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Abstract: Cell death plays an important role in diabetes-induced liver dysfunction. Ferroptosis is a
newly defined regulated cell death caused by iron-dependent lipid peroxidation. Our previous studies
have shown that high glucose and streptozotocin (STZ) cause β-cell death through ferroptosis and
that ferrostatin-1 (Fer-1), an inhibitor of ferroptosis, improves β-cell viability, islet morphology, and
function. This study was aimed to examine in vivo the involvement of ferroptosis in diabetes-related
pathological changes in the liver. For this purpose, male C57BL/6 mice, in which diabetes was induced
with STZ (40 mg/kg/5 consecutive days), were treated with Fer-1 (1 mg/kg, from day 1–21 day). It
was found that in diabetic mice Fer-1 improved serum levels of ALT and triglycerides and decreased
liver fibrosis, hepatocytes size, and binucleation. This improvement was due to the Fer-1-induced
attenuation of ferroptotic events in the liver of diabetic mice, such as accumulation of pro-oxidative
parameters (iron, lipofuscin, 4-HNE), decrease in expression level/activity of antioxidative defense-
related molecules (GPX4, Nrf2, xCT, GSH, GCL, HO-1, SOD), and HMGB1 translocation from nucleus
into cytosol. We concluded that ferroptosis contributes to diabetes-related pathological changes in
the liver and that the targeting of ferroptosis represents a promising approach in the management of
diabetes-induced liver injury.
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1. Introduction

Diabetes mellitus is a chronic metabolic disorder that affects many organs including
the liver [1]. Diabetes-related pathological changes in the liver are reflected in the alterations
of biochemical serum parameters and morphological and ultrastructural modifications in
the organ itself. These alterations in the liver start from fatty degeneration of liver cells and
extend to steatohepatitis and periportal fibrosis [2]. Furthermore, diabetes is accompanied
by profound alterations in liver size which can be the result of changes in cell number, cell
growth, and/or cell death [3,4].

Hepatocellular death is one of the most important contributing factors to diabetes-
related liver pathology and progression of liver damage [5]. Therefore, describing the types
of cell death and its underlying mechanisms must be in the research focus with the final
goal of targeted therapy for this serious diabetic complication. Commonly described types
of hepatocellular death in diabetes are apoptosis, autophagy, and necrosis [6–8]. Although
biochemically and morphologically different, the underlying mechanisms of all those types
of cell death involve common components: disturbances in redox/antioxidant and in-
flammatory status. Both of these develop due to the diabetes-related hyperglycemia and
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hyperlipidemia and are tightly interconnected. We have recently shown that changes in ox-
idative state in diabetes induce redox modification of high-mobility group box 1 (HMGB1),
an important driver of inflammation signaling. These modifications consequently deter-
mine the type of cell death and the cross-talk between apoptosis and autophagy in the
liver of diabetic animals [8]. We have also shown that melatonin exerts hepatoprotective
effects against pronecrotic events in the liver in experimental diabetes due to its antioxida-
tive properties [6]. These data, along with plenty of others, speak in favor of the benefit
of antioxidants supplementation in the diabetic states (reviewed in Johansen et al. [9]).
However, the success of the antioxidants’ treatment of diabetes in a clinical study is still
missing, suggesting the need for research focusing on the connection between oxidative
stress and diabetes-related pathological changes, in the final instance, cell death. In that
context, ferroptosis has been examined in the last few years.

Ferroptosis is a regulated, iron-dependent type of cell death whose backbone makes the
cysteine/glutamate exchanger (xCT)-glutathione (GSH)-glutathione peroxidase 4 (GPX4)-
membrane hydroperoxide axis [10]. As a cystine/glutamate transporter, xCT provides the
cells with cysteine, a building component of GSH that is “incorporated” into this molecule
in the reaction catalyzed by the rate-limiting enzyme glutamate-cysteine ligase (GCL).
Under homeostatic conditions, oxidative damages occurring at the level of membrane lipids
(thus forming lipid peroxides) are promptly removed by the specific membrane-associated
isoform of GPX, GPX4 which uses GSH as a reducing power. However, if this antioxidant
pathway becomes disturbed, membrane lipid peroxidation propagates throughout the
membrane, compromising its integrity and finally resulting in cell death. Starting from
the definition of ferroptosis, interest in its involvement in various pathological contexts is
growing. To date, it has been reported that ferroptosis is involved in the development of
diabetic metabolic complications, including renal injury [11–13], cognitive dysfunction [14],
osteoporosis [15], and endothelial [16] and retinal [17] injury. We have recently confirmed
the implication of ferroptosis in diabetes etiology, as well. Namely, we have found that
mimicking the diabetic environment in vitro induced β-cell death through ferroptosis [18].
Moreover, our in vivo pilot study showed that ferrostatin-1 (Fer-1), a commonly used
ferroptosis inhibitor, improved islet morphology and functional status along with the
decrease in accumulation of lipid peroxides.

Here, we aimed to reveal the involvement of ferroptosis in diabetes-induced patholog-
ical changes in the liver. For that purpose, we examined the effects of Fer-1 on ferroptosis-
related parameters in the liver of mice with streptozotocin (STZ)-induced diabetes. Fer-1 is
one of the most potent ferroptosis inhibitors that exhibits high efficacy as radical-trapping
antioxidants, with a particularly high potency in phospholipid bilayer membranes when
compared to other antioxidants [19]. Its metabolic actions in vivo were extensively ev-
idenced, and it is a well-established pharmacological tool for verification of ferropto-
sis [11,12,18,20–24].

