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Abstract
Aim: Freshwater planarians may have a wide geographical range despite their as-
sumed low vagility. Found across four continents, Dugesia may have either an ancient 
origin on a large palaeo landmass, followed by colonisation in different regions before 
continental fragmentation, or a more recent origin and subsequent transoceanic dis-
persal. We seek to resolve between these two hypotheses.
Location: Africa, Eurasia and Australasia.
Taxon: Genus Dugesia (Platyhelminthes: Tricladida: Dugesiidae).
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1  |  INTRODUC TION

Historical biogeography seeks to explore the relative roles of vicari-
ance, dispersal and/or extinction in the formation of contemporary 
species distributions (e.g. Bourguignon et al.,  2018; Sanmartín & 
Ronquist, 2004). Such studies are centred on the availability of well-
resolved and statistically supported phylogenies as well as the pres-
ence of fossils that hint at ancient distributions and allow for the time 
calibration of the phylogenies. In the case of soft-bodied invertebrates, 
there are two primary limitations. First, the fossil record of these or-
ganisms is usually very poor and sparse (Hipsley & Müller,  2014), 
and second, they often possess few synapomorphic characteristics 
to reconstruct a resolved phylogeny (e.g. in the case of Tricladida; 
Sluys et al., 1998). Consequently, there have been limited studies on 
soft-bodied invertebrate groups, and there is a generally poor under-
standing of their phylogenetic origin. In recent years, the inclusion of 
molecular data to infer phylogenetic relationships and to place these 
groups in a temporal and spatial framework (e.g. Scarpa et al., 2015; 
Solà et al., 2013) has promoted research on soft-bodied invertebrates.

One of these soft-bodied invertebrate groups is the free-living 
freshwater planarian genus Dugesia. Its large distribution range 
remains an intriguing issue despite five decades of biogeographi-
cal speculations (Ball,  1974; Kawakatsu,  1968; Sluys et al.,  1998). 
Indeed, Dugesia species inhabit a wide array of freshwater bodies in 
Africa, Europe, the Middle East, South Asia, Far East and Australasia 
(Figure  1). The widespread and disjunct distribution of a group of 

organisms may be explained by vicariant and/or dispersal events. As 
in the case of most organisms with low dispersal ability, the presence 
of Dugesia across different continental land masses and islands has 
traditionally been attributed to vicariance. This hypothesis is based 
on the assumption that the dispersal of freshwater planarians is lim-
ited by their low vagility (Ball,  1974), due to the lack of protection 
against water loss and direct mode of development. While the pla-
nariids Hymanella retenuova and, probably, Polycelis nigra are known 
to form cocoons that offer some degree of resistance to desiccation 
(Ball,  1974; Vila-Farré et al.,  2011), this phenomenon has not been 
recorded as yet in any known Dugesia species. Sexually reproducing 
Dugesia species lay spherical cocoons—capsules containing fertilised 
eggs and yolk cells from which several individuals (reduced versions of 
mature Dugesia) hatch. Cocoons in Dugesiidae are mostly stalked, ce-
mented and usually left attached by an endplate to the under surfaces 
of stones, fallen leaves or other objects (Sluys & Riutort, 2018), ren-
dering their biochore dispersal difficult, if not impossible (Ball, 1974).

Among the different hypotheses put forth to explain the geo-
graphical distribution of Dugesia, the most recently published one, 
based on morphological characters, places the origin of the genus in a 
Gondwanan scenario (Sluys et al., 1998). According to this hypothesis, 
the dispersal of Dugesia ancestors in Eurasia from those in Gondwana 
is a result of either (1) vicariance via rafting on the Indian subcontinent 
following its split from Madagascar (c. 88 Ma) until its collision with 
Asia (c. 55 to 20 Ma) or (2) wide dispersal throughout Africa, until the 
collision of the Arabian plate with the Eurasian plate, that bridged the 
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Methods: We used data from the sequencing of six gene fragments and comprehen-
sive taxonomic sampling of Dugesia from across its distribution range to reconstruct 
the phylogeny of this genus using maximum likelihood and bayesian inference meth-
ods. We conducted two phylogenetic dating analyses using Platyhelminthes fossils 
and palaeogeological events. Basing on the time-calibrated molecular phylogenetic 
framework we evaluated the contribution of vicariance and dispersal to the biogeo-
graphical evolution of Dugesia. By reconstructing the ancestral areas and present-day 
potential distribution using BioGeoBEARS and niche modelling, we elucidated the 
biogeographical history of the genus.
Results: The present-day distribution of Dugesia is a result of different vicariance 
and dispersal events. However, we also found evidence of transoceanic dispersal. 
Consistent with previous hypotheses, Dugesia dates to the Upper Jurassic in the Afro-
Malagasy Gondwana region. We unveiled a novel biogeographical scenario for the 
genus, involving multiple events of colonisation in Eurasia from continental Africa via 
at least three dispersal routes.
Main conclusions: Dugesia is an ancient genus having reached its present distribu-
tion through a complex history of dispersal and vicariant events following its origin in 
southern Gondwana. Despite the low vagility of Dugesia, we found evidence of their 
overseas dispersal.
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two continents (c. 20 Ma). Nonetheless, given the lack of both mor-
phological characteristics and fossil data, this hypothesis remains un-
tested. Now, the use of molecular techniques may shed light on which 
of the existing hypotheses, or any alternative, is more plausible.

