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Simple Summary: Autophagy is one of the key mechanisms contributing to therapy resistance, and
targeting this process may improve drug efficacy. Src tyrosine kinases are promising therapeutic
targets in glioblastoma as they are overactivated and contribute to the malignant phenotype. We
aimed to evaluate the effects of two novel Src tyrosine kinase inhibitors, Si306 and its prodrug pro-
Si306, on autophagy in glioblastoma cells and whether modulation of autophagy can improve their
anticancer properties. Both Src tyrosine kinase inhibitors induced autophagy, and their combination
with an autophagy inhibitor enhanced their antiproliferative effects and induced cell death. Our
results suggest that targeting autophagy in combination with Si306 and pro-Si306 is a promising
treatment strategy in glioblastoma that warrants further studies.

Abstract: Drug resistance presents a major obstacle to the successful treatment of glioblastoma.
Autophagy plays a key role in drug resistance, particularly in relation to targeted therapy, which has
prompted the use of autophagy inhibitors to increase the effectiveness of targeted therapeutics. The
ability of two Src tyrosine kinase inhibitors, Si306 and its prodrug pro-Si306, to induce autophagy was
evaluated in the human glioblastoma cell line U87 and its multidrug-resistant counterpart U87-TxR.
Autophagy markers were assessed by flow cytometry, microscopy, and Western blot, and induction of
autophagy by these compounds was demonstrated after 3 h as well as 48 h. The effects of Si306 and
pro-Si306 on cell proliferation and cell death were examined in the presence or absence of autophagy
inhibition by bafilomycin A1. Combined treatments of Si306 and pro-Si306 with bafilomycin A1 were
synergistic in nature, and the inhibition of autophagy sensitized glioblastoma cells to Src tyrosine
kinase inhibitors. Si306 and pro-Si306 more strongly inhibited cell proliferation and triggered necrosis
in combination with bafilomycin A1. Our findings suggest that modulation of Si306- and pro-Si306-
induced autophagy can be used to enhance the anticancer effects of these Src tyrosine kinase inhibitors
and overcome the drug-resistant phenotype in glioblastoma cells.

Keywords: glioblastoma; autophagy; Src tyrosine kinase inhibitor; multidrug resistance

1. Introduction

Autophagy is a self-digestive pathway that maintains cellular homeostasis through
recycling intracellular components and the elimination of damaged organelles and unnec-
essary proteins [1]. This is an evolutionarily conserved process in eukaryotes and occurs
at a basal rate in all cells. Defects in autophagy have been shown to correlate with the
propensity of various diseases, including cancer. In normal tissue, autophagy plays a
major housekeeping role in preventing tumorigenesis by eliminating damaged organelles
and alleviating oxidative stress, thereby executing a cytoprotective role and providing
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genome stability [2,3]. However, once the primary tumor has been established, this system
is hijacked by tumor cells. Proliferating cancer cells have elevated demands for metabo-
lites, and in order to survive, component recycling through autophagy compensates for
nutrient deficiency and helps cancer cells adapt to a hypoxic environment [2]. In cancer,
autophagy can play a dual role that is context-dependent and can be both cytoprotective
and cytotoxic [2]. Since it is rapidly upregulated under cellular stress conditions, autophagy
can provide an alternative source of energy for cancer cell survival, especially in cancer
cells exposed to anticancer treatment [4]. Autophagy may increase cellular metabolism,
which inactivates drugs and supports the development of drug resistance [3]. In fact,
raising the level of autophagy is one of the key mechanisms by which cancer cells acquire
resistance to anticancer agents. However, excessive and/or prolonged autophagy induced
by therapeutic stress may also lead to caspase-independent cell death [3]. Thus, autophagy
induction as a therapeutic option can cause varying cellular responses and largely depends
on the treatment and type of tumor, as well as the stage of the disease [3].

Drug resistance represents a major obstacle to successful cancer treatment. Glioblas-
toma, the most common and most aggressive malignant tumor of the central nervous
system, is characterized by a high rate of cell proliferation, infiltrating nature, and resis-
tance to therapy [5]. The resistance of glioblastoma to various therapies is largely a result
of an exceptionally mutated genome and increased activity of tyrosine kinase receptors,
such as EGFR, which is typically upregulated in glioblastoma [6]. In addition to innate
resistance, glioblastoma cells may also develop a resistant phenotype in response to therapy.
In both cases, the expression of different genes is altered, leading to multidrug resistance
(MDR) and a reduced response of cancer cells to treatment [7]. Glioblastoma resistance
has been shown for a wide range of chemotherapeutic agents including temozolomide,
paclitaxel, etoposide, vincristine, carboplatin, and irinotecan [8].

Autophagy is currently considered a vital element of drug resistance in a variety of
non-solid and solid tumors, including glioblastoma [9]. As a result, the main research
focus has been on controlling cell growth, cell death, and drug resistance by modulating
autophagy. Changing autophagy levels or inhibiting the expression of autophagy-related
genes has been shown to improve drug efficacy and help overcome autophagy-induced
drug resistance [9]. Currently, the clinical focus is on the use of pharmacological inhibitors
of autophagy in combination with standard chemotherapy or targeted therapy, as numerous
studies have shown that such combinations can increase cell death in drug-resistant cancer
cells [2,10–12].

Tyrosine kinases are a family of enzymes that phosphorylate tyrosine residues of
specific proteins. In solid tumors, both receptor and non-receptor tyrosine kinases are
overexpressed and play an important role in cancer development [13]. Src tyrosine kinase
belongs to the largest family of non-receptor tyrosine kinases, the Src family tyrosine kinases
(SFKs), and is their most widely characterized member. The deregulation of the activity of
SFKs is accountable for the growth and progression of various types of cancer [4], while
particularly elevated Src activity has been reported in glioblastoma [14]. For this reason, Src
represents a target for cancers where this kinase is involved and/or overexpressed. Many
anticancer therapies are based on the use of tyrosine kinase inhibitors. These inhibitors are
small molecules with hydrophobic properties that readily penetrate cells and inhibit both
cytoplasmic and membrane tyrosine kinases and regulate signaling pathways involved in
cell survival, proliferation, and differentiation [15].