2. Results
2.1. Fer-1 Attenuates Diabetes-Induced Liver Damage

As seen in Table 1, a statistically significant difference between the experimental
groups was found in the following parameters: body mass, glycaemia, serum ALT and
TG level. A Tukey post hoc test revealed that the body mass of diabetic animals was
significantly decreased compared to the control group (p < 0.05). Body mass of the Fer-1-
treated diabetic group was not significantly different from both the control and diabetic
group. Furthermore, at day 21 of the experiment, the mean serum glucose level was
statistically higher in diabetic animals in comparison to the control (p < 0.01). In diabetic
animals treated with Fer-1, glycemia was slightly lower than in the DM group but no
significant difference was noted when compared to both the DM and Ctrl group. Regarding
the hepatogram parameters, a significant elevation in the serum ALT level was found in the
diabetic group when compared to the control (p < 0.05). The treatment with Fer-1 decreased
ALT level compared to the DM group (p < 0.05) and restored it towards the control level.
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TG level was increased in the DM group (p < 0.05) in comparison to the control group
and was restored with Fer-1 treatment, being lower when compared with the DM group
(p < 0.05).

Table 1. Physical and biochemical characteristics of the experimental groups.

Ctrl DM DM + Fer-1 ANOVA

Body mass (g) 26.8 ± 0.9 23.0 ± 0.8 * 23.3 ± 1.4 F(2) = 4.17
p = 0.0300

Blood glucose
(mmol/L) 9.0 ± 0.4 16.8 ± 1.7 ** 13.9 ± 1.5 F(2) = 7.34

p = 0.0043

Serum ALT
(U/L) 57.2 ± 5.6 76.2 ± 2.5 * 61.1 ± 5.2 # F(2) = 4.08

p = 0.0472

Serum TG
(mmol/L) 1.548 ± 0.02 1.7 ± 0.05 * 1.5 ± 0.05 # F(2) = 7.78

p = 0.0068
Ctrl—control, DM—diabetic, DM + Fer-1—diabetic + Fer-1-treated group. Data are shown as mean ± SEM.
Statistical significance: compared with the Ctrl group (*), * p < 0.05, ** p < 0.01; DM vs. DM + Fer-1 comparison (#),
# p < 0.05.

Histological characteristics of the liver of control and treated mice are presented
in Figure 1a. In contrast to the control liver, signs of liver damage including extensive
hepatocyte vacuolization, fibrosis, sinusoidal dilation, and immune cell infiltration were
observed in diabetic animals. In the DM + Fer-1 group, the above-stated signs of injury
were markedly reduced. In AZAN trichrome-stained tissue of diabetic mice, fibrosis was
demonstrated as intensive blue staining of collagen around the majority of the central
veins and spreading in the perivenous parenchyma. In addition, fibrous expansion of
most portal areas with occasional portal-portal and portal-central bridging was observed.
Fer-1 treatment reduced liver fibrosis, and collagen depositions were mainly observed in
portal areas and in the form of short fibrous septa. These morphological observations were
confirmed by stereological analysis since statistical significance among the experimental
groups was noted in Vv of hepatic fibrosis (Figure 1b). In comparison with the control, Vv
of hepatic fibrosis was increased (p < 0.001) in the DM group. By contrast, Fer-1 treatment
decreased the fibrotic area compared to diabetic animals (p < 0.001), although it still
remained increased compared with the control group (p < 0.01). There was no difference in
Vv of sinusoids between the control, DM, and DM + Fer-1 groups. The analysis of the Vv of
hepatocytes revealed statistical significance among the groups and a post hoc test revealed
that it decreased in the DM group compared to the control (p < 0.001). Fer-1 treatment
returned the Vv of hepatocytes to the control level, thus, increasing it in comparison to the
DM group (p < 0.001).

Regarding hepatocytes’ size (measured as nucleated profile surface area), a statistically
significant difference was noted among the groups, and an increase was found in the DM
group compared to the control (p < 0.05) (Figure 1c). ANOVA analysis also revealed statisti-
cally significant differences between the groups in the ratios of binuclear cells (Figure 1d).
Post hoc tests showed no difference between the control and DM group, although an
increasing trend of binucleation was noticed in the DM group. By contrast, Fer-1 treatment
decreased the size of hepatocytes towards the control level and the proportion of binuclear
hepatocytes compared to the DM group (p < 0.05).
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Figure 1. Microscopic analysis of liver tissue of control (Ctrl), diabetic (DM), and diabetic Fer-1-
treated (DM + Fer-1) animals. (a) Hematoxylin and eosin (H&E) and AZAN trichrome staining; scale
bars: H&E—50 µm, AZAN—100 µm, inf—infiltration. (b) Volume density of hepatocytes, sinusoids,
and fibrosis. (c) Hepatocytes profile area. (d) Proportion of binuclear hepatocytes. Values presented
as means ± SEM. Statistical significance: compared with the Ctrl group (*), * p < 0.05, ** p < 0.01;
*** p < 0.001; DM vs. DM + Fer-1 comparison (#), # p < 0.05; ### p < 0.001.

2.2. Fer-1 Weakens Lipid Peroxidation in Diabetic Liver

As expected, we have demonstrated signs of increased hepatic lipid peroxidation
including the increased iron deposition, and the accumulation of lipofuscin and 4-HNE, the
second product of lipid peroxidation (Figure 2a). While immunopositivity for 4-HNE was
diffuse, homogeneously distributed among hepatocytes in the control tissue, microscopic
observation revealed numerous concentrated areas of 4-HNE accumulation in the peri-
portal and pericentral regions of the livers of the DM group. A similar pattern of 4-HNE
localization was noticed in the DM + Fer-1 group, however, only some areas with increased
4-HNE positivity were noticed throughout the hepatic lobules. On the contrary, Fer-1
decreased the levels of these parameters towards control levels, including the accumulation
of iron, lipofuscin, and 4-HNE. GPX4 immunopositivity showed an opposite pattern of
changes compared to those parameters, reflecting lipid peroxide accumulation (Figure 2b,c).
Namely, a significant difference among the experimental groups was noted in GPX4 ex-
pression at the tissue level, and post hoc tests revealed that its expression was decreased
in diabetes (p < 0.001), while Fer-1 treatment alleviated this effect of DM, although it still
remained below the control level (p < 0.001) (Figure 2c). A similar pattern was found after
the counting of GPX4-positive nuclei ratio (Figure 2c) where significant difference between
the groups was also noted, while the post hoc test revealed a decrease in the DM group
in comparison to the control (p < 0.001) and an increase in the DM + Fer-1 group when
compared to the DM group (p < 0.001). Additionally, statistical significance in the activity
of total SOD (Figure 2d) and level of the pACC (Figure 2e) were also demonstrated and
post hoc tests revealed decreases in the DM group compared to the control (p < 0.05), as



Int. J. Mol. Sci. 2022, 23, 9309 5 of 19

well as the increase for both parameters in DM + Fer-1 group compared to the DM group
(p < 0.01).

