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M.; Glamočlija, J.; Soković, M.;
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Abstract: In this manuscript, we describe the design, preparation, and studies of antimicrobial activity
of a series of novel heteroarylated benzothiazoles. A molecular hybridization approach was used for
the designing compounds. The in vitro evaluation exposed that these compounds showed moderate
antibacterial activity. Compound 2j was found to be the most potent (MIC/MBC at 0.23–0.94 mg/mL
and 0.47–1.88 mg/mL) On the other hand, compounds showed good antifungal activity (MIC/MFC
at 0.06–0.47 and 0.11–0.94 mg/mL respectively) with 2d being the most active one. The docking
studies revealed that inhibition of E. coli MurB and 14-lanosterol demethylase probably represent the
mechanism of antibacterial and antifungal activities.
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1. Introduction

The growing problem in the community and in hospitals is resistance to pathogenic
bacteria. Thus, the search for novel agents to fight against bacterial resistant is very
attractive for scientists.

Benzothiazoles and its derivatives attracted the interest of medicinal chemists because
of their extensive variety of pharmacological properties, including anti-inflammatory [1–3],
antimicrobial [4–7], anticancer [8–10], antitubercular [11,12], antidiabetic [13], antioxi-
dant [14,15], antiviral [16–18], antileishmanial [19], and others [20,21].

The antimicrobial potential of benzothiazoles is of great importance against the back-
drop of the global aggravating problem of antimicrobial resistance and multidrug resistance
that cause significant mortality in the world (about 700,000 annual deaths with the prospect
of an increase in more than an order of magnitude) [10].

The antimicrobial activity of benzothiazole derivatives is widely presented in the
literature. Thus, Singh et al. [22] synthesized and evaluated the antimicrobial activity of
several novel benzothiazole based 4-thiazolidinones. Some compounds appeared to be
the very potent against E. coli and C. albicans with MIC values in the range of 15.6–125
microg/mL. Haroun et.al. [5] synthesized new benzothiazole based thiazolidinone and
found that all synthesized derivatives expressed better activity than ampicillin against
most of the studied strains as well as more than streptomycin against several strains. On
the other hand, compounds showed very good antifungal activity higher than reference
drugs ketoconazole and bifonazole with very low toxicity (LD50 350–1000 mg/kg). Morsy

Antibiotics 2022, 11, 1654. https://doi.org/10.3390/antibiotics11111654 https://www.mdpi.com/journal/antibiotics

https://doi.org/10.3390/antibiotics11111654
https://doi.org/10.3390/antibiotics11111654
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antibiotics
https://www.mdpi.com
https://orcid.org/0000-0001-8587-2710
https://orcid.org/0000-0001-9894-7777
https://orcid.org/0000-0002-2480-5490
https://orcid.org/0000-0001-6823-1137
https://orcid.org/0000-0002-7381-756X
https://orcid.org/0000-0002-7275-0797
https://orcid.org/0000-0002-9182-6101
https://doi.org/10.3390/antibiotics11111654
https://www.mdpi.com/journal/antibiotics
https://www.mdpi.com/article/10.3390/antibiotics11111654?type=check_update&version=1


Antibiotics 2022, 11, 1654 2 of 21

et al. [4] evaluated antimicrobial activity of benzothiazole derivatives with MIC for an-
tibacterial and antifungal one at 25–250 mg/mL. Nishad et al. [6] synthesized substituted
N-(benzo[d]thiazol-2-yl)-2-chloroacetamides among which compound B4 was the most
potent against all the tested strains with low MIC values.

It is noteworthy that there are many drugs with benzothiazole scaffold, such as Ethox-
zolamide, a sulfonamide medication acting as carbonic anhydrize inhibitor against glau-
coma and duodenal ulcers being a diuretic agent; Frentizole, an FDA-approved immuno-
suppressive drug, a novel inhibitor of the Aβ-ABAD interaction; Riluzole, a medication for
the treatment of amyotrophic lateral sclerosis; and Zopolrestat, an aldose reductase inhibitor
for the treatment of antidiabetic drug. [23]. Additionally, there are many benzothiazole
derivatives known to be studied in clinical trials [24] (Figure 1).
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Figure 1. Benzothiazole- and phthalazine-based approved drugs.

On the other hand, phthalazine core is also mentioned in the literature to possess
antimicrobial activity. Mourad et al. [25] prepared a series of phthalazine derivatives
and studied their antimicrobial activity towards three bacterial strains. It was found that
many of the compounds exhibited excellent inhibition against the tested pathogens. Rayes
et al. [26] reported antimicrobial activity of phthalazinedion-based derivatives. Moreover,
the antitumor approved drug Dasatinib contains phthalazine moiety. Consequently, the
design and development of new benzothiazole-based phthalazine derivatives is a promising
option in the creation of novel antimicrobial agents.

Taking all these into account, and as a continuation of our outgoing project on search
for new compounds with antimicrobial activity, we synthesized novel derivatives incor-
porating benzothiazole and substituted phthalazine heterocycle through different linkers
in the frame of one molecule. It is known that the combination of two or more molecules
in one [27] is a promising strategy for enhancing of the activity as well as diminishing the
side effects [28].

Herein we report the synthesis, evaluation of antimicrobial activity, as well as molecu-
lar docking studies of new heteroarylated benzothiazole derivatives (Figure 2).
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Figure 2. Compounds design based on bibliography [4,5,22,25,26].

2. Results and Discussion
2.1. Chemistry

New heteroarylated benzothiazoles were synthesized according to five routs
(Schemes 1–5) and their antimicrobial activity studied against a panel of pathogens.

In these benzothiazole derivatives (structures 2, 3, 5, 6, 8, 10) the heteroaryl group is
linked to the mono- or bicyclic scaffold through various linkers such as -(CH2)nCONH(CH2)2-
(n = 1,2), -S-, 1-piperidin-4-yl, -CONH-.

The target benzothiazole heteroaryl(aryl)derivatives were prepared by nucleophilic sub-
stitution of the chlorine atom in chlorosubstituted (1-methyl-2-chloromethylbenzimidazole
for 2a, 1-chloro-4-R-phthalazines for 2b–2o, 1,4-bis(chloromethyl)benzene derivatives—for 3a,
3b, 3-(chloromethyl)-2-tosylpyridine—for 6) or in acid chlorides (tetrahydro-[1,3]dioxolo[4,5-
g]isoquinoline-8-sulfonyl chloride -for 5), benzo[d]thiazole-6-carboxylic acid for 8) and
4-methyl-1-oxophthalazine-2(1H)-carboxylic acid for 10) various derivatives of benzothia-
zole in DMF. In this case, the clean products with good yield were obtained. Compounds
were characterized by 1H-NMR, 13C-NMR, and elemental analysis. In 1H-NMR, the signals
of the benzothiazole ring appeared in the aromatic region of 7.30–7.60 ppm (H-5, H-6),
7.88–8.78 (H-4, H-7). The signal of SCH2 group of compounds 2a, 2i–2o, 3a, 3b was found
as a singlet at 4.10–4.47 ppm. In the 13C NMR spectra, the signal of the characteristic
C=O group is seen at 166 ppm. All signals of 1H-NMR, 13C-NMR correspond to the
proposed structures.
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phere, 25–30 °C, 0.5 h; (ii) 15–20 °С, then at 40–45 °С, 0.5 h. 
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20–25 °С, 10 h; (ii) 2NaHCO3, DMF, 20–25 °С, 2 h.  