Si306 and its prodrug pro-Si306 are novel small-molecule compounds and ATP-
competitive inhibitors of Src tyrosine kinase and other SFK members. They are based
on the pyrazolo[3,4-d]pyrimidine scaffold [16–18] and are capable of passing through the
blood–brain barrier [19]. The strong activity of Si306 and pro-Si306 against different types
of cancer, including glioblastoma, was reported in numerous in vitro and in vivo stud-
ies [17–21]. We have previously shown that Si306 and its prodrug act as dual-targeting
molecules with the ability to inhibit both SFKs and P-glycoprotein, an efflux transporter
overexpressed on the membrane of multidrug-resistant glioblastoma cells [20]. These Src



Life 2022, 12, 1503 3 of 18

tyrosine kinase inhibitors (STKIs) also considerably reduced the invasive properties of
several patient-derived glioblastoma cultures, as well as glioblastoma xenografts in the
zebrafish embryo model [19]. In addition, Si306 and pro-Si306 showed strong antiprolifera-
tive and pro-oxidative potential in primary glioblastoma cells leading to senescence and
necrosis [18]. Often, the biological activity of prodrugs is significantly lower compared
with the parent drug [22]. However, our previous studies demonstrated that pro-Si306
showed similar biological activity compared to Si306, while also displaying improved
pharmacological properties [23].

These encouraging results have prompted further research into these Src tyrosine
kinase inhibitors as potential targeted therapeutics in the treatment of glioblastoma. This
study aimed to evaluate the effect of Si306 and pro-Si306 on autophagy in U87 and MDR
U87-TxR glioblastoma cells and whether the modulation of autophagy can improve the
anticancer activity of these compounds and help overcome MDR.

2. Materials and Methods
2.1. Drugs

Si306 and pro-Si306 were obtained as previously described [23]. Bafilomycin A1 (Baf
A1) was acquired from Sigma-Aldrich Chemie GmbH (Taufkirchen, Germany). Si306 and
pro-Si306 were stored at room temperature (RT) as 20 mM aliquots in dimethyl sulfoxide
(DMSO). Baf A1 was stored at 4 ◦C as 20 µM aliquots in DMSO. Sterile Milli-Q water was
used to dilute all drugs directly before treatment.

2.2. Reagents

Minimum Essential Medium (MEM) was acquired from Capricorn Scientific GmbH
(Ebsdorfergrund, Germany). L-glutamine, trypsin, and penicillin–streptomycin solution
were from Biowest (Nuaillé, France). Thiazolyl blue tetrazolium bromide (MTT), fetal
bovine serum (FBS), DMSO, and Acridine orange (AO) were obtained from Sigma-Aldrich
Chemie GmbH. Hoechst 33342 and carboxyfluorescein succinimidyl ester (CFSE) were
purchased from Thermo Fisher Scientific (Waltham, MA, USA). An Apoptosis Detection
Kit based on Annexin-V-FITC (AV) and propidium iodide (PI) staining was acquired from
Abcam (Cambridge, UK). Triton™ X-100 was purchased from Merck KGaA (Darmstadt,
Germany), while bovine serum albumin (BSA) was obtained from Serva (Heidelberg,
Germany). Anti-LC3A/B rabbit primary antibody was from Cell Signaling Technology®

(Danvers, MA, USA) and p62/SQSTM1 mouse primary antibody was purchased from
Novus Biologicals (Littleton, CO, USA). Secondary antibodies Alexa Fluor® 488 goat anti-
mouse IgG (H + L) and Alexa Fluor® 555 goat anti-rabbit IgG (H + L) were obtained from
Thermo Fisher Scientific.

2.3. Cell Cultures

Human glioblastoma cell line U87 was acquired from American Type Culture Collec-
tion (Rockville, MD, USA). Multidrug-resistant U87-TxR cell line was selected from parental
U87 cell line that was continuously exposed to increasing concentrations of paclitaxel [24].
U87 and U87-TxR cells were maintained in MEM supplemented with 10% FBS, 2 mM
L-glutamine, 10,000 U/mL penicillin, and 10 mg/mL streptomycin. Cells were cultured at
37 ◦C in a humidified atmosphere containing 5% CO2.

2.4. MTT Assay

U87 and U87-TxR cells were seeded into 96-well tissue culture plates (4000 cells/well)
and allowed to attach overnight at 37 ◦C. Cells were then treated for 48 h with Si306 and
pro-Si306 (1, 2.5, 5, 10, and 25 µM), as well as Baf A1 (10, 20, and 50 nM) to assess cell
growth. U87 and U87-TxR cells cultured in MEM alone were used as a negative control,
while 0.25% (v/v) DMSO served as a solvent control. Baf A1 is a well-known vacuolar-type
H(+)-ATPase inhibitor that blocks autophagosome–lysosome fusion [25,26]. In addition,
increasing concentrations of Si306 and pro-Si306 (5, 10, and 25 µM) were applied with



Life 2022, 12, 1503 4 of 18

20 nM Baf A1 in simultaneous treatments. This colorimetric assay is based on enzymatic
reduction in the MTT into formazan dye by active mitochondria in viable cells, indicating
their metabolic activity. Following the treatment, 100 µL of MTT solution (2 mg/mL)
was added to each well, and the plates were incubated at 37 ◦C for 4 h. The formazan
crystals formed in cells with viable mitochondria were dissolved in 200 µL of DMSO,
and the absorbance was measured at 570 nm in an automated microplate reader (Thermo
Scientific™ Multiskan™ Sky Microplate Spectrophotometer, Waltham, MA, USA).

2.5. Median Effect Analysis

The combined effects of Si306 or pro-Si306 and Baf A1 were evaluated in U87 and
U87-TxR cells. Briefly, the cells were trypsinized, seeded into 96-well tissue culture plates
at 4000 cells/well, and incubated overnight at 37 ◦C. In single treatments, the cells were
treated for 48 h with increasing concentrations of Si306 or pro-Si306 (5, 10, and 25 µM) or
increasing concentrations of Baf A1 (10, 20, and 50 nM). In simultaneous treatments, 20 nM
Baf A1 was combined with increasing concentrations of Si306 or pro-Si306. Following
the treatments, the cell growth inhibition was analyzed by MTT assay as described. The
absorbance was measured at 570 nm in an automated microplate reader (Thermo Scientific™
Multiskan™ Sky Microplate Spectrophotometer, Waltham, MA, USA). IC50 values were
calculated by non-linear regression analysis using GraphPad Prism 6.0 (GraphPad Software,
La Jolla, CA, USA).