Figure 2. Lipid peroxidation-related and antioxidative parameters in liver tissue in control (Ctrl), dia-
betic (DM), and diabetic Fer-1-treated (DM + Fer-1) animals. (a) DAB-enhanced Pearls’ iron staining
demonstration of ferrous ions accumulation (arrows); Sudan III stain-detected lipofuscin (arrows) and
immunohistochemical detection of 4-HNE; scale bars: iron and 4-HNE—50 µm, lipofuscin—20 µm.
(b) Immunohistochemical detection of GPX4; scale bars: 50 µm and (c) quantification of tissue and
nuclear GPX4 immunopositivity; cv—centrilobular vein, pv—portal vein. (d) Total SOD activity.
(e) Protein content of pACC; β-actin serves as a protein-loading control; blots represent three inde-
pendent experiments. Values presented as means ± SEM. Statistical significance: compared with the
Ctrl group (*), * p < 0.05, *** p < 0.001; DM vs. DM + Fer-1 comparison (#), ## p < 0.01; ### p < 0.001.

2.3. Fer-1 Improves Diabetes-Induced Attenuation of GSH-Related Antioxidant Defense in
the Liver

Changes in the GSH content and activities of GSH-related antioxidative enzymes are
summarized in Figure 3a. A significant difference among the groups in the content of
GSH and activity of GPX was found in the liver (Figure 3a), being decreased in the DM
group when compared to the control (p < 0.05). Both GSH content and GPX activity in the
DM + Fer-1 group returned to the control level and increased significantly compared to the
DM group (Figure 3a). Although there were no significant changes in GST activity between
the groups, there was a decreasing trend in the DM group compared to control, which
disappeared in the DM + Fer-1 group. GR activity in the liver was also significantly different
between the groups, and a post hoc test revealed that Fer-1 treatment of diabetic animals
increased activity of GR compared with both the control and diabetic group (p < 0.01 and
p < 0.05, respectively).

Figure 3b shows the protein content of GCL, i.e., its catalytic subunit (GCLC) and
its modifier (GCLM) subunit. While there was no significant difference in GCLC protein
content, GCLM protein level was significantly different between the groups. Namely, it was
decreased in the diabetic group compared to the control (p < 0.05), while Fer-1 treatment
returned it to the control level, thus, increasing it in comparison to the DM group (p < 0.05).
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Figure 3. GSH and GSH-related enzymes in the liver of control (Ctrl), diabetic (DM), and diabetic Fer-
1-treated (DM + Fer-1) animals. (a) Content of GSH and activities of GPX, GST, and GR. (b) Protein
content of GCLC and GCLM; β-actin serves as a protein-loading control; blots represent three
independent experiments. Values presented as means ± SEM. Statistical significance: compared with
the Ctrl group (*), * p < 0.05, ** p < 0.01; DM vs. DM + Fer-1 comparison (#), # p < 0.05.

2.4. Fer-1 Re-Establishes Diabetes-Induced Disturbances in Hepatic Nrf2 Signaling

Strong Nrf2 cytoplasmic and nuclear immunopositivity of hepatocytes was noted in
the liver of control animals (Figure 4). In addition, a lobular zonation in its expression was
noted (Figure 4d), since the strongest immunopositivity of nuclei was demonstrated in
the pericentral (Z3) zone when compared to the periportal (Z1) zone of the control group
(p < 0.001). This zonation difference declines in the DM group, while Fer-1 treatment returns
it toward control level (p < 0.05). Comparison of nuclear Nrf2 immunopositivity in both Z1
and Z3 revealed statistically significant differences among the groups (Figure 4c). Nuclear
Nrf2 immunopositivity of hepatocytes decreased in the lobular zones of the DM group.
This is especially notable in the Z3 lobular zone where statistical significance in comparison
to the control was noted (p < 0.001). Fer-1 treatment of diabetic animals returned Nrf2
nuclear immunopositivity to control level (in Z3, p < 0.001 in comparison to DM group)
and even increased it (in Z1) above control and DM level (p < 0.01).
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Figure 4. Immunohistochemistry of Nrf2 in liver tissue of control (Ctrl), diabetic (DM), and diabetic
Fer-1-treated (DM + Fer-1) animals. (a) Schematic overview of structural zonation of the liver.
(b) Immunohistochemical detection of Nrf2 expression across the liver zones; scale bars—50 µm.
(c) Proportion of Nrf2 positive nuclei between the groups in Z1 and Z3. (d) Proportion of Nrf2
positive nuclei between the zones in control, DM, and DM + Fer-1 groups. Values presented as
means ± SEM. Statistical significance: compared with the Ctrl group (*), ** p < 0.01; *** p < 0.001;
DM vs. DM + Fer-1 comparison (#), ## p < 0.01; ### p < 0.001. Z1 vs. Z3 comparison (•), • p < 0.05,
••• p < 0.001.