The use of molecular tools and discovery of new fossils have 
demonstrated that many organisms inhabiting different regions derived 
from the fragmentation of the Gondwana supercontinent are not the 
product of vicariant events but of posterior dispersal to their present 
distributions. This has been proven for angiosperm and vertebrate taxa 
(e.g. Friedman et al., 2013; Phillips et al., 2010; Samonds et al., 2013; 
Sanmartín & Ronquist, 2004). Interestingly, most of the vertebrate rep-
resentatives in Madagascar have dispersed overseas—mainly from Africa 
to the island during the Cenozoic (Yoder & Nowak, 2006). Meanwhile, 
the impacts of Gondwana fragmentation on other groups, including 
centipedes (Murienne et al., 2010), harvestmen (Giribet et al., 2012) and 
velvet worms (Giribet et al., 2018; Murienne et al., 2013), have been 
pointed out. Furthermore, both vicariant and dispersal events have 
been proposed to have played a role in the diversification of groups 
inhabiting the former Gondwanan landmasses, such as galaxiid fishes 
(Burridge et al., 2012) and stoneflies (McCulloch et al., 2016).

To this end, the present study used molecular phylogenetic data 
and biogeographical analyses to reconstruct the biogeographical 
history of Dugesia species. Based on the Gondwana origin hypoth-
esis, we expect that the Afrotropical species of the genus are older 
than the Eurasian lineages. Moreover, either continental African 
or Malagasy lineages are more closely related to the present-day 
Eurasian groups, depending on which of the competing hypotheses 
better reflects the dispersal route followed by planarians (dispersal 
through the Arabian Peninsula or rafting on the India subcontinent).

Briefly, to attain these objectives (1) we collected Dugesia speci-
mens across its global distribution range, including biogeographically 
important regions, such as Madagascar, India, Africa and the Arabian 

Peninsula, aiming to (2) determine the phylogenetic relationships of 
Dugesia species, (3) infer the age of the genus and of its subsequent 
diversification events, (4) put forward hypotheses regarding their 
putative dispersal routes to the present-day distribution range, and 
(5) attribute the historical palaeogeographical events that have more 
likely shaped the diversification and phylogeny of this group.

Interestingly, Dugesia originated in the Afro-Malagasy region of 
Gondwana during the Upper Jurassic. Unexpectedly, however, we 
propose a new biogeographical scenario for the arrival of Dugesia to 
Eurasia, involving three independent dispersal events from Africa to 
Asia, to the Middle East and eastern Europe, and to western Europe. 
Our findings question the notion that the overseas dispersal of 
freshwater flatworms is impossible.

2  |  MATERIAL S AND METHODS

2.1  |  Dugesia samples

To achieve the broadest sampling of Dugesia throughout its known 
distribution range (Figure  1), we sought a collaborative effort 
among scientists working in different regions of the distribution 
range of the genus and searched for Dugesia specimens either in 
known localities from the literature or by exploring suitable habi-
tats. Most samples were fixed in absolute ethanol immediately 
after the collection for DNA extraction and sequencing. We did 
not examine the internal morphology of the individuals sampled 
due to technical and time constraints; thus, most specimens were 
identified to the genus level. In a few cases, the species of the 
material received had previously been identified (e.g. Harrath 
et al.,  2019; Stocchino et al.,  2017). Details of the localities and 
collectors are provided in Appendix S1.

F I G U R E  1  Potential distribution of the genus Dugesia inferred using niche modelling analysis based on localities retrieved from scientific 
literature (white dots) and on localities collected for the present work's molecular analyses (pink dots). Colour scale indicates predicted 
probability for habitat suitability (red: high probability of suitable conditions; blue: low predicted probability of suitable conditions). 
Equirectangular projection. Complete list of localities and their references is provided in Table S8
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2.2  |  DNA extraction, polymerase chain reaction 
(PCR) and sequencing

Total genomic DNA was extracted using either DNAzol® 
(Molecular Research Center Inc. Cincinnati, OH) or Wizard® 
Genomic DNA Purification Kit (Promega), following the manufac-
turer's instructions. The following gene fragments were PCR am-
plified: (1) the mitochondrial gene cytochrome c oxidase subunit 
I (COI) as well as the nuclear ribosomal cluster (2) 18S ribosomal 
gene (18S), (3) 28S ribosomal gene (28S) and (4) ribosomal internal 
transcribed spacer-1 (ITS-1). Moreover, two novel nuclear mark-
ers (Leria et al., 2020) were used—an anonymous nuclear marker 
called (5) Dunuc3 and (6) a disulphide isomerase called Dunuc5. A 
third marker, Dunuc2, was tested, but due to the difficulty in am-
plification, it was not included in the final analysis. Markers (5) and 
(6) include intronic and exonic regions (see Extended Methods in 
Supporting Information, Table  S1). For primer sequences, PCR 
conditions and sequencing strategy, see Table  S2 and Extended 
Methods in Supporting Information.

2.3  |  Phylogenetic analyses

2.3.1  |  Alignment

Nuclear and mitochondrial genes were aligned using MAFFT version 
7 (Katoh & Standley, 2013) and Geneious 10.2.3 ( https://www.genei​
ous.com; Kearse et al., 2012), respectively. The putative existence 
of sequence saturation was evaluated (see Extended Methods in 
Supporting Information).