Scheme 1. Synthesis of heteroarylderivatives benzothiazole 2. Reagents and conditions: (i) NaH,
DMF, nitrogen atmosphere, 20–25 ◦C, 0.5 h; (ii) 5 min, 1 h at 100 ◦C (for 2i, k, l), 40–45 ◦C (for 2a,
m–o) or 4 h at 50–55 ◦C (for 2j).
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substitution of the chlorine atom in chlorosubstituted (1-methyl-2-chloromethylbenzim-
idazole for 2a, 1-chloro-4-R-phthalazines for 2b–2o, 1,4-bis(chloromethyl)benzene deriva-
tives—for 3a, 3b, 3-(chloromethyl)-2-tosylpyridine—for 6) or in acid chlorides (tetrahy-
dro-[1,3]dioxolo[4,5-g]isoquinoline-8-sulfonyl chloride -for 5), benzo[d]thiazole-6-carbox-
ylic acid for 8) and 4-methyl-1-oxophthalazine-2(1H)-carboxylic acid for 10) various de-
rivatives of benzothiazole in DMF. In this case, the clean products with good yield were 
obtained. Compounds were characterized by 1H-NMR, 13C-NMR, and elemental analysis. 
In 1H-NMR, the signals of the benzothiazole ring appeared in the aromatic region of 7.30–
7.60 ppm (H-5, H-6), 7.88–8.78 (H-4, H-7). The signal of SCH2 group of compounds 2a, 2i–
2o, 3a, 3b was found as a singlet at 4.10–4.47 ppm. In the 13C NMR spectra, the signal of 
the characteristic C=O group is seen at 166 ppm. All signals of 1H-NMR, 13C-NMR corre-
spond to the proposed structures. 

2.2. Biological Evaluation 
2.2.1. Antibacterial Activity 

Title derivatives were studied for their antibacterial activity against several selected 
bacterial pathogens by microdilution method. Compounds showed moderate to good po-
tency (MIC/MBC at 0.23 to >3.75 mg/mL and 0.35–>3.75 mg/mL, respectively; Table 1) fol-
lowing the order: 2j > 2c > 2g = 8 > 2d > 2h > 2e > 5 > 2i > 2l > 2k > 3a > 2a > 2b > 2m > 6 > 
2o > 2n > 3b > 10 > 2f. 

Table 1. Antibacterial activity of heteroaryl derivatives of benzothiazole (mg/mL). 

No.  S.a. B.c. L.m. E.c. S.t. En.cl. 

2a MIC 1.88 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.35 ± 0.08 0.70 ± 0.19 0.70 ± 0.19 
MBC 3.75 ± 0.00 1.88 ± 0.00 1.88 ± 0.00 0.47 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 

2b MIC 1.41 ± 0.38 0.47 ± 0.00 0.47 ± 0.00 >3.75 0.23 ± 0.00 0.47 ± 0.00 
MBC 1.88 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 >3.75 0.47 ± 0.00 0.94 ± 0.00 
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2d 
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2f MIC 2.50 ± 0.88 1.41 ± 0.38 0.94 ± 0.00 0.70 ± 0.19 1.41 ± 0.38 2.50 ± 0.88 
MBC 3.75 ± 0.00 1.88 ± 0.00 1.88 ± 0.00 0.94 ± 0.00 1.88 ± 0.00 3.75 ± 0.00 

Scheme 4. Synthesis of 5-substituted benzothiazole 8. Reagents and conditions: (i) SOCl2, DMF,
CHCl3, boiling; (ii), Et3N, CHCl3, 0–2 ◦C, NaHCO3.
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2.2. Biological Evaluation
2.2.1. Antibacterial Activity

Title derivatives were studied for their antibacterial activity against several selected
bacterial pathogens by microdilution method. Compounds showed moderate to good
potency (MIC/MBC at 0.23 to >3.75 mg/mL and 0.35–>3.75 mg/mL, respectively; Table 1)
following the order: 2j > 2c > 2g = 8 > 2d > 2h > 2e > 5 > 2i > 2l > 2k > 3a > 2a > 2b > 2m >
6 > 2o > 2n > 3b > 10 > 2f.
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Table 1. Antibacterial activity of heteroaryl derivatives of benzothiazole (mg/mL).

No. S.a. B.c. L.m. E.c. S.t. En.cl.

2a
MIC 1.88 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.35 ± 0.08 0.70 ± 0.19 0.70 ± 0.19
MBC 3.75 ± 0.00 1.88 ± 0.00 1.88 ± 0.00 0.47 ± 0.00 0.94 ± 0.00 0.94 ± 0.00

2b
MIC 1.41 ± 0.38 0.47 ± 0.00 0.47 ± 0.00 >3.75 0.23 ± 0.00 0.47 ± 0.00
MBC 1.88 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 >3.75 0.47 ± 0.00 0.94 ± 0.00

2c
MIC 0.70 ± 0.19 0.70 ± 0.19 0.70 ± 0.19 0.70 ± 0.19 0.70 ± 0.19 0.70 ± 0.19
MBC 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00

2d
MIC 1.41 ± 0.38 0.35 ± 0.08 0.70 ± 0.19 0.70 ± 0.19 0.70 ± 0.19 0.70 ± 0.19
MBC 1.88 ± 0.00 0.47 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00

2e
MIC 1.41 ± 0.38 0.94 ± 0.00 0.70 ± 0.19 0.47 ± 0.00 0.23 ± 0.00 0.47 ± 0.00
MBC 1.88 ± 0.00 1.88 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.47 ± 0.00 0.94 ± 0.00

2f
MIC 2.50 ± 0.88 1.41 ± 0.38 0.94 ± 0.00 0.70 ± 0.19 1.41 ± 0.38 2.50 ± 0.88
MBC 3.75 ± 0.00 1.88 ± 0.00 1.88 ± 0.00 0.94 ± 0.00 1.88 ± 0.00 3.75 ± 0.00

2g MIC 1.41 ± 0.38 0.70 ± 0.19 0.70 ± 0.19 0.23 ± 0.00 0.70 ± 0.19 0.70 ± 0.19
MBC 1.88 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.47 ± 0.00 0.94 ± 0.00 0.94 ± 0.00

2h
MIC 0.94 ± 0.00 0.70 ± 0.19 0.70 ± 0.19 0.70 ± 0.19 0.47 ± 0.00 0.70 ± 0.19
MBC 1.88 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00

2i
MIC 1.41 ± 0.38 0.70 ± 0.19 0.70 ± 0.19 0.35 ± 0.08 0.70 ± 0.19 0.94 ± 0.00
MBC 1.88 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.47 ± 0.00 0.94 ± 0.00 1.88 ± 0.00

2j MIC 0.94 ± 0.00 0.47 ± 0.00 0.47 ± 0.00 0.23 ± 0.00 0.35 ± 0.08 0.47 ± 0.00
MBC 1.88 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.47 ± 0.00 0.47 ± 0.00 0.94 ± 0.00

2k
MIC 0.94 ± 0.00 0.23 ± 0.00 0.35 ± 0.08 >3.75 >3.75 0.23 ± 0.00
MBC 1.88 ± 0.00 0.47 ± 0.00 0.47 ± 0.00 >3.75 >3.75 0.47 ± 0.00

2l
MIC 1.41 ± 0.38 0.94 ± 0.00 0.70 ± 0.19 0.70 ± 0.19 0.70 ± 0.19 0.94 ± 0.00
MBC 1.88 ± 0.00 1.88 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 1.88 ± 0.00

2m
MIC 1.41 ± 0.38 >3.75 0.70 ± 0.19 0.47 ± 0.00 0.35 ± 0.08 0.70 ± 0.19
MBC 1.88 ± 0.00 >3.75 0.94 ± 0.00 0.94 ± 0.00 0.47 ± 0.00 0.94 ± 0.00

2n
MIC 1.41 ± 0.38 0.70 ± 0.19 0.70 ± 0.19 >3.75 0.47 ± 0.00 0.70 ± 0.19
MBC 1.88 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 >3.75 0.94 ± 0.00 0.94 ± 0.00

2o
MIC 1.41 ± 0.38 0.70 ± 0.19 0.70 ± 0.19 >3.75 0.47 ± 0.00 0.47 ± 0.00
MBC 1.88 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 >3.75 0.94 ± 0.00 0.94 ± 0.00

3a
MIC 0.94 ± 0.00 0.47 ± 0.00 0.70 ± 0.19 0.70 ± 0.19 0.47 ± 0.00 0.70 ± 0.19
MBC 3.75 ± 0.00 1.88 ± 0.00 1.88 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 1.88 ± 0.00

3b
MIC 1.41 ± 0.38 0.70 ± 0.19 0.70 ± 0.19 >3.75 0.70 ± 0.19 0.70 ± 0.19
MBC 1.88 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 >3.75 0.94 ± 0.00 0.94 ± 0.00