In addition to diabetes-related changes in the expression of some ferroptosis-related
downstream targets presented above (GPX4 and SOD in Figure 2 and GCLM in Figure 3),
changes in the expression of xCT and HO-1 are presented at Figure 5. Compared to the
control, the lowest xCT and HO-1 immunopositivity was found in the hepatocytes of
diabetic animals (Figure 5a), which were restored in the DM + Fer-1 group. These results
were confirmed by Western blot (Figure 5b) since significant differences were demonstrated



Int. J. Mol. Sci. 2022, 23, 9309 8 of 19

for both the xCT and HO-1 protein content among the experimental groups. Post hoc tests
revealed the significant decrease in xCT (p < 0.01) and HO-1 (p < 0.01) in the DM group and
significant increase after Fer-1 treatment (p < 0.01 and p < 0.05, respectively, in comparison
to the DM group). Additionally, lobular zonation of xCT immunopositivity was noted in
both the control and DM + Fer-1 groups, since the highest immunoreactivity was observed
around the portal and the centrilobular vein, i.e., in the periportal (Z1) and pericentral
area (Z3).

Figure 5. Detection of xCT and HO-1 (a) immunohistochemical localization and (b) protein expression
in the liver tissue of control (Ctrl), diabetic (DM), and diabetic Fer-1-treated (DM + Fer-1) animals.
Scale bars: 50 µm; cv—centrilobular vein, pv—portal vein. Values presented as means ± SEM.
Statistical significance: compared with the Ctrl group (*), ** p < 0.01. DM vs. DM + Fer-1 comparison
(#), # p < 0.05, ## p < 0.01.

2.5. Fer-1 Abrogates Diabetes-Induced Activation of HMGB1 and Increase in
Inflammatory Cytokines

Figure 6 presents the results of immunohistochemical detection of HMGB1 (a, b, and c)
and analysis of protein content of TNF-α (d) and IL-6 (e). As it has been observed, HMGB1
is mostly localized in the nuclei of hepatocytes in the liver of control animals. Diabetes
led to an increase in HMGB1 tissue immunopositivity since strong/moderate HMGB1
immunopositivity is detectable in the cytoplasm of many hepatocytes. However, nuclear
HMGB1 positivity of these cells declined in the DM group. Fer-1 treatment of diabetic mice
re-established nuclear translocation of this protein in hepatocytes and decreased overall
tissue and nuclear HMGB1 immunopositivity. Microscopic observations were confirmed
quantitatively since statistically significant differences in overall tissue and nuclear HMGB1
immunopositivity were noted among the experimental groups (Figure 6b,c). Compared to
the control, there was a statistically significant increase in liver immunopositivity of the
DM animals, while the percentage of HMGB1 positive nuclei decreased (p < 0.001, both).
Fer-1 treatment restored the percentage of HMGB1 positive nuclei to the control level,
thus increasing it compared to the diabetic group (p < 0.001). Protein content of TNF-α
(Figure 6d) was significantly increased in the DM group compared to the control (p < 0.001),
while Fer-1 treatment restored it to the control and decreased it compared to the DM group
(p < 0.001). Although the changes in the amount of IL-6 protein are in the same direction
as TNF-α, they only showed a trend of increase in the DM and a trend of decrease in the
diabetic group treated with Fer-1 (Figure 6e).
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Figure 6. HMGB1, TNF-α, and IL-6 in liver tissue of control (Ctrl), diabetic (DM), and diabetic Fer-
1-treated (DM + Fer-1) animals. (a) Immunohistochemical detection of HMGB1; scale bars—50 µm.
(b) Quantification of tissue and (c) nuclear immunopositivity of HMGB1. Protein level of TNF-α (d)
and IL-6 (e) measured by ELISA. Values presented as means± SEM. Statistical significance: compared
with the Ctrl group (*), *** p < 0.001. DM vs. DM + Fer-1 comparison (#), ### p < 0.001.

3. Discussion

Cell death assumes a central role in the etiology of most liver pathologies, including
those that are diabetes-related [5]. We described, here, the ferroptotic phenotype in diabetic
liver. All observed ferroptotic events: (i) increased accumulation of pro-oxidative (such as
iron, lipofuscin, and 4-HNE) and pro-inflammatory (HMGB1) markers and (ii) decrease in
antioxidative defense-related molecules (Nrf2, xCT, GSH, GPX4, GCL, HO-1, SOD) in the
liver of diabetic animals were diminished after the treatment with ferroptosis inhibitor, Fer-
1. Such beneficial effects of Fer-1 were reflected in the normalization of diabetes-induced
alterations in the liver metabolism (ALT and TG) and structure (less fibrosis, unaltered
hepatocytes size). Those changes induced by Fer-1 in the liver of diabetic mice were
discussed below.

The first indicators of the benefit of Fer-1 treatment on the diabetic liver were recover-
ies of biochemical markers and histology/morphology of the liver itself. The fact that Fer-1
decreased the diabetes-induced increase in the level of ALT and TG suggests that ferroptosis
indeed contributes to diabetes-related metabolic/functional disturbances in the liver. These
changes are further supported by histological analyses. Extensive deposition of collagen
inside the extracellular matrix (fibrosis), a common indicator of liver damage in diabetic
conditions [25–27], was reversed by Fer-1 treatment. Along with this, Fer-1 normalized
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hepatocytes size, morphology, and decreased the number of binuclear cells in the diabetic
liver, a phenomenon which is indicative of liver regeneration [28]. Enlarged hepatocyte
size in the diabetic liver could be a consequence of hepatocytes’ ballooning and/or poly-
ploidization which are both indicative of liver cell degeneration [26,29] observed in the
conditions including iron and copper overload [30] and oxidative stress [31].

