-

midae, Diptera).  

Conclusion 

MPs in the environment have been characterized as a 

global problem nowadays. Due to their bioavailability to 

a wide range of organisms and ubiquitous presence and 

distribution, there is a need to determine its amount in 

the natural environment by the use of bioindicators. 

Lack of data on the presence of MPs in freshwater biota 

is one of the reasons for the lack of a solution for plastic 

pollution. Choice of good indicators for estimation of 

the MPs in the aquatic environment is necessary. Ac-

cording to the amount and diversity of MPs isolated 

from three benthic species (L. hoffmeisteri, L. naticoides 

and C. acutiventris) it seems that these species could be 

used as proper bioaccumulators of MP pollution in the 

Danube River in further studies. The impact of MPs has 

been documented in recent years for various freshwater 

species, but it is certain that a lot of data is still missing 

to form a wider insight on this major synthetic pollution. 

Therefore, new field data are needed in order to estimate 

more precise quantities we are dealing with in the envi-

ronments. In order to accomplish this task, including 

MPs in the standard analysis procedures could be neces-

sary to gather more data. Further research and continued 

monitoring on the Danube is a request for a good evalu-

ation of the presence and effects of MPs on aquatic or-

ganisms and the environment. 
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