The nature of the interaction between Si306 or pro-Si306 and Baf A1 was analyzed
with CalcuSyn software v1.1 (Biosoft, Cambridge, UK) that uses the Combination Index
(CI) method based on the multiple-drug-effect equation [27]. To evaluate the effect of
both drugs in combination, the non-constant ratio was selected. The obtained results are
shown in a fraction-affected CI graph. CI values < 1 point to synergism, with lower values
indicating a greater degree of synergy. A CI value of 1 indicates an additive effect, while a
CI value of >1 indicates an antagonistic effect.

2.6. Cell Death Detection by Flow Cytometry

The percentages of apoptotic, necrotic, and viable cells were assessed by flow cytom-
etry using Abcam Apoptosis Detection Kit (AV/PI staining) according to the manufac-
turer’s instructions. U87 and U87-TxR cells were seeded into 6-well tissue culture plates
(200,000 cells/well) and allowed to attach overnight at 37 ◦C. The next day, cells were
treated for 48 h with 10 µM Si306 and pro-Si306, 20 nM Baf A1, or their combinations. After
collection of adherent and detached cells by centrifugation, AV/PI staining was performed.
The fluorescence intensity of AV/PI was immediately measured on a CyFlow Space flow
cytometer (Partec, Münster, Germany) in FL1 and FL2 channels. At least 20,000 events were
recorded per each sample, and Summit 4.3 software (Dako Colorado Inc., Fort Collins, CO,
USA) was used to analyze the percentages of viable (AV− PI−), early apoptotic (AV+ PI−),
late apoptotic (AV+ PI+), and necrotic (AV− PI+) cells.

2.7. CFSE Cell Proliferation Assay

CFSE staining was performed to assess cell proliferation by flow cytometry. The fluo-
rescence intensity of CFSE progressively declines during cell divisions, thus allowing the
assessment of cell proliferation rates. U87 and U87-TxR cells were trypsinized and stained
with 5 µM CFSE for 15 min in the dark at 37 ◦C in 5% CO2. After incubation, cells were
washed in PBS, seeded into 6-well tissue culture plates at a density of 200,000 cells/well
and allowed to attach overnight at 37 ◦C. Following 48 h treatment with 10 µM Si306 and
pro-Si306, 20 nM bafilomycin A1 or their combinations, cells were trypsinized, washed,
and resuspended in PBS. Fluorescence intensity of CFSE dye was measured in FL1 channel
on a CyFlow Space flow cytometer. At least 20,000 events were recorded per each sample,
and the results were analyzed in Summit 4.3 software.



Life 2022, 12, 1503 5 of 18

2.8. Western Blot

The protein levels of LC3 and p62 were evaluated by Western blot. U87 and U87-TxR
cells were seeded into tissue culture flasks at 1 × 106 cells per flask and allowed to attach
overnight at 37 ◦C. The cells were then treated for 48 h with 10 µM Si306 or pro-Si306,
20 nM bafilomycin A1, or their combinations. After treatment, cells were directly lysed in
Laemmli buffer (glycerol, 1M TRIS pH 6.8, 1% SDS, mQH2O, and 20% β-mercaptoethanol)
with bromphenol blue, and proteins were loaded on 12% SDS-PAGE gels and separated
by gel electrophoresis. Proteins were then transferred to PVDF membrane (Immobilon®-
PSQ, Merck Millipore, Dublin, Ireland), and membranes were blocked in 5% non-fat dry
milk (GE Healthcare, Buckinghamshire, UK) in TBST for 1 h at RT. Membranes were then
incubated overnight at 4 ◦C with the following primary antibodies: rabbit polyclonal
anti-LC3A/B (Cell Signaling; 4108) and mouse monoclonal anti-p62/SQSTM1 (Novus
Biologicals; NBP2-43663), followed by Horse Radish Peroxidase (HRP)-conjugated anti-
rabbit secondary antibody (Abcam, Cambridge, UK; ab6721) and anti-mouse secondary
antibody (Dako; P0260) for 1 h at RT. Immunoreactivity was detected by iBright™ CL1500
Western Blot Imaging System (Thermo Fisher Scientific, Waltham, MA, USA). Each blot was
reprobed with rabbit polyclonal anti-β-actin antibody (Abcam, Cambridge, UK; ab8227)
and incubated with (HRP)-conjugated anti-rabbit secondary antibody. Densitometric
analysis of immunoreactive bands was performed using ImageJ software (U.S. National
Institutes of Health, Bethesda, MD, USA), and the results are expressed as relative values
(i.e., density ratio normalized to the corresponding internal control, β-actin signal).

2.9. Transfection

U87 and U87-TxR cells were seeded into a 12-well tissue culture plate at 1.5 × 105 cells/well
in 500 µL of growth medium without penicillin/streptomycin and incubated overnight at
37 ◦C. On the following day, cells were transiently transfected with 0.5 µg of mRFP-LC3 plas-
mid using Lipofectamine 3000 (Thermo Fisher Scientific) according to the manufacturer’s
protocol. The mRFP-LC3 plasmid was a gift from T. Yoshimori (Addgene plasmid #21075;
http://n2t.net/addgene:21075, accessed on 16 September 2021; RRID:Addgene_21075) [28].
Cells were treated 24 h after transfection.

2.10. mRFP-LC3 Detection by Flow Cytometry and Fluorescence Microscopy

Extraction of cytoplasmic unbound fluorescently tagged LC3 with a mild detergent
results in the fluorescence intensity that is directly correlated with autophagosome-bound
LC3 and can be a good indicator of autophagic activity [29]. Transfected U87 and U87-TxR
cells were trypsinized, centrifuged, and resuspended in 500 µL of growth medium. Cells
were then treated with 10 µM Si306 or pro-Si306. After 3 h, cells were incubated with
0.05% saponin in PBS for 15 min. Following mild permeabilization, cells were washed
and resuspended in 1 mL of PBS. The florescence intensity of mRFP-LC3 was immediately
measured on a CyFlow Space flow cytometer in FL2 channel. At least 10,000 events were
recorded per each sample, and the acquired results were analyzed in Summit 4.3 software.
Subtraction of signal intensity between untreated and treated samples was performed and
presented as overall difference in mRFP-LC3-positive cells.