Oxidative stress is the crossing link between diabetes-induced systemic metabolic
disturbances (hyperglycemia, hyperlipidemia, inflammation) and pathological changes,
functional and morphological, in many tissues/organs, including liver [32]. An increased
level in the markers of oxidative stress, including the markers of lipid peroxidation has
been repeatedly shown in the diabetic liver [32,33] and is recognized as a causative factor
of hepatocellular death [34]. The results of the present study, showing that Fer-1 reduced
the diabetes-induced increase in the level of 4-HNE, a commonly studied product of lipid
peroxidation, put the process of accumulation of lipid peroxides in the diabetic liver in the
context of ferroptosis. Along with this, Fer-1 abolished the decrease in total SOD activity in
diabetes and returned it to the control level. As is already known, an increased oxidation
of poly-unsaturated fatty acids containing phospholipids (PUFAs) and accumulation of
lipid peroxides represents the main event in ferroptosis [10]. It results from a disbalance in
the production of lipid peroxides and their removal. Nonenzymatic production of lipid
peroxides goes through the Fenton reaction [35] involving the interaction of ferrous iron
(Fe2+) with H2O2. The diabetic state is characterized by the intracellular iron deposition
that has been correlated with the diabetes-induced pathological changes in many tissues,
including liver [36]. Since iron represents the key catalyst of the Fenton reaction and
consequent lipid peroxidation, it is not surprising that diabetes-related iron deposition may
lead to ferroptosis. Our study confirms that hypothesis since Fer-1 treatment decreased
the diabetes-induced increase in iron content in the liver. One more parameter speaks in
favor of iron-dependent oxidative damage in diabetic liver. We have found that lipofuscin
showed a similar pattern of changes as the iron content and that its formation could be
related to ferroptosis in the diabetic liver, as its accumulation in diabetes was diminished
by Fer-1. This is in line with our recently published data where we characterized the
relationship between the lipofuscin accumulation and ferroptosis in β-cells under the
diabetogenic conditions in vitro [18].

Along with those parameters of lipid peroxidation, we also found that Fer-1 induced
restitution of diabetes-induced decrease in the level of pACC. ACC is a central enzyme
involved in fatty acid biosynthesis, including long chain PUFAs and, thus, plays a context-
dependent role in promoting ferroptosis. It has been shown that the inhibition of ACC
blocks both erastin- and ras-selective lethal small molecule 3 (RSL3)-induced ferroptosis
in mouse embryonic fibroblasts [37]. Inhibition of ACC is mediated by AMPK-induced
phosphorylation that leads to suppression of the de novo lipogenesis pathway and, thus,
inhibition of ferroptosis [38]. Targeted inhibition of ACC has been suggested as a thera-
peutic strategy in several liver disorders [39]. Our results suggest that Fer-1 antiferroptotic
effects in the liver of diabetic animals involve such mechanisms.

On the other hand, the removal of lipid peroxides is catalyzed by a specific membrane-
associated isoform of GPX, GPX4. GPX4 has been considered a primary enzymatic defense
mechanism against reactive oxygen species (ROS)-mediated membrane peroxides and
consequently against ferroptosis, due to its strong association with membranes and its close
proximity to phospholipid peroxide substrates [40–42]. Specifically for the liver, Conrad’s
group [43] revealed GPX4 as critical for hepatocyte survival and proper liver function,
and that vitamin E can compensate for its loss by protecting cells against deleterious lipid
peroxidation and cell death in various pathological contexts. We have found, here, that
Fer-1 treatment not only compensated for the decrease in GPX4 expression in diabetic
liver but also improved the GPX4-mediated lipid peroxides removal. Namely, we have
found that Fer-1 restored the GPX4 hepatic expression that was decreased in diabetes and
abolished the diabetes-induced decrease in total GPX activity. Interestingly, our immunohis-
tochemical analysis additionally showed strong nuclear localization of GPX4 in the control
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group, which was decreased in diabetes and normalized by Fer-1 treatment. GPX4 has been
reported to be localized in nuclear, mitochondrial, and/or cytoplasmic cellular compart-
ments [44]. Nuclear GPX4 can inhibit the activation of 5-lipoxygenase, thus, suppressing
the enzymatic production of lipid peroxides in this compartment [45]. Additionally, GPX4
in the nucleus may protect DNA integrity by preventing lipid peroxidation-induced DNA
damage, e.g., etheno-nucleotide adducts, and via direct repair of oxidatively damaged
DNA adducts such as thymine hydroperoxide [46,47]. The nuclear localization of GPX4,
presented in this study, supports the significance of this aspect of its action in the protection
of hepatocytes, at least against diabetogenic damage.

In addition to GPX4, Fer-1 restored the activity of GST which showed a decreasing
trend in diabetes. It is well-known that GST is one of the three main 4-HNE-metabolizing
enzymes, among aldehyde dehydrogenase and alcohol dehydrogenase [48]. So, the protec-
tive effects of Fer-1 in the diabetic liver should come either from its direct lipid peroxide
scavenging activity or from its indirect effect on the stimulation of the enzymatic removal
of lipid peroxides (GPX4) or of their secondary products, such as 4-HNE (GST).

The main regulator of redox homeostasis and cellular defense against injury is Nrf2 [49,50].
After its activation, which implies its nuclear translocation, Nrf2 endows cells with protec-
tive mechanisms against oxidative stress via transcriptional activation of a series of detoxifi-
cation genes, such as phase II detoxification enzymes HO-1 and GST and antioxidant-related
molecules (xCT, GCL, GPX, SOD) [51–53]. Impaired Nrf2 signaling in diabetic conditions
has been reported extensively [8,18,54,55]. We have recently reported that impaired Nrf2
signaling led to β-cell ferroptosis in diabetic conditions in vitro and in vivo [18]. Addi-
tionally, we described that the impaired Nrf2 signaling is an important part of the overall
inflammatory and oxidative state in the diabetic liver [36]. The results from the present
study suggest that compromised Nrf2 signaling is also an important part of hepatocytes’ fer-
roptotic phenotype in diabetes since Fer-1 treatment restored the diabetes-induced decrease
in Nrf2 nuclear immunopositivity i.e., its inactivation.