Four datasets were prepared for different analyses (Tables S3–
S5). Dataset I included 18S, 28S, Dunuc3 and COI sequences of 
Dugesia representatives, with Recurva and Schmidtea (Dugesiidae) as 
outgroups, to root the Dugesia phylogeny (Sluys et al., 2013). Dataset 
II included COI, 18S, 28S, ITS-1, Dunuc3 and Dunuc5 sequences anal-
ysed concatenated or independently (no outgroup included) to con-
struct the phylogenetic trees and perform dating analyses. Dataset 
III included 18S sequences of Catenulida and Rhabditophora (includ-
ing Tricladida) representatives, with a chaetognath species as the 
outgroup, to run dating analysis. Finally, dataset IV was obtained 
by pruning dataset II to include only one representative per bio-
geographical region and at least one representative per clade, thus 
avoiding overrepresentation of certain areas per lineage, to run bio-
geographical analyses. Species of Recurva and Schmidtea were used 
as outgroup representatives.

2.3.2  |  Phylogenetic inference

Tree inference was performed using the Maximum Likelihood 
(ML) criterion with RaxML 8.2.8 (Stamatakis, 2014) and Bayesian 
Inference (BI) using MrBayes 3.2.4 (Ronquist et al., 2012) and/or 

BEAST 1.8.4 (Drummond et al., 2012). RaxML and MrBayes anal-
yses were run with partitioned concatenated gene alignments, 
while independent gene alignments were used for BEAST analy-
sis. We applied the same evolutionary model for all genes in all 
phylogenetic analyses: GTR + I + G. For BEAST analysis, the input 
file was prepared using BEAUti 1.8.4. For model selection and 
program parametrisations, see Extended Methods in Supporting 
Information.

2.4  |  Dating analyses

Dataset files were prepared using BEAUti 1.8.4 and run in BEAST 
1.8.4 implemented on the online server CIPRES Science Gateway 
(Miller et al., 2010). Two different calibration approaches were used. 
In the first approach, performed with dataset III, we used published 
parasitic Platyhelminthes' fossil records (De Baets et al.,  2015; 
De Baets et al., 2021; Dentzien-Dias et al., 2013; Upeniece, 2011) 
along with a secondary calibration point (dos Reis et al., 2015). Fossil 
calibrations were set under a lognormal distribution. Substitution 
model was GTR, and Yule speciation was selected.

In the second calibration approach, using dataset II, two cali-
bration points were selected based on geological events a pri-
ori, having putatively impacted the diversification of the genus: 
(1) the split of Madagascar from Africa around 160–130  Ma (Ali 
& Aitchison,  2008; Rabinowitz & Woods,  2006; Schettino & 
Scotese, 2005) to calibrate the different scenarios at two alterna-
tive nodes, because two Madagascar clades appeared in the phy-
logeny (Figure S1: MDG1 and MDG2) and (2) the formation of the 
mid-Aegean trench (MAT) between 12 and 9  Ma (Dermitzakis & 
Papanikolaoy, 1981) to calibrate the split between insular and main-
land species from both sides of the Aegean region. Five dating anal-
yses were performed (Table 1). The parameters set were as follows: 
GTR + I + G as the substitution model; uncorrelated relaxed clock 
type; birth–death model as the speciation model. See Extended 
Methods in Supporting Information for a more detailed account on 
calibration strategies and dating analyses.

2.5  |  Ancestral range estimation

RASP 4beta (Yu et al.,  2015) was used to run BioGeoBEARS 
(Matzke,  2013) for statistically inferring the ancestral geographi-
cal ranges of the Dugesia clades using dataset IV. SDEC model 
(Lagrange; Ree & Smith, 2008) was implemented alone and taking 
into account the founder effect (parameter j). BEAST 1.8.4 was used 
to obtain the condensed tree (Extended Methods). We defined eight 
major geographical areas: (A) western Europe, (B) Asia, (C) Africa, 
(D) Arabian Peninsula, (E) India, (F) Australasia, (G) Madagascar and 
(H) eastern Europe. Different time layers were set according to the 
landmass's connectivity along time (Table S6) on the basis of differ-
ent data sources (Table S7; Extended Methods).

https://www.geneious.com
https://www.geneious.com
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2.6  |  Ecological niche modelling

To test whether the present-day distribution of Dugesia is consist-
ent with its potential distribution, we prepared a datafile listing the 
coordinates of 856 Dugesia localities (Figure  1; Table  S8) from all 
across its distribution range, including data from scientific literature 
and the present work.

The formatted coordinates file was used as the input for 
Maxent 3.4.4 (Elith et al., 2011; Phillips et al., 2017). The follow-
ing four independent climatic variables were selected as described 
previously (Lázaro & Riutort, 2013): isothermality, mean tempera-
ture of the wettest quarter, mean temperature of the driest quar-
ter and precipitation seasonality. The following settings were used: 
25% random test percentage and 100 bootstrap replicates. The 
resulting model was evaluated based on the area under the curve 
(AUC) for both training and testing datasets and visualised using 
the cloglog output format.

3  |  RESULTS

3.1  |  Dugesia individuals analysed, sequences, and 
alignments

The sampling strategy employed was successful for most coun-
tries, except Mongolia, where only Planariidae specimens were 
found. The sampled specimens, together with the already available 
sequences, provided Dugesia representatives from 106 localities 
across 30 countries (Appendix  S1; Figure  1), covering the entire 
distribution range of the genus.