To observe autophagosome formation, mRFP-LC3-transfected cells were seeded into
8-well chamber slides (Nunc, Nalgene, Denmark) at a density of 40,000 cells/chamber
and treated with 10 µM Si306 or pro-Si306 for 3 h. After washing in PBS, cells underwent
4% paraformaldehyde fixation for 15 min at RT. The nuclei were labeled with Hoechst
33,342 for 15 min at RT, and the slides were mounted in Mowiol (Sigma-Aldrich Chemie
GmbH, Taufkirchen, Germany). The cells were imaged under a Zeiss Axiovert inverted
fluorescent microscope at 20× magnification (Carl Zeiss, Jena, Germany) using AxioVision
4.8 software.

http://n2t.net/addgene:21075
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2.11. Immunocytochemistry

For immunostaining, U87 and U87-TxR cells were seeded into 8-well chamber slides
(Nunc, Nalgene, Denmark) at a density of 40,000 cells/chamber and allowed to attach
overnight at 37 ◦C. The cells were then treated for 48 h with 10 µM Si306 or pro-Si306, 20 nM
Baf A1, or their combinations. After washing in PBS, cells underwent 4% paraformaldehyde
fixation for 15 min at RT and blocking in 0.5% BSA in PBS for 1 h. The cells were then
incubated overnight at 4 ◦C with rabbit anti-LC3A/B and mouse anti-p62/SQSTM1 primary
antibodies (1:1000 dilution in PBS/0.3% Triton X-100). On the following day, cells were
washed in PBS, and fluorescent secondary antibodies Alexa Fluor 555 anti-rabbit IgG (H + L)
and Alexa Fluor 488 anti-mouse IgG (H + L) were applied for 1 h at RT (1:1000 dilution in
0.5% BSA in PBS). The cells were stained with Hoechst 33,342 for 15 min at RT to label the
nuclei and then mounted in Mowiol. The cells were imaged under a Zeiss Axiovert inverted
fluorescent microscope at 20× magnification using AxioVision 4.8 software. LC3 puncta and
p62 fluorescence intensity were quantified using ImageJ software. LC3-positive particles
were quantified by counting the maxima. The corrected total cell fluorescence (CTCF)
corresponding to p62 signal was calculated using the following formula: CTCF = Integrated
density − (Area × Mean fluorescence of background readings).

2.12. Acridine Orange Assay

The autophagolysosomes were visualized by AO staining. After 48 h single treatments
with 10 µM Si306 and pro-Si306 or co-treatments with 20 nM Baf A1, cells were washed
in PBS and incubated for 15 min at 37 ◦C with 1 µM AO. Acridine orange accumulated in
acidic compartments such as autophagolysosomes displays red fluorescence, while AO in
cytoplasm and nuclei shows green fluorescence. After washing in PBS, cells were imaged
live under Zeiss Axiovert inverted fluorescent microscope at 10× magnification using
AxioVision 4.8 software.

2.13. Statistical Analysis

Statistical analysis was performed by GraphPad Prism 6.0 software. The Student’s
t-test was used for two-group comparisons, and one-way analysis of variance (ANOVA)
was used for comparing multiple groups. The accepted level of significance was p < 0.05.

3. Results
3.1. Si306 and Pro-Si306 Induce Autophagy in Glioblastoma Cells

To compare the basal levels of autophagy in U87 and MDR U87-TxR cells, we evaluated
the expression of the key autophagy marker LC3. As determined by immunoblotting, the
levels of autophagosome membrane-bound LC3-II were two-fold higher in U87 cells com-
pared with their resistant counterparts (Figure 1a). While fluorescence microscopy revealed
that both cell lines have the ability to form autophagosomes, higher LC3-II levels in the
parental cell line were also accompanied by a greater number of autophagosomes compared
with MDR cells (Figure 1b). The number of LC3 puncta in the cytoplasm was approximately
40% higher in U87 cells, which may indicate differences in basal autophagic activity.
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graphs of autophagosomes in anti-LC3-labeled U87 and U87-TxR cells. Scale bar = 50 µm. Histo-
gram shows LC3-positive puncta number in U87-TxR cells relative to U87 cells. Values are pre-
sented as mean ± SEM (n = 5). Statistically significant difference between groups is shown as * (p < 
0.05). (c) Representative flow-cytometric profiles of mRFP-LC3 fluorescence intensity in transfected 
U87 and U87-TxR cells after 3 h treatment with Si306 or pro-Si306. Mild cell permeabilization was 
performed to remove the cytoplasmic unbound mRFP-LC3 and detect mRFP-LC3 bound to au-
tophagic vacuoles. The percentages indicate an overall increase in the number of 
mRFP-LC3-positive cells (blue). (d) Fluorescence micrographs of autophagosomes in 
mRFP-LC3-transfected U87 and U87-TxR cells after 3 h treatment with Si306 or pro-Si306. Scale bar 
= 50 µm. 
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Figure 1. Si306 and pro-Si306 induce autophagy in glioblastoma cells. (a) Difference in expression
levels of the autophagosomal marker LC3-II between U87 and U87-TxR cells. Representative Western
blot images of LC3 protein expression in U87 and U87-TxR cells are shown. Histogram represents
LC3-II expression normalized to β-actin. Values are presented as mean ± SEM (n = 3). Statisti-
cally significant difference between groups is shown as * (p < 0.05). (b) Fluorescence micrographs
of autophagosomes in anti-LC3-labeled U87 and U87-TxR cells. Scale bar = 50 µm. Histogram
shows LC3-positive puncta number in U87-TxR cells relative to U87 cells. Values are presented
as mean ± SEM (n = 5). Statistically significant difference between groups is shown as * (p < 0.05).
(c) Representative flow-cytometric profiles of mRFP-LC3 fluorescence intensity in transfected U87
and U87-TxR cells after 3 h treatment with Si306 or pro-Si306. Mild cell permeabilization was per-
formed to remove the cytoplasmic unbound mRFP-LC3 and detect mRFP-LC3 bound to autophagic
vacuoles. The percentages indicate an overall increase in the number of mRFP-LC3-positive cells
(blue). (d) Fluorescence micrographs of autophagosomes in mRFP-LC3-transfected U87 and U87-TxR
cells after 3 h treatment with Si306 or pro-Si306. Scale bar = 50 µm.

