

# Congress of the European Society for Evolutionary Biology

August 14–19, 2022 Prague Congress Centre

Book of Abstracts



## CONTENTS

## TALKS......4

**S01.** Tug of war between the sexes: The transcriptomic architecture of sex-linked traits

**S02.** Sex chromosome evolution: the canonical model and so much beyond

**S03.** Diversity and evolution in sperm, ova, and other primary reproductive traits

**S04.** The evolutionary ecology of mating systems

**S05.** A combinatorial view on rapid speciation - the role of ancient genetic variants and hybridisation

**S06.** Revisiting chromosomal speciation in the genomic era

**S07.** Chromosome rearrangements in evolution

**S08.** Integrative biogeography: Past, present, future

**S09.** Parallel and repeated evolution in adaptive radiation

**S10.** Eco-evolutionary dynamics in changing environments: insights from models, experiments and case studies

**S11.** Adaptation and evolution across environmental gradients

S12. Resurrection ecology as a tool for the study of rapid evolution

**S13.** Evolutionary ecology of chemically-mediated species interactions in plants

**S14.** Ecological drivers and evolutionary consequences of within-population colour variation

**S15.** Rapid evolution of color patterns

**S16.** Predator cognition and the evolution of prey defence strategies

**S17.** Brain, behaviour and cognitive evolution

S18. The evolution of behavioural adaptations: Genes, neurons and ecology

**S19.** Eco-evolutionary dynamics and feedbacks in invasive species

**S20.** Unravelling the interplay between plasticity and evolution during rapid global change

**S21.** Epigenetics goes wild! Epigenetic diversity and the evolutionary potential of wild populations.

S22. Phenotypic plasticity's importance in evolution: Same old dog or new tricks?

S23. The evolution and consequences of non-mendelian inheritance

**S24.** Progress and prospects in adaptation genomics

**S25.** The positives and negatives of whole genome duplication: synthesizing polyploid evolution across organisms and disciplines

**S26.** The biological meaning of SNPs

**S27.** Tandem repeats: their role in molecular evolution and methods

**S28.** Beyond transcription: the role of post-transcriptional gene regulation in adaptation and evolution

**S29.** Comparative genomics: a powerful tool for exploring broad evolutionary questions

S30. Characterizing genomic landscapes of recombination and their evolution

S31. Limits to adaptation: linking evolution, ecology, and genetics

**S32.** Inferring macroevolutionary patterns from microevolutionary processes: methods and practices

S33. Domestication: Fresh insights from ancient genomics

**S34.** How have biomarkers improved our understanding of health and the evolution of senescence?

**S35.** The art of microscopic war: interference competition in microbes

**S36.** Evolution of antibiotic resistance: from lab to clinic



**S37.** Microbiomes in the wild: the drivers and evolutionary consequences of microbiome variation

**S38.** Molecular evolution and trade-offs in host-pathogen interactions and host immunity

- **S39.** Mechanisms of host-symbiont coevolution: from genotype to phenotype
- **\$40.** OPEN SYMPOSIUM

### 

S01. Tug of war between the sexes: The transcriptomic architecture of sex-linked traits

- S02. Sex chromosome evolution: the canonical model and so much beyond
- S03. Diversity and evolution in sperm, ova, and other primary reproductive traits

**S04.** The evolutionary ecology of mating systems

**S05.** A combinatorial view on rapid speciation - the role of ancient genetic variants and hybridisation

**S06.** Revisiting chromosomal speciation in the genomic era

**S07.** Chromosome rearrangements in evolution

**S08.** Integrative biogeography: Past, present, future

**S09.** Parallel and repeated evolution in adaptive radiation

**S10.** Eco-evolutionary dynamics in changing environments: insights from models, experiments and case studies

**S11.** Adaptation and evolution across environmental gradients

S12. Resurrection ecology as a tool for the study of rapid evolution

**S13.** Evolutionary ecology of chemically-mediated species interactions in plants

**S14.** Ecological drivers and evolutionary consequences of within-population colour variation

**S15.** Rapid evolution of color patterns

**S16.** Predator cognition and the evolution of prey defence strategies

**S17.** Brain, behaviour and cognitive evolution

**S18.** The evolution of behavioural adaptations: Genes, neurons and ecology

**S19.** Eco-evolutionary dynamics and feedbacks in invasive species

**S20.** Unravelling the interplay between plasticity and evolution during rapid global change

**S21.** Epigenetics goes wild! Epigenetic diversity and the evolutionary potential of wild populations.

S22. Phenotypic plasticity's importance in evolution: Same old dog or new tricks?