We obtained 56 new sequences of COI, 62 of ITS-1, 87 of 18S, 
89 of 28S, 103 of Dunuc3, and 73 of Dunuc5, and 32 of Dunuc2 (not 
included in the present analysis due to its low representation but 
deposited in GenBank). From GenBank, we downloaded 53 Dugesia 
COI sequences, 48 ITS-1 sequences, 23 18S sequences, 17 28S se-
quences, 4 Dunuc3 sequences and 2 Dunuc5 sequences. The align-
ments of molecular markers used in the present study did not show 
significant substitution saturation (Table  S9). Dataset I contained 
sequences of 115 individuals, covering 4444 base pairs (bp). Dataset 
II contained sequences of 112 specimens, covering 5501  bp from 
six genes. Information on the alignment characteristics is shown in 
Table S3, and details of the individuals included in each dataset are 
provided in Tables S4 and S5. Table S10 lists all the sequences newly 
obtained or downloaded from GenBank for each individual.

3.2  |  Phylogeny of Dugesia

3.2.1  |  Outgroup rooting

The resulting tree based on dataset I (Figure S1) revealed a clade in-
cluding species from Madagascar (MDG1) as sister to the remainder 
of Dugesia with the maximum Bayesian support. Thus, MDG1 was TA
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used as root in the analyses including exclusively Dugesia species, 
avoiding the use of distantly related outgroups.

3.2.2  |  Phylogenetic relationships within Dugesia

The ML and BI tree topologies obtained based on dataset II and 
rooted based on the MDG1 clade are shown in Figures S2 and S3. 
The analyses recovered six highly supported clades. The first clade 
(AFR1) included specimens from Benin, South Africa, Ethiopia, Yemen 
and Chios Island in Greece. The second clade (MDG2) included speci-
mens from Madagascar and Oman, with the latter being well-nested 
amongst the Malagasy species. The third clade included specimens 
from Cameroon and São Tomé (AFR2). The fourth clade included 
Asian specimens (ASIA). The ASIA clade was sister to the European 
and Middle East clade, which was split in two highly supported clades 
including species from the east (EEURME) and the west (WEUR) of 
Europe. The relationships among all these major groups were well 
supported (BS = 100, PP > 0.96), with a single exception. The cluster-
ing of MDG2 and AFR1 was moderately supported in BEAST analysis 
(PP = 0.92; Figure S3), while ML and BI analyses placed MDG2 as sis-
ter to the AFR2 plus Eurasian clade, albeit with low support (BS = 39, 
PP = 0.83; Figure S2). However, the two MDG clades never consti-
tuted a monophyletic group or appeared as sisters.

3.3  |  Node age estimation

The divergence times obtained based on dataset III are indicated in 
Figure S4 and Table S11. The mean value for the split of the Dugesia 
lineage from its sister group (i.e. Schmidtea and Recurva) is estimated 
to be 135.9 Ma, and the estimated age of the initial diversification 
of the genus is 97.74 Ma. Considering that the parasitic Neodermata 
fossil ages were used as the minimums values to date the corre-
sponding splits, the resulting age ranges should also be considered 
the minimums.

The divergence times obtained based on dataset II for seven 
representative splitting into five calibration scenarios are shown in 
Table 1 and the corresponding trees are presented in Figures 2 and 
Figures S5–S8. In these dating analyses, the 95% highest posterior 
density (HPD) range was narrower than that in the first calibration. 
Among the five calibration scenarios, although divergence dates 
varied, all placed the node dates within similar time periods. Among 
the single-point calibrations, in two cases where MAT was not used 
as a calibration point (calibrations 3 and 5), the age of the node cor-
responding to this event was dated in range within or only slightly 
beyond the values of the geological date of the MAT opening (c. 
12–9 Ma). In the calibration where the Madagascar split was not 
used as a calibration point (calibration 1), both nodes that may be 
related to this event were moderately younger than the known geo-
logical date of the split of Madagascar from Africa (160–130 Ma). 
In the two two-point calibrations (calibrations 2 and 4), the age of 
each node was close and their ranges overlap. Thus, placing the 

split of Madagascar from the African continent as the calibration 
point for the first (MDG1) or second (MDG2) split of Madagascar 
species does not produce markedly different (from a geological 
time perspective) divergence estimates (Table 1). Therefore, in the 
Section 4, we consider the values obtained from the calibration 4 
trees when discussing the internal nodes of Dugesia.

The dating analysis performed based on dataset II after remov-
ing the third codon position of COI and intron of Dunuc5 (Extended 
Methods) resulted in a tree (Figure S9) with the same topology of 
the relevant clades and node ages within the equivalent range as 
the trees obtained with calibration 4 based on the complete dataset 
II (Figure 2). This result corroborates that putative saturation in the 
most variable markers did not affect tree topology or dating infer-
ences in the present analysis.