We then aimed to determine whether Src tyrosine kinase inhibitors Si306 and pro-
Si306 can modulate autophagy in U87 and U87-TxR cells. Cells transfected with mRFP-
LC3 were treated with Si306 and pro-Si306 for 3 h, and mRFP-LC3 fluorescence was
measured by flow cytometry. As shown in Figure 1c, permeabilized cells showed more
red florescence after treatment with STKIs in both cell lines, indicating that more LC3 was
bound to autophagosomes as a result of increased autophagy. In addition, the formation of
autophagosomes was observed in the cytoplasm after treatment with STKIs in both cell
lines (Figure 1d). Si306 and its prodrug showed similar efficacy in inducing autophagic
response in mRFP-LC3-transfected parental and MDR glioblastoma cells.
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3.2. Si306 and Pro-Si306 Have Synergistic Interaction with Bafilomycin A1 in Glioblastoma Cells

Since increased autophagy was observed after treatment with Si306 and pro-Si306, we
evaluated the effect of the autophagic flux inhibitor Baf A1 on the efficacy of STKIs in U87
and U87-TxR cells after 48 h. The combined effects of STKIs and Baf A1 on cell growth
inhibition were determined by the MTT assay (Figure 2a). The addition of a non-cytotoxic
concentration of Baf A1 (20 nM) (Figure S1) improved the efficacy of Si306 and its prodrug
in parental and MDR glioblastoma cells. This lysosomal inhibitor sensitized both cell
lines to STKIs and significantly decreased the IC50 values of these inhibitors (Figure 2b).
Specifically, the IC50 values of Si306 were reduced over three-fold and five-fold in U87 and
U87-TxR cells, respectively. The IC50 values of the prodrug were reduced approximately
two-fold in both cell lines. The most efficient sensitization was achieved by combining Baf
A1 with 10 µM Si306 or pro-Si306 in both cell lines, so these concentrations were selected
for further treatments.
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pro-Si306 in single and combined treatments with Baf A1. The cell growth inhibition was assessed
after 48 h by the MTT assay. The growth inhibitory effects of single Src tyrosine kinase inhibitor
(STKI) treatments (black) were compared with combination treatments with Baf A1 (gray) in U87
and U87-TxR cells. Values are presented as mean ± SD (n = 3). Statistically significant difference
between groups is shown as * (p < 0.05), ** (p < 0.01), and *** (p < 0.001). (b) IC50 values of Si306
and pro-Si306 in single and combination treatments with Baf A1. (c) Si306 and pro-Si306 have a
synergistic interaction with Baf A1 in U87 and U87-TxR cells. The interactions between Si306 or
pro-Si306 (10 µM) and Baf A1 (20 nM) in U87 and U87-TxR cells were analyzed using CalcuSyn
software and presented as an algebraic estimate for each combination. Combination Index (CI) values
lower than 1 indicate a synergistic interaction.

The analysis of the nature of the interaction between compounds revealed a pro-
nounced synergistic effect of the combined treatments with STKIs and Baf A1, with CI
values below 1 in both glioblastoma cell lines (Figure 2c). The combination of 10 µM
Si306 and 20 nM Baf A1 produced CI values of 0.397 in U87 and 0.401 in U87-TxR, re-
spectively, indicating a synergistic interaction (Figure 2c). Similarly, CI values obtained
after co-treatment with 10 µM pro-Si306 and 20 nM Baf A1 were 0.001 in U87 and 0.002 in
U87-TxR, respectively. The synergy effects for multiple drug concentration combinations,
expressed as CI values, are given in the Supplementary Material (Figure S2).

3.3. Si306 and Pro-Si306 Have Prolonged Effects on Autophagy in Glioblastoma Cells

Considering the synergistic interaction between STKIs and Baf A1, we then assessed
whether STKIs retained their effect on the autophagy induction after prolonged treatment
using the acridine orange assay. After 48 h, the effect of Si306 and pro-Si306 on autophagy
induction in U87 and U87-TxR cells was still evident, as visualized by autophagolysosome
accumulation (Figure 3). Co-treatment with 20 nM Baf A1 resulted in the inhibition of
lysosome acidification, indicating that autophagic flux was disrupted during the synergistic
combination treatment (Figure 3).
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Figure 3. Acridine orange staining of glioblastoma cells. Fluorescence micrographs of U87 and
U87-TxR cells after 48 h treatment with Si306 and pro-Si306 or their combination with Baf A1. U87
and U87-TxR cells treated with Si306 and pro-Si306 showed an acidified vacuolar staining that was
absent in cells co-treated with Baf A1. Scale bar = 100 µm.

To further confirm the observed effects of STKIs on autophagy, we then assessed
the cellular distribution and expression of key autophagy markers LC3 and p62 after
48 h treatment with Si306 and pro-Si306 (Figure 4). The accumulation of LC3-positive
puncta at 48 h after autophagic flux blockade by Baf A1 demonstrated that autophagy
is active at basal levels in both parental and MDR glioblastoma cells. Immunostaining
for LC3 also revealed that autophagy was significantly increased upon STKI treatments
(Figure 4a,c). Si306 and its prodrug showed similar efficacy in triggering the accumulation
of LC3-positive puncta in both cell lines. Namely, the number of autophagosomes in U87
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and U87-TxR cells increased over two-fold following the treatments with Si306 and pro-
Si306 (Figure 4b,d). The inhibition of lysosomal function by Baf A1 resulted in additional
accumulation of LC3-positive puncta in STKI-treated cells, strongly indicating induction of
autophagy by Si306 and its prodrug (Figure 4a,c). Baf A1 combination with STKIs increased
the number of autophagosomes approximately 50% (Si306) and 65% (pro-Si306) in U87
cells (Figure 4b) and over 70% in U87-TxR cells (Figure 4d) compared with single STKI
treatments. The accumulation of autophagosomes after co-treatments with STKIs and Baf
A1 was also accompanied by significantly increased levels of autophagosome substrate p62
due to autophagic flux blockade during synergistic combination treatments (Figure 4a–d).
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Figure 4. The effect of Si306 and pro-Si306 on autophagosome accumulation in glioblastoma cells in
single and combined treatments with Baf A1. (a) Fluorescence micrographs of anti-LC3-labeled au-
tophagosomes and p62 in U87 cells after 48 h treatment with Si306 and pro-Si306 or their combination
with Baf A1. Nuclei were counterstained with Hoechst 33342. Scale bar = 100 µm. (b) Histograms
show LC3-positive puncta number and anti-p62 fluorescence intensity (arbitrary units) in treated U87
cells normalized to control U87 cells and expressed as percentages. Values are presented as mean
± SEM (n = 4). Statistically significant difference between treated and control groups is shown as
* (p < 0.05), ** (p < 0.01), and *** (p < 0.001). Statistically significant difference between single STKI
treatment and combined treatment with Baf A1 is shown as # (p < 0.05). (c) Fluorescence micrographs
of anti-LC3-labeled autophagosomes and p62 in U87-TxR cells after 48 h treatment with Si306 and
pro-Si306 or their combination with Baf A1. Nuclei were counterstained with Hoechst 33342. Scale
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bar = 100 µm. (d) Histograms show LC3-positive puncta number and anti-p62 fluorescence intensity
(arbitrary units) in treated U87-TxR cells normalized to control U87-TxR cells and expressed as
percentages. Values are presented as mean ± SEM (n = 4). Statistically significant difference between
treated and control groups is shown as * (p < 0.05), ** (p < 0.01), and *** (p < 0.001). Statistically
significant difference between single STKI treatments and combined treatment with Baf A1 is shown
as ## (p < 0.01).

