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Animal populations are increasingly forced to live in small residual natural or semi-
natural areas due to habitat loss and fragmentation. Here, the viability of populations 
is often compromised by intrinsic threat factors typical of small and isolated popula-
tions, such as inbreeding depression, genetic drift and environmental and demographic 
stochasticity. Under these circumstances, organisms may have low fitness due to inad-
equate physiological responses needed to face environmental challenges. However, few 
studies have investigated the relationship between habitat fragmentation and stress 
defences. In this study, we aimed to test whether an increase in the level of individual 
inbreeding produced an increase in the antioxidant system response. To this purpose, 
we genotyped 151 individuals of fire salamander Salamandra salamandra (Amphibia: 
Urodela) within five sampling populations, located in forest landscapes with different 
degree of fragmentation in northern Italy. For 113 individuals we also measured the 
glutathione-S-transferase (GST) and catalase (CAT) enzyme activity. Results showed 
a significant increase in individual GST activity for increasing levels of inbreeding, 
whereas no relationship was found for CAT. We also measured acetylcholinesterase to 
test the possible confounding effects of pesticides that might have occurred in frag-
mented landscapes with forests interspersed with agricultural areas. However, no dif-
ference in this enzyme activity was found among sampling populations. We argue 
that high levels of GST activity may be symptomatic of oxidative stress derived from 
inbreeding. An increased frequency of homozygous deleterious alleles due to inbreed-
ing may cause homeostatic alterations and trigger the expression of GST for protection 
against hydrogen peroxide reactive oxygen species. We suggest using GST as a bio-
marker for environmental stressors with great caution and not to underestimate that 
the sources of stress deriving from habitat fragmentation could lead to an unbalance in 
the oxidative status, possibly increasing population susceptibility to infectious diseases 
and, potentially, spillover events and zoonoses.
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Introduction

Reactive oxygen species (ROS) are by-products of aerobic 
mitochondrial metabolism (Kurutas 2015). The unbalance 
between ROS production and catabolism leads to an ‘oxi-
dative stress’, associated with a potential cytotoxic damage 
due to oxidation of macromolecules and impairment of 
their biological function (Sies 1986, Handy and Loscalzo 
2012, Halliwell and Gutteridge 2015). ROS overload can 
be induced by several immune stimuli and by physical (e.g. 
heath and drought, Vinagre et al. 2012, Schweizer et al. 2019) 
or chemical (e.g. pesticides and heavy metals; Rainio  et  al. 
2013, Aliko et al. 2018) environmental stressors. Activation 
of stress responses could also be promoted by genetic stress 
(Kristensen  et  al. 2005, Pedersen  et  al. 2008, Reed  et  al. 
2012, Zhao et al. 2019). Overexpression of Hsp70, a highly 
conserved heat-induced chaperone, occurs under inbreed-
ing conditions and is negatively associated with fitness traits 
(Kristensen  et  al. 2002, Pedersen  et  al. 2005, Cheng  et  al. 
2006, Okada et al. 2011).

Animal populations inhabiting fragmented landscapes are 
often divided into small and isolated sub-populations (Hanski 
and Simberloff 1997). Hostile matrices drastically reduce dis-
persal movements between habitat patches (Dondina  et  al. 
2018a, 2019) and make populations more vulnerable to 
inbreeding and genetic drift (Tischendorf and Fahrig 2000, 
Lowe and Allendorf 2010). The relationship between habi-
tat fragmentation and stress responses in wildlife has not 
been deeply investigated and previous studies have mainly 
focused on physiological responses to stress such as the stimu-
lation of glucocorticoid-mediated metabolism (Suorsa et al. 

2003, Martínez-Mota  et  al. 2007, Johnstone  et  al. 2012, 
Carlitz et al. 2016).

Amphibians are good model candidates for studying the 
effects of habitat fragmentation (Moore et al. 2011) because 
of their low dispersal ability (Schulte  et  al. 2007, Allentoft 
and O’Brien 2010) and high philopatry (Blaustein  et  al. 
1994). The fire salamander Salamandra salamandra with its 
strict ecological requirements, for both aquatic and terres-
trial phases (Schmidt  et  al. 2005) and low dispersal ability 
(Denoël 1996, Schulte et al. 2007) is a putative model spe-
cies to investigate physiological stresses related to inbreeding 
depression due to isolation of populations (Bani et al. 2015).

In this work we examined the activity of antioxidative 
enzymes in fire salamander. Our hypothesis was that antioxi-
dative responses could be triggered by genetic stress derived 
from inbreeding conditions due to fragmentation-induced 
isolation. We asked whether an increase in the individual 
activity of glutathione S-transferase (GST) and catalase 
(CAT), two enzymes promoting protection from oxidative 
stress, could be related to the level of inbreeding.