3.4  |  Biogeography of Dugesia

Statistical model comparison with BioGeoBEARS revealed that 
the DEC + j model, including founder event dispersal, showed a 
significantly improved fit (DEC + j LnL  =  −75.5, AIC =  157 vs DEC 
LnL = −93.53, AIC = 191.1). The results of biogeographical analysis 
are shown in Figure 3 and Table S12. The usage of the alternative 
matrix of connectivity did not result in any significant difference. 
DEC + j model results showed most of the nodes present in the 
consensus tree with a well-supported estimated ancestral range 
reconstruction. At node 1, the range points for the ancestor of all 
present Dugesia were estimated to be in Africa, Madagascar or a 
landmass including both regions (accounting for 82.44% of range 
estimation). Subsequently, populations from the MDG1 clade have 
likely diversified in Madagascar (node 2). Node 3 indicated a simi-
lar result to node 1. Although Africa is the more probable ancestral 
region, Madagascar or a landmass including both areas may also be 
the ancestral regions (adding to an 82.59%). Ancestors of the AFR1 
and MDG2 (nodes 7 and 6) clades were distributed on the respective 
landmasses, and their common ancestor (node 4) was most probably 
in Africa, Madagascar or a landmass including both areas (96.78%). 
The ancestors of the AFR2 + Eurasia clade (node 5) showed a high 
probability of being distributed in Africa (79.59%) whilst Europe and 
other combinations accounted for the rest. The ancestors of the 
Eurasian clade (node 9) were estimated to have been distributed in 
Asia or Europe at an approximately equal probability. Finally, the an-
cestors of the Asian and European clades (nodes 10 and 11) were 
estimated to have been distributed in the respective regions.

3.5  |  Potential distribution

The Maxent model produced AUC values exceeding 0.85 for both 
training and testing datasets (0.872 ± 0.006 and 0.866 ± 0.010, respec-
tively), indicating that the model showed a high predictive power. The 
maximum range of potential distribution spanned the temperate zone 
of Eurasia and Africa, notably avoiding the desert regions (Figure 1). 
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Moreover, wide unexplored geographical areas in Africa, Asia and 
Australasia may harbour Dugesia representatives. Finally, the Americas 
present vast geographical expanses suitable for Dugesia.

4  |  DISCUSSION

In the present study, we illustrated the first well-resolved phylogeny 
of the genus Dugesia including representatives from across its known 
range of distribution, shedding light on the complex history for this 
ancient genus. Our findings indicate that the current distribution of 

Dugesia has been shaped by not only vicariance due to Gondwana 
fragmentation but also speciation within continents. To explain the 
results in detail, we hypothesise multiple colonisation events of 
Eurasia from continental Africa via at least three different dispersal 
routes and at least one putative event of overseas dispersal.

4.1  |  Calibration considerations

Both dating approaches employed have limitations. In the first cali-
bration approach, one limitation was the lack of Tricladida fossils 

F I G U R E  2  Calibrated phylogenetic tree of Dugesia obtained using BEAST with dataset II. Blue circles indicate the calibrated nodes (CP): 
the split of Madagascar from Africa approximately 160–130 Ma and the formation of the mid-Aegean trench (MAT) approximately 12–
9 Ma (Table 1). Coloured triangles beside some terminals indicate either geographical outliers or specific distributions (i.e. Dind; India) and 
correspond to colours in Figure 3. Legend, the main clades are labelled according to their geographical distribution: MDG, Madagascar; AFR, 
Africa; ASIA, Asia; WEUR, western Europe; EEURME, eastern Europe and the Middle East. Blue bars represent 95% confidence intervals for 
the estimated ages of the nodes. (a) Specimen of Dugesia cretica and (b) specimen of Dugesia sicula

(a)

(b)
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to estimate the age of clades at the order level. The second limi-
tation was a general lack of certainty regarding the placement of 
the Neodermata fossils in the phylogeny (Lee, 1999). The use of a 
single gene (i.e. 18S), in addition to the aforementioned drawbacks, 
may have contributed to the wide 95% HPD ranges obtained. In 
contrast, confidence intervals obtained with the second calibra-
tion approach were much narrower, thanks perhaps to the broader 
specimen and gene representation. In the second set of calibration 
analyses, as in the case of any geological calibration, we cannot en-
tirely be certain regarding the events impacting the diversification of 
specific clades. Nonetheless, in the three single-point calibrations, 
the dating estimates obtained for the node of the non-used calibra-
tion point fell within the range of published dates of those events 
(MAT opening = c. 12–9 Ma and Madagascar split from Africa = 160–
130 Ma), supporting the validity of our findings, irrespective of the 
limitations. Moreover, the two independent calibration approaches 
placed the origin of the genus Dugesia and some of its divergences 
within a similar range of ages, spanning from the Upper Jurassic to 
the Early Cretaceous, lending further support to the obtained dating 
estimates.

4.2  |  Biogeographical origin of the genus Dugesia: 
Out of Gondwana

Different lines of evidence derived from our analyses support the hy-
pothesis that the centre of origin of the genus Dugesia was located in 
southern Gondwana—the region that gave rise to the Afro-Malagasy 
landmasses. First, in the phylogeny, the African and Madagascar 
lineages of Dugesia represent genetically highly diversified groups, 
based both on the number of lineages found and the genetic differ-
entiation amongst them (Figure S2). The Eurasian clade of Dugesia 
comprises samples from a broad geographical region, stretching from 
the Iberian Peninsula to the Japanese Archipelago, and constitutes 
a robust monophyletic group well-nested within the Afro-Malagasy 
Dugesia diversification (Figure S2). Second, putting this evolutionary 
history in a temporal frame (Figure 2), the first Dugesia divergence 
occurred at the Jurassic–Cretaceous boundary or during the Early 
Cretaceous—a period during which Gondwana started undergoing 
fragmentation (Ali & Aitchison, 2008; Powell et al., 1988; Schettino 
& Scotese,  2005; Seton et al.,  2012). Third, our biogeographical 
analyses support Afro-Malagasy landmasses as the areas of origin of 
Dugesia (Figure 3; Table S12). Overall, our results regarding the origin 
of the genus Dugesia are partially consistent with previous biogeo-
graphical hypotheses (Ball, 1974; Sluys et al., 1998). These hypoth-
eses were based on the highest present-day diversity of Dugesiidae 
in the continents of the southern hemisphere, together with the 
intercontinental distribution of many of its genera, which may be 
attributed to vicariant events associated with Gondwana fragmen-
tation. According to these hypotheses, Gondwana fragmentation 
shaped the origin of Dugesia in Africa. Meanwhile, the absence of 
Dugesia in the Americas or other regions like New Zealand, despite 
the presence of suitable habitats (Figure 1), suggests that the genus 