5
MIC 1.41 ± 0.38 0.47 ± 0.00 0.70 ± 0.19 0.35 ± 0.08 0.70 ± 0.19 1.41 ± 0.38
MBC 1.88 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.47 ± 0.00 0.94 ± 0.00 1.88 ± 0.00

6
MIC 0.94 ± 0.00 0.70 ± 0.19 0.70 ± 0.19 >3.75 0.70 ± 0.19 0.47 ± 0.00
MBC 1.88 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 >3.75 0.94 ± 0.00 0.94 ± 0.00

8
MIC 2.50 ± 0.88 1.41 ± 0.38 1.41 ± 0.00 0.70 ± 0.19 0.70 ± 0.19 0.94 ± 0.00
MBC 3.75 ± 0.00 1.88 ± 0.00 1.88 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 1.88 ± 0.00

10
MIC 1.41 ± 0.38 0.23 ± 0.00 0.70 ± 0.19 0.70 ± 0.19 0.23 ± 0.00 0.70 ± 0.19
MBC 1.88 ± 0.00 0.47 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.47 ± 0.00 0.94 ± 0.00

Streptomycin MIC 0.10 ± 0.00 0.02 ± 0.00 0.15 ± 0.00 0.10 ± 0.00 0.10 ± 0.00 0.02 ± 0.00
MBC 0.20 ± 0.01 0.05 ± 0.00 0.30 ± 0.01 0.20 ± 0.00 0.20 ± 0.01 0.05 ± 0.00

Ampicillin MIC 0.10 ± 0.00 0.10 ± 0.00 0.15 ± 0.00 0.15 ± 0.00 0.10 ± 0.00 0.10 ± 0.00
MBC 0.15 ± 0.00 0.15 ± 0.00 0.30 ± 0.02 0.20 ± 0.01 0.20 ± 0.00 0.15 ± 0.01

S.a.—Staphylococcus aureus, B.c Bacillus cereus, l.m.—Listeria monocytogenes, E.c.—Escherichia coli, S.t.—Salmonella
typhimurium, En.c.—Enterobacter cloacae, Relative standard deviations were all < 2.0. Amp.: Ampicillin, Strept.:
Streptomycin. This experiment was performed in duplicate.

The most potent among compounds tested appeared 2j with MIC and MBC at
0.23–0.94 mg/mL and 0.47–1.88 mg/mL, respectively, while compound 2f was the less po-
tent. Some compounds demonstrate quite high potency against some bacterial strains. Thus,
compounds 2b and 2e exhibit good activity against S. typhimurium with MIC 0.23 mg/mL,
while compounds 2g and 2j exhibit good activity against E. coli with the same MIC. Com-
pounds 2d, 2k and 8 were potent against B. cereus (MIC 0.23 mg/mL), whereas 2k also
exhibit good activity against L. monocytogenes. On the other hand, activity of compounds
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2a, 2i and 5 against the same strain was a little bit lower (MIC 0.35 mg/mL). En. cloacae
appeared to be very sensitive to these derivatives in the contrast to the resistant S. aureus.

According to structure-activity relationships studies the presence of 4-(3,4-dimethylphenyl)-
2-methylphthalazin-1(2H)-one connected to benzothiazole via 2-mercapto-N-methylacetamide
linker (2j) is beneficial for antibacterial activity. Replacement of 4-(3,4-dimethylphenyl)-2-
methylphthalazin-1(2H)-one as substituent by 1-phenylphthalazine connected to benzoth-
iazole by S as linker (2c) decreased a little the activity. Introduction of 1-phenylpthalazine
N,N-dimethylsulfonic amide as substituent gave compound 2g with less potency in com-
parison with 2c. N,N-diethyl-4-(phthalazin-1-yl)benzamide as substituent was detrimental
not only for the group of compounds with S-linker but for all tested compounds. From
all mentioned above, it seems that the important role for antibacterial activity play the
substituent of benzothiazole ring as well as the linker.

2.2.2. Antifungal Activity

The evaluation of antifungal activity was performed via a microdilution method, with
bifonazole and ketoconazole being used as the reference drugs. According to obtained
results (Table 2) all compounds demonstrated good antifungal activity except compound
10. The order of activity can be presented as follows: 2d > 3b > 3a > 2o > 2m > 2a > 2i > 2j
> 2l > 6 > 2b > 5 > 8 > 2e > 2c > 2g > 2f > 2n > 2h > 10. Compound 2d with MIC/MFC at
0.08–0.17 mg/mL and 0.11–0.23 mg/m, respectively, exhibited the highest potency, whereas
compound 10 was the less active.

Several derivatives appeared to be more active than the reference drugs towards
some fungal strains. Thus, compounds 2d, 2i, 3b, and 6 showed better potency against
T viride compared with ketoconazole and bifonazole with MIC/MFC at 0.06/0.11 mg/mL.
Good potency was also expressed in compounds 2a, 2b, 2h, 2i, 2l, 3a, and 5, with minimal
inhibitory and fungicidal concentrations at 0.11/0.23 mg/mL, comparable with both refer-
ence drugs against T. viride, while 2i, 2m, and 3a were found to be active also against A.
niger. On the other side, compounds 2a, 2j, 2m, and 2o were potent against A. versicolor,
while 2a was also potent with MIC at 0.11mg/mL against P. cyclopium var. verucosum. It
should be mentioned that T. viride demonstrated high sensibility toward our compounds,
while A. fumigatus, followed by P. funiculosum. were the most resistant ones.

The structure-activity relationship study showed that the presence of 1-(p-tolyl)phthalazine
substituent linked to benzothiazole ring through S-linker (2d) is favorable for antifungal
activity. Replacement of 1-(p-tolyl)phthalazine by 2,5-dimethoxy-1,4-phenyl linked to
two benzothiazole rings via sulfamethylene linker give less active compound 3b, while
introduction of methyl group (3a) instead of methoxy ones (3b) resulted in lesser active
compound compared with previous one (3b). It should be mentioned that ten compounds
(2b, 2d, 2h, 2i, 2j, 2l, 2m, 2o, 3a, and 6) showed activity better than that of ketoconazole
against A. niger mostly, while all compounds exhibited higher activity than ketoconazole
against T. viride. Furthermore, derivatives 2b, 2d, 2h, 2i, 2j, 2l, 2m, and 6 were more
potent also than bifonazole against T. viride. The general observation is that fungi are more
sensitive to tested than bacterial strains. It should be noticed that the response of fungi
and bacteria to the compounds tested is different. This behavior is probably due to some
differences between bacteria and fungi organization of prokaryotic organisms, organization
of DNA genetic material and finally in composition of the cell wall which are made from
peptidoglycans (bacteria) and chitin (fungi). Both are prokaryotic organisms, but bacteria
are unicellular, while fungi multicellular. On the other hand, despite both containing DNA
as genetic material, the genetic material of bacteria is organized in cytoplasm, while in fungi
it is organized inside the nucleus. Bacteria do not contain membrane-bound organelles in
comparison with fungi which contain membrane-bound. Finally, the cell wall of bacteria is
made up of peptidoglycans, whereas the cell wall of fungi is made up of chitin. The only
common response of bacteria and fungi to compounds tested was observed for compounds
10 and 2f which were among the less active.
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Table 2. Antifungal activity of heteroaryl derivatives of benzothiazole (mg/mL).

No. A.f. A.n. A.v. P.f. T.v. P.v.c.