Methods

Study area, sampling design and collection of biological 
samples

The study area is the Prealpine belt of Lombardy (northern 
Italy, Fig. 1) where broad-leaved forests are fragmented due 
to urban sprawl, especially in the foothill area. In a previ-
ous work conducted by Pisa et al. (2015), a representative 

Figure 1. Study area in Lombardy Region (northern Italy). Cyan triangles: enzyme activity sampling locations (SL.e: number of sampling 
locations, and Ind.e: number of individuals sampled for enzyme activity analysis); red dots: genetic sampling locations (SL.g: number of 
sampling locations, and Ind.g: number of individuals sampled for genetic analysis); red squares: sampling populations (SPs); background 
colours: green, forest areas; light yellow, open areas; grey, urban areas; light blue, water bodies. Percentage of forest cover within the area of 
each sampling population: CF, 85%; BB, 48%; MV, 47%; FC, 81%; AG, 80%.
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genetic sample of fire salamander sub-populations (i.e. sam-
pling populations, SPs) was collected in forests with a dif-
ferent degree of fragmentation. In five SPs included in the 
study by Pisa et al. (2015) (Campo dei Fiori Regional Park 
[CF], Brughiera Briantea Local Park [BB], Montevecchia 
and Valle del Curone Regional Park [MV], Franciacorta 
Hills [FC], Alto Garda Regional Park [AG]; Fig. 1), we 
conducted another study aimed at assessing biomarker 
activities.

In order to combine the information from the two stud-
ies, we selected three to four sampling locations (SLs, 17 in 
total), where 16–57 individuals (151 in total) were sampled 
for genetic analyses, and three to 12 SLs (34 in total) where 
9–36 individuals (113 in total) were sampled for enzyme 
analyses. For details regarding the population genetic analy-
sis (e.g. storage, preservation, extraction and sequencing) see 
Pisa et al. (2015).

Tissue samples were obtained by cutting off the tip 
(approximately 3–4 mm) of the larvae’s tail and storing 
them in liquid nitrogen. Biological samples were collected 
throughout the year, from 2010 to 2013. As the larval stage 
(new-born or overwintering individuals) could affect the 
enzyme activities (Beaulieu and Costantini 2014), we noted 
this information for each individual sampled. To account for 
the possible effect of water quality on enzyme activities, in 
each SL, we measured water temperature, O2 saturation, pH, 
conductivity, total nitrogen and total phosphorus.

Salamander larvae were captured and handled under the 
permission of the Lombardy regional administration, P. 
T1.2009.0016990 decreed on 2009/09/16, and administra-
tive order 964 decreed on 2013/02/11 for 2013–2014.

Biochemical and genetic data

Fire salamander tissues were suspended and homogenised 
with nine volumes of ice cold Hepes–Tris 10 mM, pH 7.5, 
containing 50 mM mannitol and 1 mM dithiothreitol. The 
crude extract was then centrifuged at 15 000 × g (4°C) 
for 30 min and the supernatant was used to measure the 
enzyme activity of GST and CAT. Since pesticides could lead 
to significant oxidative stress responses (Ranjan and Jindal 
2022), we measured acetylcholinesterase (AChE) activity 
to account for their possible confounding effect. We used 
AChE to control the possible effects of pesticide pollution, 
as it is recognized to be more sensitive than GST and CAT 
as a biomarker (Pérez et al. 2004). For the AChE assay, tis-
sue was homogenised in 20 mM sodium phosphate, pH 7.4, 
containing 250 mM sucrose and 1% Triton X-100, and pro-
cessed as above. Enzymes were assayed spectrophotometri-
cally as described by Berra  et  al. (2004). Enzyme activities 
were performed in duplicate and expressed as specific activity 
(U mg−1) where protein concentration (mg ml−1) was deter-
mined according to Bradford (1976).

Using genotype data obtained from the 16 species-specific 
microsatellites of Pisa et al. (2015), we estimated the individ-
ual inbreeding coefficient (F) through the adegenet package 
(Jombart and Ahmed 2011) in R (<www.r-project.org>).

To investigate the effect of genetic and environmental fac-
tors on enzyme expressions, we associated each sampled indi-
vidual for which we measured enzyme activities with both 
water physicochemical parameters and the mean of inbreed-
ing (F) calculated over all genotyped individuals of the cor-
responding SL (or nearest genetic SL; maximum distance 
between enzyme and genetic SL less than 300 m).