The effect of STKIs on autophagy was also evaluated by immunoblotting after 48 h
(Figure 5). Our findings showed that the addition of Baf A1 increased the levels of
autophagosome-bound LC3-II 4-fold in U87 cells treated with Si306, and 3.5-fold in cells
treated with pro-Si306, compared with the control. A similar trend was observed in the U87-
TxR cell line, where Baf A1 addition increased the levels of LC3-II 4-fold in Si306-treated
cells and three-fold in prodrug-treated cells, strongly indicating the induction of autophagy
by STKIs. A significant increase in p62 levels was also detected in parental and MDR
glioblastoma cells treated with STKIs and Baf A1, initiated by inhibition of autophagic
flux. Specifically, in combined treatments with STKIs and Baf A1, p62 levels were higher
over 3-fold (Si306) and 5-fold (pro-Si306) in U87 cells, and over 2.5-fold in U87-TxR cells,
compared with the control (Figure 5).
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We then used flow cytometry to determine whether the inhibition of cell prolifera-
tion contributed to the observed synergism between STKIs and Baf A1. Both STKIs 
showed the ability to inhibit the proliferation of glioblastoma cell lines, as revealed by 
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Figure 5. The effect of Si306 and pro-Si306 on the expression of autophagy markers LC3 and p62
in glioblastoma cells in single and combined treatments with Baf A1. Representative Western blot
images of LC3 and p62 protein expression in U87 and U87-TxR cells after 48 h treatment with Si306
and pro-Si306 or their combination with Baf A1 are shown. Histograms represent LC3-II and p62
protein levels normalized to β-actin. Values are presented as mean ± SEM (n = 3). Statistically
significant difference between treated and control groups is shown as * (p < 0.05), ** (p < 0.01), and
*** (p < 0.001).

3.4. Bafilomycin A1 Enhances the Antiproliferative Effects of Si306 and Pro-Si306 in
Glioblastoma Cells

We then used flow cytometry to determine whether the inhibition of cell proliferation
contributed to the observed synergism between STKIs and Baf A1. Both STKIs showed the
ability to inhibit the proliferation of glioblastoma cell lines, as revealed by CFSE staining
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(Figure 6). Treatment with 10 µM Si306 resulted in approximately 30% higher CFSE signal
in U87 cells when compared with the control and 40% stronger signal in U87-TxR cells.
Pro-Si306 treatment resulted in approximately 60% stronger CFSE fluorescence in U87
cells and two-fold stronger fluorescence in U87-TxR cells. While 20 nM Baf A1 did not
significantly affect cell proliferation, the combination of Baf A1 and 10 µM STKIs resulted
in a significantly stronger antiproliferative effect compared with STKIs alone (Figure 6).
Simultaneous treatment with Si306 and Baf A1 resulted in over 2.4-fold and 2.2-fold stronger
CFSE signals in U87 and U87-TxR cells, respectively, when compared with the control cells.
Pro-Si306 in combination with Baf A1 resulted in 1.9-fold and 2.4-fold stronger fluorescence
in U87 and U87-TxR cells, respectively (Figure 6).
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Figure 6. Baf A1 enhances the antiproliferative effects of Si306 and pro-Si306 in glioblastoma cells.
(a) Antiproliferative activity in U87 cells was evaluated after 48 h in single treatments with Si306
and pro-Si306 or combined treatments with Baf A1. Representative flow-cytometric profiles of
CFSE-labeled U87 cells are shown on the left panel. The histogram on the right panel shows CFSE
fluorescence intensity (arbitrary units) in treated U87 cells relative to control U87 cells. Values are
presented as mean ± SEM (n = 3). Statistically significant difference between treated and control
groups is shown as * (p < 0.05), ** (p < 0.01), and *** (p < 0.001). Statistically significant difference
between single STKI treatment and combined treatment with Baf A1 is shown as ## (p < 0.01)
and ### (p < 0.001). (b) Antiproliferative activity in U87-TxR cells was evaluated after 48 h in
single treatments with Si306 and pro-Si306 or combined treatments with Baf A1. Representative
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flow-cytometric profiles of CFSE-labeled U87-TxR cells are shown on the left panel. The histogram
on the right panel shows the CFSE fluorescence intensity (arbitrary units) in treated U87-TxR cells
relative to the control U87-TxR cells. Values are presented as mean ± SEM (n = 3). Statistically
significant difference between treated and control groups is shown as * (p < 0.05) and *** (p < 0.001).
Statistically significant difference between single STKI treatment and combined treatment with Baf
A1 is shown as # (p < 0.05) and ### (p < 0.001).

3.5. Si306 and Pro-Si306 in Combination with Bafilomycin A1 Induce Necrotic Cell Death in
Glioblastoma Cells

To assess whether the induction of cell death accompanied inhibition of cell prolif-
eration and the observed synergism between STKIs and Baf A1, glioblastoma cells were
analyzed by flow cytometry using AV/PI staining. Treatment with 10 µM Si306 or pro-Si306
did not induce substantial cell death in either U87 or U87-TxR cells, nor did treatment with
20 nM Baf A1 (Figure 7). However, the addition of Baf A1 to STKI treatments considerably
improved their efficacy and increased the number of dead cells, especially with prodrug
treatments. Flow-cytometric analysis of U87 cells revealed that after the simultaneous
application of Si306 and Baf A1, cells mostly underwent necrosis (over 13% of cells), while
the percentage of cells in late apoptosis was 3% (Figure 7). After co-treatment with pro-
Si306 and Baf A1, 26% of U87 cells were necrotic and 4% were in late apoptosis. Similarly,
co-application of Si306 and Baf A1 in U87-TxR cells resulted in 10% of necrotic cells and 2%
of cells in late apoptosis. Co-treatment with pro-Si306 and Baf A1 resulted in 29% of MDR
cells in necrosis and nearly 4% in late apoptosis (Figure 7).