Moreover, here, we noticed the differential expression of Nrf2 across the liver zones.
Namely, the highest level of Nrf2 expression noticed in the pericentral zones in both the
control and Fer-1-treated groups could be a consequence of more hypoxic and nutrient-
sparse conditions in this tissue area [56]. The protective role of Nrf2 in hypoxic conditions
is already recognized in several cell types, particularly liver and kidney cells [57,58]. It is
known that metabolic liver zonation is important for normal liver function, as well as that
liver cells differentially express zone-specific genes [59]. In addition, it has been shown
that some liver diseases have zonal preferences, while others disrupt physiological liver
zonation, which may contribute to disease progression [60]. Taking this into account along
with disruption of the liver zonal pattern of Nrf2 expression in the diabetic group and its
restitution by Fer-1, it might be supposed that spatial expression of Nrf2 is an important
prerequisite for the normal liver function and that this aspect of understanding the role of
Nrf2 in diabetes pathology must be further taken into consideration.

Nrf2 is the key regulator of the molecules that make the core of ferroptotic signaling—
xCT/GSH/GPX4. We observed that, along with the reduced Nrf2 activation in diabetes,
there was also a decrease in the content of GSH and protein expression of xCT, GCLM,
and GPX4 (seen as a decrease in overall tissue immunopositivity and protein content).
GCLM represents the modifier subunit of GCL, a rate-limiting enzyme for GSH synthesis.
GCLM binds to the catalytic subunit (GCLC) and determines the enzyme activity and,
thus, GSH level [61]. Results from mice lacking GCLM clearly demonstrate that it has a
limiting role in maintaining cellular GSH levels in many tissues, including liver [62,63]. Our
results suggest that GCLM could be the limiting factor for GSH synthesis in the diabetic
liver since the expression of this subunit, but not the catalytic, decreased in diabetes. The
restitution of Nrf2 hepatic activity by the Fer-1 treatment is accompanied by the recovery of
the examined ferroptosis-related Nrf2 targets in the liver, thus supporting our hypothesis
about the importance of Nrf2 signaling in the determination of hepatocytes’ ferroptotic
phenotype in diabetes.
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Among those parameters tightly related to ferroptosis, we have examined one more
target of Nrf2 signaling, HO-1. The Nrf2/HO-1 signaling pathway was recently described
to be involved in the antagonizing oxidative stress-related damage in multiple organs and
various pathological injuries [64]. There is also growing data that put the activation of the
Nrf2/HO-1 pathway in the antiferroptotic context in various tissues [15,65]. The present
study suggests the role of this pathway in the protection of the liver from ferroptosis in
diabetic conditions since HO-1 protein expression and immunopositivity have a similar
pattern of changes as Nrf2 in the examined conditions (decreased in diabetes and restituted
after the Fer-1 treatment).

Along with these pro-oxidative events, pro-inflammatory components play an impor-
tant role in the pathology of the diabetic liver. In that context, HMGB1 has been recognized
as important in controlling the fate of liver cells as well as in determining the type of
cell death (apoptosis or autophagy) in the progression of liver damage in diabetes [8].
Switching from its physiological function in the nucleus [66] to its pathological impact
(inflammation and cell death) in various pathological conditions, including diabetes, in-
volves its translocation from the nucleus to the cytoplasm, and further to extracellular
space [67]. We and others have shown recently that the protein level of HMGB1 is signif-
icantly increased in the serum and liver of both diabetic animals and patients [6,68]. In
the present study, we observed that Fer-1 treatment reduced diabetes-induced nuclear-to-
cytoplasmic translocation of HMGB1, and it increased overall expression. Such inhibition
of diabetes-driven activation of HMGB1 by Fer-1 coincided with the reduction of all the
examined ferroptosis events in the liver, strongly suggesting the involvement of HMGB1 in
the regulation of diabetes-induced liver ferroptosis. Recently, HMGB1 emerged as a novel
regulator of ferroptosis in several pathological contexts [69–71]. According to Ye et al. [71],
HMGB1 is directly involved in the positive regulation and maintenance of ferroptosis in
erastin-treated HL-60/NRAS Q61L cells, possibly through regulation of iron-mediated
lipid ROS production. Findings from the present study highlight for the first time the
involvement of HMGB1 in the regulation of ferroptosis in the liver of diabetic animals and
the potential of HMGB1 inhibition in the context of liver protection from this form of cell
death in diabetes.

It seems likely that ferroptosis in the liver of diabetic animals is accompanied also with
the increase in level of the inflammatory cytokines (primarily TNF-α), since Fer-1 treatment
abolishes the diabetes-induced increase in the level of this commonly studied marker of
inflammation in the liver [72]. In addition to HMGB1, these results confirm the connection
between inflammatory events and ferroptosis in diabetic liver.

4. Materials and Methods
4.1. Experimental Design

Male C57BL/6 mice were housed with unlimited access to standard chow and tap
water at the animal facility at the Institute for Biological Research “Sinisa Stankovic”.
All experimental procedures were approved by the Ethic Committee at the Institute for
Biological Research “Sinisa Stankovic” (App. No 323-37-11487/2021-05) in accordance
with the Directive 2010/63/EU. The 8–10 weeks old male C57BL/6 mice were divided
into three groups (n = 8): diabetic (DM), diabetic + Fer-1-treated (DM + Fer-1), and control
(Ctrl). Diabetes was induced using multiple low doses of STZ (40 mg/kg bm; S0130,
Sigma-Aldrich, St. Louis, MI, USA), which were given intraperitoneally for 5 consecutive
days (day 1–5) as performed previously [18]. Fer-1, 1 mg/kg bm (SML 0583, Sigma-
Aldrich, St. Louis, MI, USA), was dissolved in dimethyl sulfoxide (DMSO, D8418, Sigma-
Aldrich, St. Louis, MI, USA) first and then diluted in phosphate-buffered saline (PBS), and
administered intraperitoneally, starting from the first dose of STZ for 21 days in total (from
day 1–21). To avoid possible interference, the injections of STZ and Fer-1 were given 3 h
apart. The control group received the diluents in equal volume. On day 22, 24 h after the
last Fer-1 dose, all animals were euthanized between 9:00 and 9:30 AM; blood and liver
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were collected and routinely prepared for biochemical, microscopic, immunoblot and/or
spectrophotometric analysis.