Statistical analyses

We first tested for the causal effect of habitat fragmentation 
on inbreeding by correlating the inbreeding of each individual 
in each SL with the logarithm of the ecological distance with 
barriers to the nearest SL (i.e. intra-SP isolation), correct-
ing for Euclidean distance (Table S5 and S3 from Bani et al. 
2015, respectively). We tested for possible differences in the 
level of inbreeding among SPs, as well as differences in GST 
and CAT activity, using an ANOVA, based on the pairwise 
t-test in R (a square-root transformation was used to obtain a 
normal distribution of the measures). The same analysis was 
adopted to explore possible differences in the AChE activity 
among SPs.

We evaluated the effect of inbreeding on GST and 
CAT enzyme activity, controlling for water physicochemi-
cal parameters and larval stage, using a linear mixed model 
through the lme4 package (Bates et al. 2015) in R. Based on 
the structure of the dataset, we used the sampling location as 
a random factor. The values of all the covariates were scaled 
(Harrison  et  al. 2018). We performed a manual backward 
selection of covariates starting from the one with the lowest 
absolute t-value, until all covariates in the model were statisti-
cally significant (p < 0.05).

Results

We found a significant correlation between inbreeding of 
individuals and fragmentation-induced isolation (Pearson’s 
r = 0.24; p = 0.006). The ANOVA showed significantly dif-
ferent levels of inbreeding among SPs (F = 2.792; p = 0.029; 
Fig. 2a), highlighting how intra-SP isolation can affect 
inbreeding at the SL level (Bani et al. 2015). Indeed, AG and 
FC, located in a more continuous landscape, showed a sig-
nificantly lower level of inbreeding (all p < 0.05) than MV 
and BB, located in a more fragmented context. The level of 
inbreeding found in CF did not differ significantly from all 
other SPs.

The ANOVA also showed a significant difference in the 
GST activity among SPs (F = 20.62, p < 0.001; Fig. 2b), but 
not for AChE (Fig. 2c) and CAT (Fig. 2d). GST was sig-
nificantly lower in AG and FC than in all other SPs (all p < 
0.001). The highest GST activity was found in BB, which 
differed significantly from MV (p < 0.001).

Regression models showed a significant positive effect of 
inbreeding level on GST (marginal β = 0.049, p = 0.003; 
Fig. 3a) The GST model showed good explanatory per-
formance (conditional R2 0.709, marginal R2 0.370) 
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and, as expected, oxygen saturation (marginal β = 0.044, 
p = 0.009), total nitrogen (marginal β = −0.047, p = 0.006) 
and water temperature (marginal β = −0.049, p = 0.003) 
also played a significant role in GST activity. Conversely, 
neither the level of inbreeding (β = −0.148, p = 0.184; 
Fig. 3b) nor any of the environmental covariates affected 
the CAT activity (it should be noted that, in this case, the 
β-value indicated for the inbreeding refers to an estimate 
obtained from an univariate model after the complete step-
by-step removal of all environmental covariates that have 
never resulted significant).

Discussion

Animals exhibit high levels of GST and CAT as a defence 
against heavy metals or pesticides, to mediate biotransforma-
tion of xenobiotics and detoxification from hydrogen perox-
ide, respectively. Concomitant inhibition of AChE, which 
causes impairment of synaptic signalling, is a warning of pol-
lution risk (Limón-Pacheco and Gonsebatt 2009, Handy and 
Loscalzo 2012, Rudneva 2013, Gobi et al. 2018, Stara et al. 
2019a, b). The high GST values detected in our studies were 
probably not due to environmental pollutants, as we did not 

Figure 2. Boxplots of (a) inbreeding estimates (F), (b) GST glutathione S-transferase (GST), (c) acetylcholinesterase (AChE) and (d) cata-
lase (CAT) activities [U mg−1] in the sampling populations. Sample size in brackets.

Figure 3. Marginal effect of inbreeding on GST activity (a), and effect of inbreeding on CAT activity (b); see the text for the β values and 
their significance.
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observe concomitant high CAT and low AChE measure-
ments. We also exclude the possible confounding effect of sex 
in enzyme expression, since it is unlikely that our sample was 
strongly unbalanced with respect to sex as individuals were 
randomly sampled from breeding pools.

Our hypothesis is that inbreeding may have negatively 
impacted aerobic respiration metabolism, leading to ROS over-
production, through an accumulation of mDNA damage across 
generations (Beekman et al. 2014). We therefore suggest that high 
GST activity may be symptomatic of oxidative stress derived from 
inbreeding conditions and strongly encourage further assessment 
of a broader panel of oxidative biomarkers, including superoxide 
dismutase and glutathione peroxidase (both stimulated by cell 
structure damage), to provide more compelling evidence.