2a
MIC 0.23 ± 0.00 0.23 ± 0.00 0.11 ± 0.00 0.35 ± 0.08 0.11 ± 0.00 0.11 ± 0.00
MFC 0.47 ± 0.00 0.47 ± 0.00 0.23 ± 0.00 0.47 ± 0.00 0.23 ± 0.00 0.23 ± 0.00

2b
MIC 0.23 ± 0.00 0.23 ± 0.00 0.23 ± 0.00 0.23 ± 0.00 0.11 ± 0.00 0.23 ± 0.00
MFC 0.47 ± 0.00 0.47 ± 0.00 0.47 ± 0.00 0.47 ± 0.00 0.23 ± 0.00 0.47 ± 0.00

2c
MIC 0.23 ± 0.00 0.23 ± 0.00 0.23 ± 0.00 0.35 ± 0.08 0.23 ± 0.00 0.23 ± 0.00
MFC 0.47 ± 0.00 0.47 ± 0.00 0.47 ± 0.00 0.47 ± 0.00 0.47 ± 0.00 0.47 ± 0.00

2d
MIC 0.17 ± 0.05 0.11 ± 0.00 0.17 ± 0.05 0.17 ± 0.05 0.08 ± 0.00 0.17 ± 0.05
MFC 0.23 ± 0.00 0.23 ± 0.00 0.23 ± 0.00 0.23 ± 0.00 0.11 ± 0.00 0.23 ± 0.00

2e
MIC 0.23 ± 0.00 0.23 ± 0.00 0.35 ± 0.08 0.35 ± 0.08 0.17 ± 0.05 0.35 ± 0.08
MFC 0.47 ± 0.00 0.47 ± 0.00 0.47 ± 0.00 0.47 ± 0.00 0.23 ± 0.00 0.47 ± 0.00

2f
MIC 0.47 ± 0.00 0.23 ± 0.00 0.23 ± 0.00 0.23 ± 0.00 0.17 ± 0.05 0.23 ± 0.00
MFC 0.94 ± 0.00 0.47 ± 0.00 0.47 ± 0.00 0.47 ± 0.00 0.23 ± 0.00 0.47 ± 0.00

2g MIC 0.47 ± 0.00 0.17 ± 0.05 0.23 ± 0.00 0.35 ± 0.08 0.17 ± 0.05 0.35 ± 0.08
MFC 0.94 ± 0.00 0.23 ± 0.00 0.47 ± 0.00 0.47 ± 0.00 0.23 ± 0.00 0.47 ± 0.00

2h
MIC 0.47 ± 0.00 0.23 ± 0.00 0.35 ± 0.08 0.35 ± 0.08 0.11 ± 0.00 0.70 ± 0.19
MFC 0.94 ± 0.00 0.47 ± 0.00 0.47 ± 0.00 0.47 ± 0.00 0.23 ± 0.00 0.94 ± 0.00

2i
MIC 0.23 ± 0.00 0.11 ± 0.00 0.23 ± 0.00 0.23 ± 0.00 0.06 ± 0.00 0.23 ± 0.00
MFC 0.47 ± 0.00 0.23 ± 0.00 0.47 ± 0.00 0.47 ± 0.00 0.11 ± 0.00 0.47 ± 0.00

2j MIC 0.23 ± 0.00 0.23 ± 0.00 0.11 ± 0.00 0.23 ± 0.00 0.11 ± 0.00 0.23 ± 0.00
MFC 0.47 ± 0.00 0.47 ± 0.00 0.23 ± 0.00 0.47 ± 0.00 0.23 ± 0.00 0.47 ± 0.00

2k
MIC 0.23 ± 0.00 0.47 ± 0.00 0.47 ± 0.00 0.47 ± 0.00 0.23 ± 0.00 0.47 ± 0.00
MFC 0.47 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.47 ± 0.00 0.94 ± 0.00

2l
MIC 0.23 ± 0.00 0.17 ± 0.05 0.23 ± 0.00 0.23 ± 0.00 0.11 ± 0.00 0.23 ± 0.00
MFC 0.47 ± 0.00 0.23 ± 0.00 0.47 ± 0.00 0.47 ± 0.00 0.23 ± 0.00 0.47 ± 0.00

2m
MIC 0.17 ± 0.05 0.11 ± 0.00 0.11 ± 0.00 0.23 ± 0.00 0.17 ± 0.05 0.35 ± 0.08
MFC 0.23 ± 0.00 0.23 ± 0.00 0.23 ± 0.00 0.47 ± 0.00 0.23 ± 0.00 0.47 ± 0.00

2n
MIC 0.47 ± 0.00 0.23 ± 0.00 0.23 ± 0.00 0.35 ± 0.08 0.23 ± 0.00 0.35 ± 0.08
MFC 0.94 ± 0.00 0.47 ± 0.00 0.47 ± 0.00 0.47 ± 0.00 0.47 ± 0.00 0.47 ± 0.00

2o
MIC 0.17 ± 0.05 0.17 ± 0.05 0.11 ± 0.00 0.23 ± 0.00 0.17 ± 0.05 0.23 ± 0.00
MFC 0.23 ± 0.00 0.23 ± 0.00 0.23 ± 0.00 0.47 ± 0.00 0.23 ± 0.00 0.47 ± 0.00

3a
MIC 0.17 ± 0.05 0.11 ± 0.00 0.23 ± 0.00 0.17 ± 0.05 0.11 ± 0.00 0.23 ± 0.00
MFC 0.23 ± 0.00 0.23 ± 0.00 0.47 ± 0.00 0.23 ± 0.00 0.23 ± 0.00 0.47 ± 0.00

3b
MIC 0.23 ± 0.00 0.23 ± 0.00 0.17 ± 0.05 0.17 ± 0.05 0.06 ± 0.00 0.17 ± 0.05
MFC 0.47 ± 0.00 0.47 ± 0.00 0.23 ± 0.00 0.23 ± 0.00 0.11 ± 0.00 0.23 ± 0.00

5
MIC 0.23 ± 0.00 0.35 ± 0.08 0.23 ± 0.00 0.23 ± 0.00 0.11 ± 0.00 0.23 ± 0.00
MFC 0.47 ± 0.00 0.47 ± 0.00 0.47 ± 0.00 0.47 ± 0.00 0.23 ± 0.00 0.47 ± 0.00

6
MIC 0.23 ± 0.00 0.35 ± 0.08 0.23 ± 0.00 0.23 ± 0.00 0.06 ± 0.00 0.23 ± 0.00
MFC 0.47 ± 0.00 0.47 ± 0.00 0.47 ± 0.00 0.47 ± 0.00 0.11 ± 0.00 0.47 ± 0.00

8
MIC 3.75 ± 0.00 3.75 ± 0.00 3.75 ± 0.00 3.75 ± 0.00 3.75 ± 0.00 3.75 ± 0.00
MFC >3.75 >3.75 >3.75 >3.75 >3.75 >3.75

10
MIC 1.88 ± 0.00 0.47 ± 0.00 0.70 ± 0.019 1.41 ± 0.38 0.70 ± 0.19 2.50 ± 0.88
MFC 3.75 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 1.88 ± 0.00 0.94 ± 0.00 3.75 ± 0.00

Bifonazole
MIC 0.15 ± 0.00 0.15 ± 0.00 0.10 ± 0.00 0.20 ± 0.00 0.15 ± 0.00 0.10 ± 0.00
MFC 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.00 0.25 ± 0.00 0.20 ± 0.00 0.20 ± 0.00

Ketoconazole
MIC 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.00 1.00 ± 0.01 0.20 ± 0.00
MFC 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 1.50 ± 0.00 0.30 ± 0.010

A.f.—A. fumigatus, A.n.—A. niger, A.v.—A. versicolor, P.f.—P. funiculosum, T.v.—T. viride, P.v.c.—P. cyclopium var.
verucosum. Relative standard deviations were all < 2.20. This experiment was performed in duplicate.

2.3. In Silico Studies—Molecular Docking
2.3.1. In Silico Studies to Antibacterial Targets

Compounds were docked to different antibacterial targets, aiming for a prediction of
possible mechanisms of action.

To this direction, we used the following enzymes for docking studies: responsible
for the most common mechanisms of activity of antibacterial agents such as E. coli DNA
gyrase, Thymidylate kinase, E. coli Primase, E. coli MurA and E. coli MurB enzymes.
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According to the results of the docking studies, the lowest Free Energy of Binding
was observed to E. coli MurB (Table 3), suggesting inhibition of this enzyme as putative
mechanism of antibacterial activity.

Table 3. Molecular docking free binding energies (kcal/mol) to antibacterial targets.

Comp.