4.2. Biochemical Serum Analysis

Immediately after the blood collection, the animals were euthanized, and the liver per-
fused with saline. Serum was prepared [73] and stored at −80 ◦C until analysis. Serum glu-
cose level was determined commercially in the biochemical laboratory Beograd (Belgrade,
Serbia). Hepatogram, i.e., content of alanine transaminase (ALT) and triglycerides (TG)
in serum were measured spectrophotometrically (Shimadzu UV-160 spectrophotometer,
Kyoto, Japan) using an ALT and TG colorimetric assay kit according to the manufacturer’s
instructions (ALT-250; TRG-200, respectively, Bioanalytica, Belgrade, Serbia).

4.3. Microscopic Examination

Immediately after dissection, samples of the liver’s median lobe were cut and fixed in
10% formaldehyde at 4 ◦C overnight, processed routinely for embedding in paraffin blocks
and cut into 5 µm thin sections for microscopic analyses.

4.3.1. Histological, Morphometric, and Stereological Analyses

For routine histological analysis, as well as for the morphometric and stereological
analyses (ratio of mono/binuclear hepatocytes, hepatocyte’s nucleated profile area) liver
sections were routinely stained with hematoxylin and eosin. Furthermore, AZAN trichrome
staining of the liver was performed to determine the volume density (Vv) of the major
hepatic tissue components (sinusoids, hepatocytes, and fibrotic area) [74]. The stage of
fibrosis, a reflection of the extensive collagen deposition, is visible as increased blue staining
of the interstitium [75]. The sections were examined with the Leica DMLB microscope
(Leica Microsystems, Wetzlar, Germany). For all these analyses, 50 randomly selected
micrographs per group were used, with an objective lens magnification of ×40.

Volume densities (Vv) were determined using Vv = Px/Pt, where Px is the number of
points hitting the structure and Pt is the number of total points hitting the tissue [76]. The
Vv values were expressed as percentage fractions.

4.3.2. Iron Staining

The intracellular presence of nonheme iron (Fe(III)) was evaluated by 3,3′-diaminobenzidine
(DAB)-enhanced Pearl’s iron staining [77]. Briefly, sections were deparaffinized and de-
hydrated routinely and incubated in Prussian blue solution for 8 h. After washing, tissue
was incubated in DAB chromogen solution (0.06% H2O2 in 0.05% DAB in PBS for 10 min),
while counterstaining was carried out with hematoxylin. As a positive control, sections of
the spleen were used. The sections were washed, rehydrated, mounted in dibutyl phthalate
polystyrene xylene (DPX) (06522, Sigma-Aldrich, St. Louis, MI, USA), and examined with a
Leica DMLB microscope. The cells exhibiting brown particles were considered iron positive.

4.3.3. Lipofuscin Detection

After deparaffinization and rehydration, liver sections were stained with 60% Sudan
III dye solution in water (0.5 g in 100 mL of 99% isopropanol). After 15 min, slides were
washed, counterstained with Mayer’s hematoxylin, mounted in DPX, and examined with a
Leica DMLB microscope. The cells exhibiting dark intracellular particles were considered
lipofuscin-positive, and the percentage of positive cells was determined within 50 randomly
selected micrographs per experimental group.

4.3.4. Immunohistochemistry

To detect the expression and localization of NF-E2-related factor 2 (Nrf2), GPX4, xCT,
heme oxygenase 1 (HO-1), and HMGB1, as well the formation of 4-hydroxynonenal (4-
HNE)-protein adducts in the liver, immunohistochemistry was performed. The 5 µm thick
liver sections were deparaffinized by xylene and rehydrated in graded ethanol. Blocking
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of endogenous peroxidase activity, antigen retrieval, and blocking of nonspecific binding
with normal goat serum (1:10, K 3408, Dako liquid DAB+ Substrate Chromogen substrate
System, Carpinteria, CA, USA) were performed as we had implemented previously. Sam-
ples were then incubated overnight at 4 ◦C with following rabbit primary antibodies:
anti-4-HNE (ab46545, 1:500), anti-Nrf2 (ab31163, 1:100), anti-GPX4 (ab125066, 1:100), anti-
HO-1 (ab13243, 1 µg/mL), anti-HMGB1 (ab18256, 1 µg/mL), all purchased from Abcam
(Cambridge, UK) and goat anti-xCT (sc79360, 1:100), purchased from Santa Cruz Biotech-
nology (Santa Cruz, TX, USA). After rinsing with PBS, the sections were incubated with
appropriate secondary antibodies: goat antirabbit (ab97051, 1:1000, Abcam) and donkey
antigoat (sc-2020, 1:4000, Santa Cruz Biotechnology) for 1 h at room temperature. The final
reaction product was visualized with DAB chromogen solution (K 3408, Dako liquid DAB+
Substrate Chromogen substrate System, Carpinteria, CA, USA). After counterstaining with
hematoxylin, slides were mounted in DPX and examined with a light microscope (Leica
Microsystems). To quantify the HMGB1 and GPX4 tissue immunopositivity, approximately
20 fields from micrographs at 40x objective magnification were analyzed (two animals per
group). Micrographs were analyzed in Image J software (National Institutes of Health,
Bethesda, MA, USA) by the Color Deconvolution2 plugin in which images were split on
hematoxylin and DAB channels. DAB channel images were analyzed by random selection
of fields falling on the tissue (with the omission of large vessels). Obtained grayscale values
(from 0 = black—the strongest signal, to 255 = white—no signal) were divided by 1000 to
get the values that will be directly proportional to immunopositivity strength. To quantify
the percentage of HMGB1- and GPX4-positive nuclei, approximately 20 micrographs at
20× objective magnification were analyzed (two animals per group) at Image J software
(National Institutes of Health) The total number of nuclei was used to calculate the percent-
age of hepatocytes exhibiting nuclear staining. Quantification of nuclear Nrf2 staining was
determined from 50 micrographs at 40×magnification (25 from pericentral, and 25 from
periportal area, two animals per group). The total number of nuclei was used to calculate
the percentage of hepatocytes exhibiting nuclear staining.