either did not occupy these landmasses when contiguous with Africa 
or that the genus went extinct from the region.

4.3  |  Improbable journey of Dugesia to Madagascar

The non-monophyletic status of the Malagasy species of Dugesia 
suggests that the ancestors of the two Madagascar lineages were al-
ready present on the island when it separated from Africa during the 
Mesozoic (c. 130 Ma), or that they dispersed overseas to Madagascar 
afterwards, or that both events occurred in sequence. The overseas 
colonisation of Madagascar has been attributed for most of the ex-
tant vertebrate lineages on the island (Crottini et al., 2012; Samonds 
et al., 2012). Such dispersal was favoured by periodic oceanic pale-
ocurrents, which likely allowed rafting from Africa to Madagascar in 
the Early Cenozoic (Ali & Huber, 2010). However, podocnemidid and 
testudinid turtles and tenrecs probably diversified on Madagascar 
prior to its isolation (Crottini et al., 2012). Our results indicate that 
the latter may also have been the case for Dugesia. First, the an-
cestral origin of Dugesia in Madagascar, supported by the great mo-
lecular and morphological diversity within both lineages, suggests 
a long time of speciation after their arrival to the area (Stocchino 
et al., 2017), discarding the recent colonisation hypothesis. Second, 
the journey of an adult or a cocoon from the mainland to a freshwa-
ter body on an island via 400 kilometres of drifting in the ocean (Ali 
& Huber, 2010) is considered improbable, although not impossible, 
due to the sensitiveness to desiccation and salt water of freshwa-
ter planarians (Ball,  1974). The coast of Mozambique Channel has 
not received the flow of rivers with abundant discharge, which 
may eventually generate freshwater plumes in the sea, thus in-
creasing the probability of the overseas colonisation of freshwater 
fauna. Interestingly, some geological hypotheses (Scotese,  2016; 
Wells, 2003 and references there in) indicate that the west coast of 
Madagascar separated from Africa, leading to the formation of the 
Somalia–Madagascar Gulf during the mid-Jurassic (c. 170 Ma); since 
this incursion was formed by a shallow sea, it would have allowed 
the contact between Africa and Madagascar around 150 Ma, until 
the definitive split of the latter around 130 Ma. This complex palaeo-
geological history, if confirmed, can better explain our phylogenetic 
results. According to our hypothesis (Figure 3), after originating and 
diversifying in the eastern part of Gondwana, Dugesia, gave rise to 
two lineages that radiated within the Madagascar region through 
two consecutive splitting events of the island.

4.4  |  Dugesia dispersal within Africa

After its origin in Gondwana, Dugesia must have dispersed across 
Africa, arriving to the western coast. Within the AFR1 clade, there 
were individuals belonging to populations distributed from the Gulf 
of Guinea to South Africa and Ethiopia. In this group, we also detected 
two species inhabiting the European coasts of the Mediterranean 
Basin: Dugesia sicula and Dugesia naiadis. The presence of D. sicula 
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F I G U R E  3  Dugesia ancestral ranges estimated with BioGeoBEARS using the DEC + j model (Schmidtea and Recurva were used as the 
outgroups). Pies at nodes indicate the probability of the ancestral distribution areas per clade (values are provided in Table S12). Legend: 
geographical areas. Geographical reconstructions (a–f) are based on PALEOMAP (Scotese, 2016). (a) Africa and Madagascar constitute a 
continuous terrain still within Gondwana supercontinent, 1 indicates the approximate situation of the ancestor of Dugesia; (b) first split of 
Madagascar from Africa, lineage 2 stays in Madagascar, 3 in continental Africa; (c) African clade 3 diversifies and disperses throughout Africa 
(lineage 5), including a region of new contact of the continent with Madagascar (lineage 4); (d) second breakage of Madagascar from Africa 
isolates lineage 6 in Madagascar while lineage 7 stays in Africa (node 4); in Africa, lineage 5 diversifies and gives rise to lineages 8 and 9 
(node 5); (e) North Africa ancestor 9 diversifies, descendant lineage 10 moves to Asia, the other (11) stays in Africa; (f) ancestor 11 diversifies 
in North Africa, one lineage disperses to West Europe through terrestrial connections in the mid-Mediterranean area (13) and another to 
East Europe through Arabia (12). The last geographical reconstruction corresponds to the present Eurasian and African outline to better 
illustrate the putative dispersal routes of Dugesia into Eurasia, although at the time of dispersal some continental areas did not correspond to 
the current situation. See Section 4 for a more detailed account of events and hypotheses

(a)

(b)