Est. Binding Energy (kcal/mol)
I-H

E. coli MurB
Residues

E. coli MurB
E. coli
Gyrase
1KZN

Thymidylate
Kinase
4QGG

E. coli
Primase
1DDE

E. coli MurA
JV4T

E. coli MurB
2Q85

2a −4.52 - - −3.62 −8.03 1 Ser229
2b −5.28 - −1.23 −4.27 −7.86 1 Arg158
2c −4.39 −2.55 - −5.19 −10.13 2 Ser50, Ser229
2d −5.19 −1.03 −2.26 −6.52 −9.64 2 Arg158, Arg213
2e −4.55 - −1.39 −5.24 −9.61 2 Arg213, Ser229
2f −4.37 - - −5.37 −6.53 1 Arg213
2g −5.37 −1.54 −2.33 −6.72 −10.02 2 Arg158, Arg213
2h −4.19 - - −5.68 −9.71 2 Arg213, Ser229
2i −5.63 −1.28 −1.30 −5.22 −9.34 2 Ser50, Ser229
2j −5.27 - - −6.34 −10.75 3 Ser50, Ser116, Ile173
2k −4.23 - - −4.53 −8.76 1 Ser229
2l −4.96 - −2.38 −6.59 −9.11 2 Ser50, Ser229

2m −5.23 - - −4.56 −7.80 1 Arg158
2n −4.31 −1.85 - −3.11 −7.30 1 Arg213
2o −3.62 - - −2.54 −7.35 1 Arg213
3a −4.35 - - −3.64 −8.45 1 Ser229
3b −2.32 −1.68 - −4.52 −7.18 1 Arg158
5 −5.12 - −1.30 −5.57 −9.53 2 Arg213, Ser229
6 −3.66 - - −2.50 −7.42 1 Arg213
8 −5.10 −1.52 −2.46 −6.22 −9.90 2 Arg158, Arg213

10 −4.28 - - −3.55 −6.92 1 Arg213
Naphthyl
Tetronic

Acid
inhibitor

- - - - −8.82 - Asn233

One of the most active compounds, 2d, binds E. coli MurB enzyme forming three
favorable hydrogen bond interactions. These are between the oxygen atom of COOH
group, of compound and residue Ser50 (2.27 Å), and the oxygen atom of the C=O group
and Ile173 residue (2.74 Å), and the last one between S atom of the compound and residue
Ser116 (3.56 Å). Moreover, hydrophobic interactions between Ile122, Ile110, Ile119, Val52,
Ala85 and Ile45 and the compound were detected, contributing to the stability of the
complex ligand-enzyme (Figure 3).

It was observed that the most active compounds bind to MurB in a similar way to FAD,
interacting with the residues such as Ser50, Arg213, Arg158 and Ser229 (Figure 3). The
similarity in binding mode with FAD is probably the reason of comparable to ampicillin
potency of these derivatives.
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Figure 3. (A) Superposition of compound 2j (magenta) and FAD (blue) in E. coli MurB. (B) Docked
conformation of the most active compound 2j in E. coli MurB. Red dotted arrows indicate H-bond
and yellow spheres hydrophobic interactions.

Finally, the docking pose of a known inhibitor of MurB enzyme also co-crystalized
with it in the X-ray structure and showed that it binds MurB in a completely different way
from our compounds. This inhibitor fit into the binding center of the enzyme away from
the binding cavity of substate FAD, while our compounds seem to bind MurB in the FAD
cavity of the enzyme, interacting with crucial for the enzyme activity residues (Figures 3
and 4). This observation confirms the better binding energy of our compounds and by
extension their higher inhibition over this inhibitor.
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2.3.2. In Silico Studies to Antifungal Targets

All the synthesized compounds and the reference drug ketoconazole were docked to
lanosterol 14α-demethylase of C. albicans and DNA topoisomerase IV (Table 4) in order to
explore the possible mechanism of antifungal activity of compounds.
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Table 4. Molecular docking free binding energies (kcal/mol) to antifungal targets.

Est. Binding
Energy(kcal/mol)

Residues
Involved in

H-Bond
Formation

Residues Involved in
Hydrophobic Interactions

Residues
Involved in

Aromatic
Interac-

tions

Interactions
with HEM601

N/N
DNA

TopoIV
1S16

CYP51 of
C.

albicans
5V5Z

2a −1.38 −9.85 Tyr132 Tyr118, Leu121, Thr311, Phe380,
Met508, Hem601 Hem601 Hydrophobic,

aromatic

2b −3.59 −8.82 Tyr132 Tyr118, Tyr122, Ile304, Thr311,
Hem601 Tyr118 Hydrophobic

2c −2.64 −8.03 - Tyr118, Thr311, Leu376, Met508,
Hem601 Hem601 Hydrophobic,

aromatic

2d −3.57 −11.32 - Tyr118, Leu121, Tyr122, Thr311,
Leu376, Phe380, Met508, Hem601

Tyr118,
Hem601

Hydrophobic,
aromatic

2e −3.15 −8.50 Tyr118 Tyr118, Leu376, Met508, Hem601 Tyr118 Hydrophobic

2f −1.29 −7.46 - Met508, Hem601 Hem601 Hydrophobic,
aromatic

2g - −7.93 - Ile304, Thr311, Met508, Hem601 - Hydrophobic
2h −2.44 −7.21 - Tyr118, Leu376, Met508, Hem601 Tyr118 Hydrophobic
2i - −9.82 Tyr132 Tyr118, Phe380, Met508, Hem601 - Hydrophobic

2j −3.83 −9.56 - Tyr118, Tyr122, Thr311, Leu376,
Met508, Hem601

Tyr118,
Hem601

Hydrophobic,
aromatic

2k - −7.39 - Tyr118, Met508, Hem601 - Hydrophobic

2l −1.27 9.52 - Tyr118, Tyr122, Leu376, Met508,
Hem601

Tyr122,
Hem601

Hydrophobic,
aromatic

2m −3.21 −10.02 Tyr64 Tyr118, Tyr122, Thr311, Leu376,
Phe380, Hem601 Tyr118 Hydrophobic

2n - −7.25 - Tyr118, Leu376, Met508, Hem601 - Hydrophobic

2o −2.50 −10.25 - Tyr118, Leu121, Tyr122, Thr311,
Hem601 Hem601 Hydrophobic,

aromatic

3a −2.75 −10.31 - Tyr118, Leu121, Leu376, Phe380,
Met508, Hem601 Hem601 Hydrophobic,

aromatic

3b −3.23 −10.87 - Tyr118, Tyr122, Thr311, Leu376,
Met508, Hem601

Tyr118,
Hem601

Hydrophobic,
aromatic

5 - −8.62 - Tyr118, Tyr122, Thr311, Met508,
Hem601 Hem601 Hydrophobic,

aromatic

6 −2.45 −9.10 - Tyr118, Tyr122, Ile304, Thr311,
Leu376, Hem601

Ile131,
Hem601

Hydrophobic,
aromatic

8 −2.06 −8.21 - Tyr118, Tyr122, Ile131, Leu376,
Met508, Hem601 - Hydrophobic

10 −2.41 −7.20 - Tyr118, Leu376, Met508, Hem601 Tyr118 Hydrophobic

ketoconazole - −8.23 Tyr64 Tyr118, Ile131, Tyr132, Leu300,
Ile304, Leu376, Met508, Hem601 Hem601 Hydrophobic,

aromatic

It was found that the most active compound, 2d, binds the enzyme alongside the heme
group, interacting with it throughout its benzene ring forming aromatic and hydropho-
bic interactions.

The most active compound 2d binds the 14a-lanosterole demethylase enzyme at the
side of the heme group, forming aromatic and hydrophobic interactions with its benzene
ring. Moreover, hydrophobic interactions between Tyr118, Leu121, Tyr122, Thr311, Leu376,
Phe380, Met508 and the compound were detected. Aromatic interaction with the heme
group was also observed with the benzene ring of ketoconazole (Figures 5 and 6). This
property may account for the good antifungal activity of compound 2d.



Antibiotics 2022, 11, 1654 12 of 21
Antibiotics 2022, 11, x FOR PEER REVIEW 12 of 21 
 

 
Antibiotics 2022, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/antibiotics 

 
Figure 5. Docked conformation of the most active compound 2d in lanosterol 14α-demethylase of 
C. albicans (CYP51ca). Blue arrows aromatic interactions and yellow spheres hydrophobic interac-
tions. 

 
Figure 6. Docked conformation of ketoconazole in lanosterol 14α-demethylase of C. albicans 
(CYP51ca). 