Life 2022, 12, x FOR PEER REVIEW 13 of 19 
 

 

Statistically significant difference between single STKI treatment and combined treatment with Baf 
A1 is shown as # (p < 0.05) and ### (p < 0.001). 

3.5. Si306 and Pro-Si306 in Combination with Bafilomycin A1 Induce Necrotic Cell Death in 
Glioblastoma Cells 

To assess whether the induction of cell death accompanied inhibition of cell prolif-
eration and the observed synergism between STKIs and Baf A1, glioblastoma cells were 
analyzed by flow cytometry using AV/PI staining. Treatment with 10 µM Si306 or 
pro-Si306 did not induce substantial cell death in either U87 or U87-TxR cells, nor did 
treatment with 20 nM Baf A1 (Figure 7). However, the addition of Baf A1 to STKI treat-
ments considerably improved their efficacy and increased the number of dead cells, es-
pecially with prodrug treatments. Flow-cytometric analysis of U87 cells revealed that 
after the simultaneous application of Si306 and Baf A1, cells mostly underwent necrosis 
(over 13% of cells), while the percentage of cells in late apoptosis was 3% (Figure 7). After 
co-treatment with pro-Si306 and Baf A1, 26% of U87 cells were necrotic and 4% were in 
late apoptosis. Similarly, co-application of Si306 and Baf A1 in U87-TxR cells resulted in 
10% of necrotic cells and 2% of cells in late apoptosis. Co-treatment with pro-Si306 and 
Baf A1 resulted in 29% of MDR cells in necrosis and nearly 4% in late apoptosis (Figure 
7). 

 
Figure 7. Si306 and pro-Si306 in combination with Baf A1 induce necrotic cell death in glioblastoma 
cells. AV/PI staining was used to assess cell death in U87 and U87-TxR cells following 48 h single 
treatments with Si306 and pro-Si306 or combined treatments with Baf A1. Representative 

Figure 7. Si306 and pro-Si306 in combination with Baf A1 induce necrotic cell death in glioblastoma
cells. AV/PI staining was used to assess cell death in U87 and U87-TxR cells following 48 h single



Life 2022, 12, 1503 14 of 18

treatments with Si306 and pro-Si306 or combined treatments with Baf A1. Representative flow-
cytometric profiles of AV/PI-labeled cells are shown for each condition. Histograms in the bottom
panel show the percentage of viable (AV− PI−), early apoptotic (AV+ PI−), late apoptotic (AV+ PI+),
and necrotic (AV− PI+) cells after treatments.

4. Discussion

In this study, we investigated the effect of Si306 and its prodrug pro-Si306 on au-
tophagy and the potential of autophagy modulation to sensitize glioblastoma cells toward
these compounds. The properties of tested pyrazolo[3,4-d]pyrimidine derivatives and
Src tyrosine kinase inhibitors were evaluated in the human glioblastoma U87 cell line
and its multidrug-resistant counterpart U87-TxR. The presented findings are in addition
to the effects of investigated compounds on glioblastoma cells reported in our earlier
studies [18–20].

We previously showed that both glioblastoma cell lines used in this study, U87 and
U87-TxR, are more resistant to apoptosis compared with other cancer cells [30,31]. However,
MDR U87-TxR cells are characterized by different molecular and cytogenetic characteristics
that further contribute to their resistance to different therapeutics compared with the
parental U87 cell line [32]. Specifically, features such as overexpression of P-glycoprotein
and inactivation of p53 are key factors contributing to the multidrug-resistant phenotype
of U87-TxR cells. In this study, we observed higher basal LC3-II levels as well as more
abundant autophagosomes in U87 compared with MDR cells. However, after the lysosomal
inhibition by Baf A1, both cell lines accumulated a comparable number of autophagosomes.
This may be an indication of an increased rate of autophagosome formation and degradation
under basal conditions in MDR cells compared with the parental cell line. Given that
efficient autophagy is one of the main mechanisms supporting the development of drug
resistance in cancer cells, it is likely that autophagy represents an additional feature by
which U87-TxR cells sustain their MDR phenotype.

In this study, we showed the potential of Src tyrosine kinase inhibitors Si306 and
pro-Si306 to induce autophagy in glioblastoma cells. It is now well demonstrated from a
variety of studies that different types of cancer cells exposed to tyrosine kinase inhibitors
can engage autophagy in response to chemical insults to alleviate cellular stress [1,2,4,33,34].
SFK inhibitors such as PP2 and saracatinib have been shown to effectively induce autophagy
in prostate cancer cells, while dasatinib and imatinib induced autophagy in glioblastoma
and chronic myelogenous leukemia, respectively [4]). Dasatinib was also responsible for
the potent induction of autophagy in the non-small cell lung carcinoma cell lines [1]. Other
tyrosine kinase inhibitors, such as ibrutinib, gefitinib, erlotinib, lapatinib, and neratinib,
also induced autophagy in different cancer types [2,34].

An additive effect in LC3-II levels after a treatment in the presence of a lysosomal
inhibitor is a known indicator of increased autophagic flux in cells [26]. An increase in
LC3-II levels after treatment in combination with Baf A1 compared with Baf A1 alone may
also point to the increased synthesis of autophagy-related membranes [26]. We observed a
prominent increase in LC3-II levels in cells treated with Si306 and pro-Si306 in the presence
of Baf A1, which is a strong indication of autophagy induction by STKIs, further supported
by the accumulation of autophagosomes in the cytoplasm. In addition, an increase in
autophagosome-bound mRFP-LC3 was observed in transfected U87 and U87-TxR cells
after treatment with Si306 and pro-Si306, which strongly indicated elevated levels of
autophagy. Prior reports have shown that SFK inhibitors can induce autophagy through
mTOR inhibition [4,35,36]. The PI3K/Akt/mTOR axis is the main regulatory pathway that
suppresses autophagy and is regulated by Src. We have previously demonstrated that
Si306 and pro-Si306 inhibit Src tyrosine kinase activity in U87 and U87-TxR glioblastoma
cells, along with the activity of upstream and downstream members of the Src signaling
pathway, including components of the PI3K/Akt/mTOR axis [19]. The effect of STKIs
on this pathway is likely to be one of the key drivers for the induction of autophagy by
these inhibitors. In addition to their ability to inhibit the Src signaling pathway, Si306
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and pro-Si306 are also inhibitors of P-glycoprotein, giving them the potential to overcome
the MDR phenotype of U87-TxR cells [20]. It is important to point out that although the
induction of autophagy may favor drug resistance, it does not override the P-glycoprotein
inhibitory effect of these agents.