(c)

(d)

(e)

(f)
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throughout the Mediterranean Basin may be attributed to recent an-
thropogenic activities (Lázaro & Riutort, 2013). This may also be the 
case for D. naiadis. Furthermore, the close genetic relationship be-
tween Dugesia aethiopica (Ethiopia) and Dugesia arabica (Yemen) may 
imply anthropogenic interventions in their distribution. Likewise, 
anthropogenic translocation may also be involved in the finding of 
specimens from the Arabian Peninsula (Doma1 and Doma2) well-
nested within the Madagascar clade (MDG2). Of note, in most of 
these cases, the species implicated multiply via fission (the animals 
perform a binary fission and posteriorly regenerate the missing 
parts)—a reproductive strategy that has been proposed to favour 
the colonisation ability (Lázaro & Riutort, 2013; Leria et al., 2019).

The volcanic origin of the São Tomé Island (AFR2) indicates 
that animals must have arrived here through transoceanic disper-
sal. In the course of history, these islands have accumulated hun-
dreds of endemic species, including crabs, shrews, burrowing 
reptiles and amphibians (Daniels et al., 2015; Daniels & Klaus, 2018; 
Jones, 1994), which do not typically cross saltwater barriers and are 
absent from most oceanic islands (Darwin, 1859; Heim de Balsac & 
Hutterer, 1982; Vitt & Caldwell, 2013). Contrary to the Mozambique 
Channel, the Atlantic coast of Africa has a rich network of large, 
fast-flowing rivers. The Congo, Ogooué and Niger rivers create ex-
tensive freshwater plumes in the Atlantic Ocean (Heim de Balsac & 
Hutterer, 1982; Measey et al., 2007) and have been hypothesised to 
explain the presence of certain frog species on the São Tomé and 
Príncipe islands (Bell et al.,  2015; Measey et al.,  2007). The pres-
ence of land (Sluys et al., 2017) and freshwater flatworms on São 
Tomé (Dsao1 and Dsao2) might be explained by the same hypothe-
sis. However, the low vagility of freshwater flatworms supports the 
recent anthropogenic translocation of already diversified lineages. 
Overall, our findings question the dogma of the impossibility of the 
overseas dispersal of freshwater flatworms.

4.5  |  Multiple dispersal routes of Dugesia from 
Africa to Eurasia

Different hypotheses have been posed regarding the arrival of 
Dugesia to Eurasia. Ball  (1974) proposed that the genus likely dis-
persed in Eurasia when the Tethys Sea closed, probably through a 
route from Africa to the Middle East and then to Europe and Asia. 
Sluys et al.  (1998) proposed a similar dispersal route to Eurasia 
through the Middle East following the impact of the Arabian plate, 
around 23–16  Ma (Robertson,  2000), implying a relatively re-
cent expansion in Eurasia. The same authors also suggested a dif-
ferent path of the introduction of the genus in Asia following the 
collision of India with the continent (Aitchison et al.,  2007; Ali & 
Aitchison, 2008; van Hinsbergen et al., 2012), which will theoreti-
cally place the Madagascar species as sister to the Eurasian ones.

Surprisingly, our results do not support any of these hypothe-
ses. First, the sister clade of Eurasian Dugesia comprised representa-
tives from Cameroon and São Tomé (AFR2), rather than Madagascar. 
Second, assuming that the most recent common ancestor of Eurasian 

species was in India, one would expect to find the older lineages of 
the Eurasian clade there or in surrounding regions, which is not the 
case.

Alternatively, based on our results, the Eurasian lineages shared 
the immediate common ancestor with Sub-Saharan African lineages, 
and our ancestral range estimation placed the ancestor of the AFR2–
Eurasian clade in Africa with high probability (Figure  3, node 5). 
These results indicated a possible route through Arabia, although it 
was not supported by the results of our dating analysis. The collision 
between the Arabian and Eurasian plates occurred around 20  Ma 
(Robertson,  2000)—much later than the splitting of the AFR2 and 
Eurasian lineages (node 5, 113.43 Ma; 130.72–96.34 Ma 95% HPD) 
and the diversification for the Eurasian clade (93.77  Ma; 110.3–
77.7 Ma 95% HPD) in the dated trees. Thus, Dugesia likely arrived in 
Eurasia through a different path from the one passing through the 
Arabian Peninsula.

Notably, there were symmetric relationships between the 
European plus Middle East clade and the Asian clade (Figure 3, node 
9), and the genetic diversification of the Asian lineages was older 
than that of the European and Middle Eastern ones. According to the 
previous hypotheses of planarian dispersion, after arriving to Eurasia 
riding on India (Sluys et al.,  1998), some lineages migrated west-
ward to arrive in the Middle East and then Europe. Our results do 
not show any Asiatic or Middle East representatives as sister to the 
European-Middle East clade as will be expected if animals dispersed 
from Asia to Europe. On the contrary, the Middle East representa-
tives included in the analyses (i.e. Azerbaijan, Turkey, Israel and Iran) 
were well-nested within the eastern European clade. Therefore, the 
European–Middle Eastern Dugesia probably used a different route 
from the Asian Dugesia to disperse out of Africa. Some alternative 
geological hypotheses may explain the evidence derived from our 
results, implying three different paths, which are explained in the 
following sections.