Noteworthy, some studies seem to support this hypothesis. 
A higher frequency in homozygous recessive deleterious alleles 
causes alterations in homeostasis and may lead to accumula-
tion of misfolded proteins (Kristensen et al. 2010, Hedrick and 
Garcia-Dorado 2016). Hsp70 has been suggested to work as a 
buffering system to counteract the increasing demand for chap-
erones in inbred flies (Kristensen  et  al. 2002, Pedersen  et  al. 
2005, Reed et al. 2012), where it is highly expressed even during 
exposure to a benign environment. Genome-wide gene expres-
sion and metabolomic analysis showing differential enrich-
ment for elements involved in metabolism and stress responses 
(Kristensen et al. 2005, Pedersen et al. 2008). Similar observa-
tions have been found in the Yesso scallop (Zhao et al. 2019) 
and the Pacific abalone (Cheng et al. 2006). Comparably, we 
speculate that GST overexpression might reflect dysregulated 
cellular activities due to genetic load and represent a protective 
mechanism to compensate for oxidative unbalance.

However, possible inter-individual discrepancies and the 
genetic background underlying inter-population differences 
must also be considered (Costantini et al. 2005, 2009, 2012, 
Careau et al. 2008, Samaras et al. 2016, Lallias et al. 2017, 
Raulo and Dantzer 2018, Wong et al. 2019). Therefore, we 
can also postulate the presence of a pool of individuals carry-
ing a highly expressed form of GST, whose increase in allele 
frequency is facilitated by conditions that favour inbreeding.

These two interpretations attempt to link GST activ-
ity and inbreeding levels from a genetic perspective. An 
additional third explanation can be argued, pointing more 
broadly to the ecological consequences of habitat fragmenta-
tion: small and isolated habitat fragments tend to reduce the 
size of home ranges, resulting in increased intra-specific com-
petition for resources or exacerbation of prey-predator inter-
actions. The effect of such stressful events would be reflected 
in increased GST activity.

All perspectives suggest the possibility that the negative 
effects of inbreeding-environment interactions may be medi-
ated by a disruption of the oxidative balance. Decreased 
adaptability to environmental changes would contribute to 
reduce fitness, providing an explanation for the phenomenon 
of inbreeding-depression, whose physiological and molecu-
lar mechanisms are not clearly understood (Ayroles  et  al. 
2009, Kristensen et al. 2010, Fox and Reed 2011, Reed et al. 
2012, Hedrick and Garcia-Dorado 2016). Indeed, inbred fly 

populations with higher levels of Hsp70 were less tolerant 
to heat stress (Pedersen et al. 2005, Cheng et al. 2006) and 
inbred males had testicular oxidative stress and a decreased 
fertility (Okada et al. 2011). In adult songbirds, the co-occur-
rence of inbreeding and disadvantageous postnatal conditions 
resulted in impaired oxidative status (de Boer et al. 2018).

As our data were collected in the field, we would like 
to stress that other environmental covariates, natural and 
anthropogenic, not considered in this study may have 
affected our results and we must therefore be cautious in their 
interpretation. However, given the significant implications of 
our findings from both a conservation and health perspective, 
this research should urgently stimulate further ad hoc stud-
ies aimed at confirming or disproving the effect of fragmen-
tation-induced isolation on antioxidant responses. Indeed, 
the lack of wild population studies focusing on inbreeding 
and oxidative stress currently makes it difficult to draw well-
defined conclusions.

Speculations

Our results provided suggestions that the antioxidant system 
may not be affected only by physical or chemical alterations. 
Therefore, the significance of some biomarkers canonically 
used in the evaluation of environmental stressors should be 
interpreted more carefully. However, to obtain a more com-
plete picture of the oxidative status of individuals threatened 
by habitat fragmentation, and to confirm our findings, further 
studies should include the measurement of more antioxidant 
parameters (especially SOD, glutathione-dependent system 
GSH-Px, GSH), as well as other aspects of oxidative stress, 
such as ROS concentrations and oxidative damage param-
eters. We emphasize the importance of new studies in this 
area, as our speculation is that inbreeding-induced oxidative 
stress may contribute to deteriorating health status of wildlife 
populations. Indeed, sources of stress can trigger immuno-
suppressive conditions (Sapolsky et al. 2000, Dhabhar 2009, 
Uren Webster et al. 2018) and the alteration of the oxidative 
status may favour infection diseases. Thus, fragmentation-
induced isolation can play a key role in increasing animals’ 
sensitivity to environmental stressors and their susceptibility 
to pathogen infection. In addition, fragmentation leads to a 
reassembly of local communities with new inter-species con-
tacts. Particular attention should be paid to these emerging 
interactions as they can generate spillover phenomena and, 
ultimately, zoonoses (Plowright et al. 2021).
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