Existing research recognizes the critical role of autophagy in drug resistance after
targeted therapy [25]. This has consequently prompted the application of autophagy in-
hibitors to revert the resistance and increase the efficacy of targeted therapeutics in vitro
and in vivo. Combination therapy with tyrosine kinase inhibitors and well-tested au-
tophagy inhibitors has helped reverse induced drug resistance in various cancer types
including breast, colorectal, liver, lung, prostate cancer, melanoma, and hematological
malignancies [25]. The suppression of autophagy using chloroquine (CQ), a blocking agent
of lysosomal metabolism and autophagic flux [37], was found to reverse resistance to
tyrosine kinase inhibitors such as erlotinib [38], ponatinib [10], saracatinib, and PP2 [4].
Enhanced cytotoxicity of certain drugs after late-stage autophagy inhibition has also been
demonstrated in glioblastoma. For instance, treatment with CQ triggered robust apoptosis
in glioblastoma cell lines after arsenic trioxide addition [39]. Similarly, Baf A1 was shown
to increase the cytotoxic effects of temozolomide in glioblastoma [40]. When it comes to
tyrosine kinase inhibitors, a study has shown that autophagy inhibition by CQ enhanced
the pro-apoptotic effects of vandetanib in U251 and U87 glioblastoma cells [41]. Similarly,
a combination of CQ and NVP-BEZ235, an inhibitor of the PI3K/mTOR pathway, led to
apoptosis in several glioblastoma cell lines in vitro and a growth reduction in glioblastoma
xenografts in vivo [42]. Pharmacological inhibition of autophagy with CQ also helped over-
come resistance to the BRAF inhibitor vemurafenib in glioblastoma cells [43]. However, the
modulation of autophagy to kill glioblastoma cells has involved the use of both inhibitors
and inducers of autophagy [44], so the function of autophagy in glioblastoma resistance
remains unclear.

Many efforts have been made in clinical trials to overcome drug resistance but without
significant success. The use of CQ was unfortunately accompanied by toxicity, which
limited its widespread use in oncology [45]. Similarly to CQ, Baf A1 also demonstrated
considerable anticancer potential in vitro [46,47], but its use in the clinic had limitations due
to toxicity [48]. Still, the inhibition of autophagy by Baf A1 in combination with different
anticancer drugs, including targeted therapeutics, is considered a promising therapeutic
approach. In this study, we showed that suppression of autophagy with Baf A1 enhanced
the efficacy of Si306 and its prodrug in glioblastoma cells. Our results suggest that Si306
and pro-Si306 do not induce significant apoptosis in U87 and MDR U87-TxR cells but rather
have a pronounced antiproliferative effect. This is likely due to the inhibitory effect of
STKIs on Src signaling pathway components that regulate cell growth and proliferation,
such as ERK, as reported in our previous study [19]. However, a combination of Baf A1 and
STKIs had a strong synergistic effect in U87 and U87-TxR glioblastoma cells, which was
evident through the effects on cellular metabolic activity, cell proliferation, and cell death
induction. During combination treatments, autophagic flux was disrupted as shown by
lysosomal deacidification, autophagosome accumulation, and increased levels of p62, an
LC3-binding protein degraded by autophagy [49]. Taken together, these findings indicate
that STKI-induced autophagy functions as an adaptive survival mechanism to overcome
the anticancer effects of STKIs on glioblastoma cells.

While autophagy plays a predominantly suppressive role in necrotic cell death, inhi-
bition of autophagy in apoptosis-impaired cells can promote necrotic cell death in vitro
and in vivo [50,51]. Due to their defective apoptosis, the modulation of autophagy in
glioblastoma may be an alternative way to trigger cell death. The inhibition of autophagy
not only improved the antiproliferative potential of Si306 and pro-Si306 but also triggered
substantial necrosis in U87 and U87-TxR cells. This result is consistent with our recent study,
in which we found that STKIs triggered necrotic cell death in patient-derived glioblastoma
cells [18]. It is important to highlight that STKI treatments caused significant necrosis in
primary cultures without inhibition of autophagy, which is not surprising given that pri-
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mary glioblastoma cells showed much greater sensitivity to Si306 and pro-Si306 compared
with the U87 and U87-TxR cell lines [18,19].

The existence of the necrotic core in glioblastoma may promote cell invasion into the
healthy surrounding tissue [52]. However, necrosis present in the glioblastoma tumor core
should be distinguished from necrosis resulting from therapy. The former is caused by the
lack of available oxygen, while the latter is caused by the action of the drug and can involve
different mechanisms. Treatment-induced necrosis may eliminate potentially invading cells
located closer to functional blood vessels, not only cells present in the tumor core, which
would make drug-induced necrosis in glioblastoma a favorable outcome.

5. Conclusions

In summary, our results suggest that Si306 and pro-Si306 induce autophagy and that the
use of autophagy inhibitors may increase the cytotoxicity of these pyrazolo[3,4-d]pyrimidine
derivatives. The combination of Si306 or its prodrug with Baf A1 may help overcome
MDR and lessen side effects by reducing drug doses due to the synergistic nature of
their interaction, giving these Src tyrosine kinase inhibitors good translational potential.
Considering their features as blood–brain barrier-penetrating drugs, Si306 and pro-Si306
could be good candidates for targeted therapy of glioblastoma. Therefore, the Src tyrosine
kinase inhibitors’ combination treatment strategy explored in this study undoubtedly
warrants further investigation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/life12101503/s1, Figure S1: Sensitivity of U87 and U87-TxR cell lines
to bafilomycin A1 after 48 h treatment; Figure S2: Synergistic type of interaction between Src tyrosine
kinase inhibitors and bafilomycin A1 in glioblastoma cells.
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