2.4. Drug Likeness 
The bioavailability and drug-likeness scores of all compounds are shown in Table 5. 

According to prediction results, the bioavailability score of all compounds was about 0.55. 
Moreover, all compounds displayed good-to-excellent Drug-likeness scores (−0.60–0.79). 
Figure 7 presents the bioavailability radar of most active compound 2j. The best in the in-
silico predictions results was achieved for compound 5 with a Drug-likeness score of 0.79 
and with no violation of any rule. According to predicted results all compounds except 
2g, 2h, 2j, 2m, 2n, 3a, and 3b can be orally absorbed since their TPSA are < 120 Å. 

Table 5. Drug likeness predictions of tested compounds. 

No. MW 
Number 
of HBA a 

Number 
of HBD b 

Log Po/w 
(iLOGP) c 

Log S d TPSA e BBB Permeant f 

Lipinski, 
Ghose, Veber, 

Egan, and 
Muegge Viola-

tions 

Bioavailability 
Score 

Drug-Likeness 
Model Score 

2a 311.42 2 0 2.81 Poorly soluble 84.25 No 0 0.55 −0.08 
2b 309.41 3 0 3.19 Poorly soluble 92.21 No 0 0.55 −0.19 

Figure 5. Docked conformation of the most active compound 2d in lanosterol 14α-demethylase of C.
albicans (CYP51ca). Blue arrows aromatic interactions and yellow spheres hydrophobic interactions.

Antibiotics 2022, 11, x FOR PEER REVIEW 12 of 21 
 

 
Antibiotics 2022, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/antibiotics 

 
Figure 5. Docked conformation of the most active compound 2d in lanosterol 14α-demethylase of 
C. albicans (CYP51ca). Blue arrows aromatic interactions and yellow spheres hydrophobic interac-
tions. 

 
Figure 6. Docked conformation of ketoconazole in lanosterol 14α-demethylase of C. albicans 
(CYP51ca). 

2.4. Drug Likeness 
The bioavailability and drug-likeness scores of all compounds are shown in Table 5. 

According to prediction results, the bioavailability score of all compounds was about 0.55. 
Moreover, all compounds displayed good-to-excellent Drug-likeness scores (−0.60–0.79). 
Figure 7 presents the bioavailability radar of most active compound 2j. The best in the in-
silico predictions results was achieved for compound 5 with a Drug-likeness score of 0.79 
and with no violation of any rule. According to predicted results all compounds except 
2g, 2h, 2j, 2m, 2n, 3a, and 3b can be orally absorbed since their TPSA are < 120 Å. 

Table 5. Drug likeness predictions of tested compounds. 

No. MW 
Number 
of HBA a 

Number 
of HBD b 

Log Po/w 
(iLOGP) c 

Log S d TPSA e BBB Permeant f 

Lipinski, 
Ghose, Veber, 

Egan, and 
Muegge Viola-

tions 

Bioavailability 
Score 

Drug-Likeness 
Model Score 

2a 311.42 2 0 2.81 Poorly soluble 84.25 No 0 0.55 −0.08 
2b 309.41 3 0 3.19 Poorly soluble 92.21 No 0 0.55 −0.19 

Figure 6. Docked conformation of ketoconazole in lanosterol 14α-demethylase of C. albicans (CYP51ca).

2.4. Drug Likeness

The bioavailability and drug-likeness scores of all compounds are shown in Table 5.
According to prediction results, the bioavailability score of all compounds was about 0.55.
Moreover, all compounds displayed good-to-excellent Drug-likeness scores (−0.60–0.79).
Figure 7 presents the bioavailability radar of most active compound 2j. The best in the
in-silico predictions results was achieved for compound 5 with a Drug-likeness score of 0.79
and with no violation of any rule. According to predicted results all compounds except 2g,
2h, 2j, 2m, 2n, 3a, and 3b can be orally absorbed since their TPSA are < 120 Å.
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Table 5. Drug likeness predictions of tested compounds.

No. MW
Number

of
HBA

a

Number
of

HBD
b

Log Po/w
(iLOGP)

c
Log S d TPSA e

BBB
Permeant

f

Lipinski,
Ghose, Veber,

Egan, and
Muegge

Violations

Bioavailability
Score

Drug-
Likeness

Model
Score

2a 311.42 2 0 2.81 Poorly soluble 84.25 No 0 0.55 −0.08
2b 309.41 3 0 3.19 Poorly soluble 92.21 No 0 0.55 −0.19
2c 371.48 3 0 3.69 Poorly soluble 92.21 No 0 0.55 −0.35
2d 385.50 3 0 3.86 Poorly soluble 92.21 No 0 0.55 −0.12
2e 405.92 3 0 4.03 Poorly soluble 92.21 No 0 0.55 0.20
2f 470.61 4 0 4.30 Poorly soluble 112.52 No 2 * 0.55 0.65
2g 492.64 6 0 4.13 Poorly soluble 137.97 No 3 ** 0.55 −0.22
2h 587.71 5 0 4.65 Insoluble 134.52 No 2 *** 0.17 0.37
2i 429.56 3 0 3.65 Poorly soluble 101.32 No 0 0.55 0.06
2j 486.61 4 1 3.73 Poorly soluble 130.42 No 0 0.55 0.43
2k 497.63 4 0 4.36 Poorly soluble 115.76 No 0 0.55 0.21
2l 511.66 4 0 4.31 Poorly soluble 115.76 No 0 0.55 0.42

2m 482.58 5 1 3.61 Poorly soluble 138.61 No 0 0.55 0.32
2n 496.61 5 1 4.14 Poorly soluble 138.61 No 0 0.55 0.34
2o 531.65 4 1 4.38 Poorly soluble 125.72 No 2 *** 0.17 −0.03
3a 464.69 2 0 4.75 Poorly soluble 132.86 No 0 0.55 −0.05
3b 496.69 4 0 4.87 Poorly soluble 151.32 No 0 0.55 0.43
5 501.62 8 0 3.85 Poorly soluble 117.82 No 0 0.55 0.79
6 463.61 5 0 3.56 Poorly soluble 99.78 No 0 0.55 0.49
8 400.25 4 1 2.93 Poorly soluble 100.94 No 0 0.55 −0.60
10 429.29 4 1 2.65 Poorly soluble 105.12 No 0 0.55 0.44

a number of hydrogen bond acceptors; b number of hydrogen bond donors; c lipophilicity; d Water solubility
(SILICOS-IT [S = Soluble]); e topological polar surface area (Å2); f Blood Brain Barrier permeant; * Ghose 2
violations: WLOGP > 5.6, MR > 130, ** Ghose 3 violations: MW > 480, WLOGP > 5.6, MR > 130, *** Lipinski: 2
violations: MW > 500, MLOGP > 4.15.
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in Hz. Τhe assignment was based on 2D NMR techniques. Melting points were deter-
mined using the Fisher-Johns Melting Point Apparatus (Fisher Scientific) and are uncor-
rected. Elemental analysis was performed by the classical method of microanalysis. The 
reaction and purity of the obtained compounds were monitored by TLC (plates with Al2O3 
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Figure 7. Bioavailability Radar and Drug-likeness model diagram of compound 2j. The pink area
represents the optimal range for each property for oral bioavailability, (Lipophilicity (LIPO): XLOGP3
between −0.7 and +5.0, Molecular weight (SIZE): MW between 150 and 500 g/mol, Polarity (POLAR)
TPSA between 20 and 130 Å2, Solubility (INSOLU): log S not higher than 6, Saturation (INSATU):
fraction of carbons in the sp3 hybridization not less than 0.25, and Flexibility (FLEX): no more than
9 rotatable bonds.

3. Materials and Methods
3.1. Chemistry-General Information

NMR 1H spectra of all compounds were recorded on a spectrometer Bruker 400
(400 MHz); for compounds 2a, 2b, 5—on Bruker AC-300 in DMSO-d6 and spectra are
presented in Supplementary Material File S1. Chemical shifts of nuclei 1H were measured
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relatively the residual signals of deuteron solvent (δ = 2.50 ppm). Coupling constants (J)
are reported in Hz. The assignment was based on 2D NMR techniques. Melting points
were determined using the Fisher-Johns Melting Point Apparatus (Fisher Scientific) and are
uncorrected. Elemental analysis was performed by the classical method of microanalysis.
The reaction and purity of the obtained compounds were monitored by TLC (plates with
Al2O3 III activity grade, eluent CHCl3, development of TLC plates by exposition to iodine
vapors in “iodine chamber”). The solvents were purified according to standard procedures.
The starting compounds—4-substituted 1-chlorophthalazine (for 2b–2o)—were provided
by InterBioscreen Ltd. (Russia); benzo[d]thiazole-2-thiol 1 (for 2a, 3a, 3b), benzo[d]thiazole-
6-carboxylic acid 7 (for 8), and 4-methyl-1-oxophthalazine-2(1H)-carboxylic acid 9 (for 10)
are commercially available. L, 2-(Piperidin-4-yl)benzo[d]thiazole was obtained similarly to
the procedure described in [29,30].