S23. The evolution and consequences of non-mendelian inheritance

**S24.** Progress and prospects in adaptation genomics

**S25.** The positives and negatives of whole genome duplication: synthesizing polyploid evolution across organisms and disciplines

**S26.** The biological meaning of SNPs

**S27.** Tandem repeats: their role in molecular evolution and methods

**S28.** Beyond transcription: the role of post-transcriptional gene regulation in adaptation and evolution

**S29.** Comparative genomics: a powerful tool for exploring broad evolutionary questions

S30. Characterizing genomic landscapes of recombination and their evolution

S31. Limits to adaptation: linking evolution, ecology, and genetics

**S32.** Inferring macroevolutionary patterns from microevolutionary processes: methods and practices

S33. Domestication: Fresh insights from ancient genomics

**S34.** How have biomarkers improved our understanding of health and the evolution of senescence?



**S35.** The art of microscopic war: interference competition in microbes

**S36.** Evolution of antibiotic resistance: from lab to clinic

**S37.** Microbiomes in the wild: the drivers and evolutionary consequences of microbiome variation

S38. Molecular evolution and trade-offs in host-pathogen interactions and host immunity

**S39.** Mechanisms of host-symbiont coevolution: from genotype to phenotype

**S40.** OPEN SYMPOSIUM



populations. The speed and strength of adaptation may be facilitated by several mechanisms including a large effective population size and strong selective pressures imposed by host plants.

#### Abstract ID: 1436

# Developmental plasticity and the potential of host shift in the seed beetle

Uroš Savković<sup>1)</sup>, Mirko Đorđević<sup>1)</sup>, Sanja Budečević<sup>1)</sup>, Lea Vlajnić<sup>2)</sup>, Snežana Pešić<sup>3)</sup>, Filip Vukajlović<sup>3)</sup>, Dragana Predojević<sup>3)</sup>, Ana Mitrovski Bogdanović<sup>3)</sup>, Oliver Stojković<sup>4)</sup>, Biljana Stojković<sup>2)</sup>

 <sup>1)</sup>Department of evolutionary biology, Institute for Biological Research "Siniša Stanković" – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
<sup>2)</sup>Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
<sup>3)</sup>Faculty of Science, University of Kragujevac, Kragujevac, Serbia
<sup>4)</sup>Faculty of Medicine, University of Belgrade, Belgrade, Serbia

Diverse aspects of insects' behaviour, physiology, and the relationship between lifehistory traits are challenged when insects try to expand their host range, exploit alternative food sources and specialise on them. Process that enables phytophagous insects to utilise new food sources, known as host shift, is tightly associated with developmental plasticity and is seldom studied in laboratory settings. Using an experimental evolution approach we simulated the host shift process and observed the evolution of plasticity in seed beetle (Acanthoscelides obtectus) laboratory populations that evolved on optimal (common beans) and suboptimal (chickpea) plant hosts for more than 35 years. We have looked into: 1) life-history traits and how the long-term exposure to different hosts affects them; 2) the consequences when insects are exposed to shortterm (in a single generation) change of the host plant, and 3) what happens when the host plant is altered each generation, that is, we observed the process of the selection for increased plasticity in a laboratory setting. Prior to life-history assays, populations were in the experiment for 13 generations. We found that long-term host shift to chickpeas decreased plasticity levels for preadult traits compared to bean adapted populations. Simultaneously, fecundity evolved a more plastic response. Groups that were evolving in conditions where plant hosts were alternated each generation had the same plasticity patterns as their ancestral populations, suggesting the need for more time for plastic response to evolve. This research illustrates the importance of phenotypic plasticity in maintaining populations under changing feeding conditions.

#### Abstract ID: 1300

#### Environmental response in gene expression and DNA methylation reveals factors influencing adaptation

Tuomas Hämälä<sup>1, 2)</sup>, Weixuan Ning<sup>1, 3)</sup>, Helmi Kuittinen<sup>1)</sup>, Nader Aryamanesh<sup>1, 4)</sup>, Outi Savolainen<sup>1)</sup>

<sup>1)</sup>Department of Ecology and Genetics, University of Oulu, Oulu, Finland

<sup>2)</sup>School of Life Sciences, University of Nottingham, Nottingham, United Kingdom

<sup>3)</sup>School of Natural Sciences, Massey University, Palmerston North, New Zealand

<sup>4)</sup>Embryology Research Unit, University of Sydney, Westmead, Australia