4.6  |  India as a ferry to Asia with stops in Africa

Based on the fossils of animals found in different combinations 
in America, Europe, Africa and India, it has been proposed that 
India may have not been a completely isolated continent moving 
northwards through the Indian Ocean (Briggs,  2003; Chatterjee 
et al., 2017; Kapur et al., 2018; Kapur & Khosla, 2016). Instead, it 
was likely still in some contact with Africa and Madagascar even as 
it began to contact Eurasia. This would have allowed the interchange 
of fauna between Africa and Eurasia during the Late Cretaceous–
Early Paleogene. According to this alternative hypothesis, between 
94 and 65 Ma, fauna from Africa likely entered India and partially 
replaced the original Indian–Madagascar endemics. Then, around 
65 Ma, India, upon contact with Eurasia, allowed subsequent inter-
change of fauna. Most of this evidence is based on the records of 
vagile vertebrates, but also some amphibians depending on fresh-
water and presenting low vagility indicate the existence of such 
connections among landmasses following Gondwana fragmentation 
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(Duellman & Trueb, 1994). Nonetheless, there remain contradictory 
signals between biological and geological clues referring to the con-
nection between India and Africa (Ali & Aitchison, 2008; Kapur & 
Khosla, 2016).

However, the above-mentioned hypothetical connections 
among Africa, India and Eurasia may have offered to the Dugesia 
representatives dwelling in the central and/or north-eastern parts 
of Africa, the opportunity to disperse to Eurasia aboard the moving 
Indian plate. This can further explain the beginning of diversification 
of the Asian group during the Late Cretaceous (93–66 Ma; Figures 2 
and 3, node 10), probably while riding the Indian plate. Once India 
collided with Asia, multiple lineages present in the region dispersed 
in different directions through Asia, giving rise to the current dis-
tribution pattern of diverse ancient lineages scattered across Asia 
rather than forming geographically structured groups of clades.

4.7  |  Asian Dugesia

Although many of the samples obtained from Asia were initially 
assigned to Dugesia japonica, it is evident from our results that 
they comprise more than one species and that a thorough study 
of the Asian species may reveal much greater species diversity 
(Chen et al., 2015; Song et al., 2020; Wang et al., 2021). Moreover, 
our results revealed some outliers in the Asian group: specimens 
from Papua New Guinea (Dpap) and Australia (Dnot). Both Papua 
New Guinea and Australia are on the eastern side of the Wallace 
Line, which marks a biogeographical limit traditionally considered 
a biological barrier between the Southeast Asian and Australasian 
fauna (Mayr, 1944). Moreover, Dugesia found in Australia (Dnot) was 
genetically very close to representatives from Bangladesh (Dban) 
and Thailand (Dtai), suggesting anthropogenic transportation and 
geographical expansion in Australia (Grant,  2017; Figure  1), simi-
lar to the case of D. sicula in the Mediterranean Basin (Lázaro & 
Riutort, 2013).

4.8  |  Arrival of Dugesia to Europe in two steps

According to our previous hypothesis, Dugesia likely diversified 
within Africa. A part of this Dugesia diversity might have moved to 
Asia through the moving Indian plate. Meanwhile, the Dugesia spe-
cies that remained in the north of Africa might have had the oppor-
tunity to move to Europe through two different routes, which will 
explain the two well-differentiated European groups. First, during 
the Eocene (55–33 Ma), there were continuous terrestrial connec-
tions between the African and the European plate in the west-
ern European area (WEUR clade) when the Tethys sea was closing 
(Stampfli & Hochard, 2009). Second, the Dugesia species from the 
eastern area (EEURME clade) might have passed through the Arabian 
Peninsula and the landmass that was destined to become the Aegean 
region. This hypothesis is supported by the topology and dating of 
the two clades.

Following the two dispersal events from Africa to Europe, most 
diversity in northern Africa may have disappeared because of the 
desertification of the region around 3 Ma (Foley et al., 2003). The 
desertification of northern Africa may also explain the long stem 
branch for the European clade. Meanwhile, the European continent 
did not form a continuous landmass until around 30 Ma (Meulenkamp 
& Sissingh, 2003), which may explain the lack of dispersion through 
this continent from both sides in older times.

5  |  CONCLUSIONS

The present study puts forth the first biogeographical hypoth-
eses drawn for the Dugesia genus as a whole based on molecular 
data. Our results confirm that Dugesia is an ancient genus that 
most likely originated in the eastern part of Gondwana at the 
Jurassic–Cretaceous boundary. Moreover, following its origin, 
the genus has gone through an extraordinary diversification 
over time and space, reaching most of its present-day suitable 
distribution range through both vicariant and dispersal events. 
The first diversification processes occurring within Dugesia pu-
tatively involved two consecutive vicariant–dispersal events 
during the split of Madagascar from Africa. Subsequently, and 
contrary to the previously proposed biogeographical hypotheses 
based on distribution data, Dugesia colonised Eurasia via three 
possible independent dispersal routes. Surprisingly, Dugesia 
might have travelled through the ocean to reach the oceanic 
island of São Tomé, thus questioning the assumed impossibility 
of animals with low vagility, such as freshwater planarians, to 
disperse overseas. Overall, although vicariant processes have 
certainly shaped part of the evolutionary history of Dugesia, the 
higher dispersal capability of these organisms than previously 
thought might have played a key role in driving the diversifi-
cation and distribution of this genus, which, together with ad-
aptation and chance, has given rise to an extremely intricate 
biogeographical history.
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