3.1.1. General Procedure for the Synthesis of Compounds 2a–o and 3a,b

Sodium hydride (0.29 g, 0.012 mol) was added to a solution of 2-mercaptobenzothiazole
1 (0.01 mol) in of DMF (15 mL) with stirring in a nitrogen atmosphere at 25–30 ◦C. The
mixture was stirred for 30 min, 2-(chloromethyl)-1-methyl-1H-benzo[d]imidazole (for 2a)
or a 4-substituted 1-chlorophthalazine (0.01 mol) was added and kept 1 min while boiling
(for 2b–2h), 1 h at 100 ◦C (for 2i, 2k, 2l), 4 h at 50–55 ◦C (for 2j), and 30 min at 40–45 ◦C
(for 2m–2o). Then the mixture was cooled, water (40 mL) was added, the precipitate was
filtered off, and washed with water (3 × 20 mL).

2-{[(1-Methyl-1H-benzo[d]imidazol-2-yl)methyl]thio}benzo[d]thiazole (2a). Yield 2.99 g (96%),
colorless crystals, m.p. 90–92 ◦C (EtOAc). 1H NMR (400 MHz, DMSO-d6, δ, ppm): 3.93 (s,
3H, Me), 4.98 (s, 2H, CH2), 7.14–7.25 (m, 2H, H-5′, H-6′), 7.29–7.48 (m, 3H, H-5, H-6, H-4′),
7.58 (d, J 7.6, 1H, H-7′), 7.85–7.88 (m, 2H, H-4, H-7). 13C NMR (100 MHz, DMSO-d6) δ
165.85 (S-C-S), 152.89 (C-12), 150.16 (C-4), 142.28 (C-15), 136.36 (C-14), 135.32 (C-5), 126.89
(C-8), 125.10 (C-7), 122.80 (C-18), 122.38 (C-19), 122.18 (C-6), 121.68 (C-9), 119.21 (C-17),
110.65 (C-20), 30.56 (CH3), 29.46. Found (%): C, 61.45; H, 4.00; N, 13.16; S, 20.72. Calc. for
C16H13N3S2 (%): C, 61.71; H, 4.21; N, 13.49; S, 20.59.

2-(4-Methylphthalazin-1-yl)benzo[d]thiazole (2b). Yield 2.47 g (89%), colorless crystals, m.p.
163–165 ◦C (EtOH). 1H NMR (400 MHz, DMSO-d6, δ, ppm): 2.99 (s, 3H, Me), 7.35–7.56 (m,
2H, H-5, H-6), 8.22–8.38 (m, 2H, H-6′), 8.02–8.15 (m, 3H, H-5′, H-7′, H-8′), 8.22–8.38 (m,
2H, H-4, H-7). 13C NMR (100 MHz, DMSO-d6) δ 161.14, 159.82, 155.43, 152.07 (C-4), 139.85
(C-10), 136.05 (C-5), 134.74 (C-16), 134.33 (C-17), 132.81 (C-14), 129.65 (C-15), 127.51 (C-8),
126.19 (C-19), 125.24 (C-7), 124.48 (C-18), 122.39 (2C, C-6, C-9), 30.24 (CH3). Found (%): C,
68.98; H, 3.68; N, 15.00; S, 11.72. Calc. for C16H11N3S (%): C, 69.29; H, 4.00; N, 15.15; S,
11.56.

2-(4-Phenylphthalazin-1-yl)benzo[d]thiazole (2c). Yield 3.12 g (92%), colorless crystals, m.p.
214–216 ◦C (methycellosolve). 1H NMR (400 MHz, DMSO-d6, δ, ppm): 7.39–7.59 (m, 2H,
H-5, H-6), 7.60–7.85 (m, 5H, H′′–H-6′′), 7.88–8.20, (m, 2H, 8.22–8.38 (m, 5H, H-7, H-5′–H-8′),
8.35–8.46 (m, 1H, H-4). 13C NMR (100 MHz, DMSO-d6) δ 161.10 (N=C-S), 159.83 (C-13),
155.32 (C-4), 152.01 (C-10), 139.82 (C-20), 136.03 (C-5), 134.72 (C-14), 134.33 (C-16), 132.81
(C-21), 129.60 (2C, C-25, C-6), 127.52 (C-23), 126.21 (2C, C-22, C-24), 125.23 (C-17), 331 124.29
(2C, C-7, C-8), 122.38 (2C, C-9, C-19), 121.79 (2C, C-15, C-18). Found (%): C, 74.10; H, 3.61;
N, 12.11; S, 9.72. Calc. for C21H13N3S (%): C, 74.31; H, 3.86; N, 12.38; S, 9.45.

2-(4-(p-Tolyl)phthalazin-1-yl)benzo[d]thiazole (2d). Yield 3.11 g (88%), colorless crystals, m.p.
202–205 ◦C (DMF:EtOAc). 1H NMR (400 MHz, DMSO-d6, δ, ppm): 2.91 (s, 6H, Me, H2O),
7.36–7.51 (m, 4H, H-2′′, H-3′′, H-5′′, H-6′′), 7.65 (d, 2H, H-5, H-6), 7.91–8.16 (m, 5H, H-5′–H-
8′, H-7), 8.31–8.42 (m, 1H, H-4). 13C NMR (100 MHz, DMSO-d6) δ 167.82 (N-C-S), 159.10
(S-C=N), 158.86 (C-14), 148.14 (C-5), 144.38 (2C, C-13, C-21), 134.09 (2C, C-4, C-24), 132.54
(C-19), 130.07 (2C, C-22, C-26), 127.22 (3C, C-1, C-2, C-3), 126.57 (3C, C-12, C-23, C-25),
124.80 (2C, C-17, C-18), 123.10 (C-6), 116.08 (C-20), 18.87 (CH3). Found (%):C, 74.49; H, 4.00;
N, 11.48; S, 9.29.Calc. for C22H15N3S (%): C, 74.76; H, 4.28; N, 11.89; S, 9.07.
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2-[4-(4-Chlorophenyl)phthalazin-1-yl]benzo[d]thiazole (2e). Yield 3.14 g (84%), colorless crystals,
m.p. 195–196 ◦C (methycellosolve). 1H NMR (400 MHz, DMSO-d6, δ, ppm): 7.42 (td, J 7.5,
1.4, 1H, H-6), 7.50 (td, J 7.5, 1.4, 1H, H-5), 7.63–7.68 (m, 2H, H-3′′, H-5′′), 7.79 (d, J 7.5, 2H,
H-5′, H-8′), 7.92–7.97 (m, 1H, H-7′), 8.02 (d, J 7.9, 1H, H-6), 8.03–8.17 (m, 3H, H-2′′, H-6′′,
H-7), 8.40 (d, 1H, J 7.8, H-4). 13C NMR (100 MHz, DMSO-d6) δ 160.75 (N=C-S), 158.84
(C-13), 155.95 (C-4), 152.01 (C-10), 136.09 (C-20), 135.15 (C-5), 134.51 (C-Cl), 132.32 (3C, C-14,
C-21, C-25), 129.21(3C, C-16, C-22, C-24), 127.30 (C-17), 127.02 (C-19), 126.01 (C-8), 125.81
(C-7), 125.08 (C-18), 124.45 (C-15), 122.47 (C-6), 122.39 (C-9). Found (%):C, 67.22; H, 3.01; Cl,
9.72; N, 11.00; S, 8.74. Calc. for C21H12ClN3S (%): C, 67.47; H, 3.24; Cl, 9.48; N, 11.24; S, 8.58.