4.4. Analysis of GSH Content and Activities of Antioxidative Defense Enzymes

For the examinations of the antioxidative defense system, the liver tissue was dissected
out and thoroughly rinsed with saline to remove traces of blood. To measure the activities of
antioxidative enzymes in the liver, a 10% homogenate of the liver, prepared in sucrose buffer
(0.25 M sucrose, 0.1 mM EDTA, and 50 mM Tris-HCl pH 7.4), was used. The activity of GPX
was determined spectrophotometrically with t-butyl hydroperoxide as a substrate [78] and
expressed in nmol of reduced NADPH min−1 mg−1 protein. Glutathione S-transferase
(GST) activity was measured by the method of Habig et al. [79] and expressed in nmol
GSH min−1 mg−1 protein. Activity of GSH reductase (GR) was assayed by the method
of Glatzle et al. [80] and expressed as nmol NADPH min−1 mg−1 protein. The content of
GSH was examined in the tissue after deproteinization with 10% sulfosalicylic acid. Total
GSH was measured by the enzyme-recycling assay of Griffith [81] and expressed in nmol
GSH min−1 g−1 tissue. Total superoxide dismutase (SOD) activity was assayed using the
method described by Misra and Fridovich [82], but at 26 ◦C and expressed in units mg−1

of protein. SOD units were defined as the amount of the enzyme inhibiting epinephrine
auto-oxidation under the appropriate reaction conditions.

4.5. SDS-Polyacrylamide Gel Electrophoresis (PAGE) and Western Blot Analysis

For SDS-PAGE and Western blot analysis, a 10% homogenate of liver, prepared in
sucrose buffer containing protease and phosphatase inhibitors (Protease-Inhibitor-Mix
G, #39101, Serva Electrophoresis, Heidelberg, Germany), was used as described previ-
ously [18]. Protein content in the samples was estimated by the method of Lowry et al. [83].
Ten µg of total protein extracts was separated by electrophoresis in 7.5%, 10%, or 12%
SDS-PAGE, transferred onto polyvinylidene fluoride (PVDF) membranes (10600023, Amer-
sham Hybond P 0.45 PVDF, GE Healthcare Life Sciences, Sunderland, UK), and blocked
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in TBST solution (0.2% Tween 20, 50 mM Tris-HCl pH 7.6, 150 mM NaCl) containing
3% bovine serum albumin or nonfat condensed milk. Membranes were then incubated
overnight with the following rabbit primary antibodies: anti-xCT (1:1000; #12691) and
anti-phospho-acetyl-CoA carboxylase (pACC, 1:1000; #3661) purchased from Cell Signaling
Technology, Danvers, MA, USA), anti-HO-1 (1:1000; ab13243), anti-GCL catalytic subunit
(GCLC, 1:1000; ab190685), anti-GCL modifier subunit (GCLM, 1:1000; ab81445), and β-actin
(1:2000; ab8227) all purchased from Abcam. After incubation with primary antibodies,
membranes were probed with antirabbit HRP-conjugated secondary IgG antibodies (1:4000;
ab6721, Abcam). Detection of immunoreactive bands was performed by an enhanced
chemiluminescence detection system (sc-2048) (Santa Cruz Biotechnology) using an iB-
right CL1500 Imaging System (Thermo Fisher Scientific, Carlsbad, CA, USA). Quantitative
analysis of immunoreactive bands was conducted densitometrically by ImageJ software
(National Institutes of Health) [18]. The ratio of dots per band for the target protein and β-
actin (gel loading control) from three independent experiments was averaged, and changes
in protein level were expressed as a percentage of an untreated control sample, which was
standardized as 100%.

4.6. ELISA Assay for Measurement of TNF-α and IL-6

Sandwich ELISA was used to measure the cytokine content in liver supernatants
using MaxiSorp plates (Nunc, Rochild, Denmark). Anti-cytokine-paired antibodies were
used for cytokine detection according to the manufacturer’s instructions. The antibodies
were: anti-mouse TNF-α purified rabbit monoclonal (clone EPR16803-2), anti-mouse TNF-α
biotinylated rabbit monoclonal (EPR16803-84, both from Abcam), anti-mouse IL-6 purified
mouse monoclonal (clone MP5-20F3), and anti-mouse IL-6 biotinylated mouse monoclonal
(MP5-32011, both from eBioscience). The absorbance was measured using multiplate reader
Synergy H1 at 450 nm, with a correction at 690 nm. Standard curves, based on known
concentrations of recombinant murine TNF (Abcam) and murine IL-6 (eBioscience) were
used for determination of cytokine concentrations in samples and all ELISA test samples
were analyzed in duplicates.

4.7. Statistical Analyses

Statistical analysis was performed in GraphPad Prism software (GraphPad Software,
San Diego, CA, USA). To test data for normality, the Kolmogorov-Smirnov test was used.
If the F test indicated an overall difference, a one-way analysis of variance (one-way
ANOVA) was performed followed by Tukey’s multiple comparisons test. To compare Nrf2
immunopositivity of two lobular zones for each group, Student’s t test was performed. The
results are presented as mean value ± statistical error (SEM). Statistical significance was set
at p < 0.05.

5. Conclusions

Our study revealed the ferroptotic phenotype of hepatocytes as an important part of
the diabetic-induced pathological changes in the liver. Moreover, the results suggest that
targeting ferroptosis represents a new, promising approach in the prevention and treatment
of commonly observed liver pathologies accompanying diabetes.
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