4-[4-(Benzo[d]thiazol-2-yl)phthalazin-1-yl]-N,N-diethylbenzamide (2f). Yield 2.81 g (64%), col-
orless crystals, m.p. 180–181 ◦C (DMF). 1H NMR (400 MHz, DMSO-d6, δ, ppm): 1.24 (t, J
7.0, 6H, 2CH3), 3.45 (s, 4H, 2CH2), 7.36–7.43 (m, 1H, H-6), 7.44–7.51 (m, 1H, H-5), 7.59 (d, J
7.8, 2H, H-5′, H-8′), 7.83 (d, J 7.9, 2H, H-2′′, H-6′′), 7.95 (t, J 8.7, 2H, H-6′, H-7′), 8.02–8.19
(m, 3H, H-3′′, H-5′′, H-7), 8.35–8.42 (m, 1H, H-4). 13C NMR (100 MHz, DMSO-d6) δ 166.63
(C=O), 165.61 (S-C=N), 152.83 (C-14), 142.40 (C-27), 141.68 (C-2), 139.63 (C-17), 136.58 (C-28),
135.21 (C-5), 133.47 (C-23), 132.26 (2C, C-4, C-6), 130.31 (2C, C-3, C-7), 129.58 (C-21), 128.68
(C-18), 127.98 (C-20), 126.84 (C-31), 125.35 (C-19), 124.97 (C-22), 124.20 (C-30), 124.14 (C-29),
122.36 (C-32), 21.35 (2C, CH3). Found (%): C, 71.00; H, 4.82; N, 12.49; S, 7.56. Calc. for
C26H22N4OS (%): C, 71.21; H, 5.06; N, 12.78; S, 7.31.

5-(4-(Benzo[d]thiazol-2-yl)phthalazin-1-yl)-N,N,2-trimethylbenzenesulfonamide (2g). Yield 3.41
g (74%), colorless crystals, m.p. 163–165 ◦C (PrOH). 1H NMR (400 MHz, DMSO-d6, δ,
ppm): 2.74 (s, 3H, CH3), 2.83 (s, 6H, N(CH3)2), 7.44 (td, J 7.6, 1.3, 1H, H-6), 7.52 (td, J
7.6, 1.5, 1H, H-5), 7.69 (d, J 7.9, 1H, H-3′′), 7.93–7.96 (m, 2H, H-6′, H-7′), 8.02–8.06 (m, 1H,
H-4′′), 8.09–8.18 (m, 4H, H-4, H-7, H-5′, H-8′), 8.38–8.43 (m, 1H, H-6′′. 13C NMR (100 MHz,
DMSO-d6) δ 167.20 (N-C-S), 159.42 (S-C=N), 152.60 (C-5), 146.22 (C-14), 137.35 (C-24), 137.12
(C-23), 134.93 (C-4), 133.42 (C-13), 132.63 (C-21), 132.05 (C-25), 130.50 (C-26), 128.92 (C-22),
128.43 (C-12), 128.31 (C-19), 127.66 (C-17), 126.82 (C-18), 126.58 (C-20), 126.42 (C-1), 124.74
(C-2), 121.95 (C-3), 121.02 (C-6), 36.80 (2C, N-(CH3)2), 19.88 (C-CH3). Found (%): C, 62.32;
H, 4.12; N, 12.00; S, 14.26. Calc. for C24H20N4O2S2 (%): C, 62.59; H, 4.38; N, 12.16; S, 13.92.

3-{4-[4-(Benzo[d]thiazol-2-ylthio)phthalazin-1-yl]benzoyl}-1,2,3,4,5,6-hexahydro-8H-1,5-methanopyrido[1,2-
a][1,5]diazocin-8-one (2h). 1H NMR (400 MHz, DMSO-d6, δ, ppm): 2.01–2.14 (m, 2H, H-5),
2.50–2.57 (m, 1H, H-6, DMSO), 3.00 (s, 2H, H-7), 3.15–3.41 (m, 3H, H-4, H-1), 3.68–3.75 (m,
1H, H-2), 4.05–4.11 (m, 1H, H-2), 6.05 (d, 1H, H-11), 6.33 (dd, J 9.1, 1.3, 1H, H-9), 7.03–7.37
(m, 3H, H-5′, H-6′, H-10), 7.40–7.54 (m, 2H, H-6′′, H-7′′), 7.72 (d, J 7.8, 2H, H-5′′, H-8′′),
7.95 (d, J 8.0, 1H, H-5′′′), 8.03 (d, J 7.9, 1H, H-3′′′), 8.07–8.16 (m, 3H, H-4′, H-2′′′, H-6′′′),
8.40–8.42 (m, 1H, H-10). 13C NMR (100 MHz, DMSO-d6) δ 175.96 (2C, C=O, C-2), 156.54
(C=O), 153.10 (C-7), 147.82 (2C, C-14, C-19), 144.93 (C-4), 140.62 (C-27), 136.71 (C-24), 134.79
(C-21), 134.54 (C-26), 130.06 (3C, C-15, C-33, C-34), 129.18 (3C, C-31, C-32, C-39), 127.77
(2C, C-35, C-40), 126.52 (2C, C-17, C-36), 125.29 (2C, C-41, C-42), 122.75 (2C, C-28, C-38),
122.61 (C-37), 109.99 (C-25), 56.70 (C-22), 53.17 (2C, C-16, C-20), 40.65 (C-8), 32.37 (C-18),
21.58 (C-23). Found (%): C, 67.12; H, 4.20; N, 11.69; S, 11.22. Calc. for C33H25N5O2S2 (%): C,
67.44; H, 4.29; N, 11.92; S, 10.91.

4-[3-(Benzo[d]thiazol-2-ylthio)-4-methylphenyl]-2-methylphthalazin-1(2H)-one (2i). Yield 3.82 g
(89%), colorless crystals, m.p. 111–112 ◦C (DMF). 1H NMR (400 MHz, DMSO-d6, δ, ppm):
2.57 (s, 3H, CH3), 3.79 (s, 3H, NCH3), 4.74 (s, 1H, CH2), 7.30–7.44 (m, 4H, H-5′, H-5′′, H-6′′,
H-8), 7.50–7.61 (m, 2H, H-6′, H-7), 7.67 (d, J 7.9, 1H, H-2′), 7.71–7.82 (m, 2H, H-6, H-7′),
7.83–7.88 (m, 1H, H-9), 8.36 (d, J 7.9, 1H, H-7′′). 13C NMR (100 MHz, DMSO-d6) δ 166.13
(C-1), 158.62 (C=O), 153.01 (C-5), 145.86 (C-18), 138.40 (C-13), 135.19 (C-6), 134.94 (C-16),
133.56 (C-12), 132.91 (C-14), 132.18 (C-28), 131.14 (C-17), 131.10 (C-27), 129.29 (C-20), 128.90
(C-29), 127.75 (C-19), 126.86 (C-26), 126.73 (C-9), 126.71 (C-15), 125.08 (C-10), 122.31 (C-8),
121.69 (C-7), 39.50 (C-25), 35.33 (C-11), 19.23 (CH3). Found (%): C, 66.72; H, 4.18; N, 9.53; S,
15.27. Calc. for C24H19N3OS2 (%): C, 67.11; H, 4.46; N, 9.78; S, 14.93.
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2-(Benzo[d]thiazol-2-ylthio)-N-[2-methyl-5-(3-methyl-4-oxo-3,4-dihydrophthalazin-1-yl)benzyl]acetamide
(2j). Yield 4.09 g (84%), colorless crystals, m.p. 201–202 ◦C (DMF). 1H NMR (400 MHz,
DMSO-d6, δ, ppm): 2.41 (s, 3H, CH3), 3.77 (s, 3H, NCH3), 4.10 (s, 2H, SCH2), 4.43 (d, J 5.7,
2H, NCH2) 7.21–7.32 (m, 4H, H-5, H-6, H-3′, H-6′′), 7.46 (d, J 1.7, H-7′′′), 7.59–7.69 (m, 2H,
H-7, H-6′), 7.72–7.77 (m, 3H, H-4, H-4, H-8′′), 8.27–8.37 (m, 1H, H-5′′), 8.56 (s, 1H, NH). 13C
NMR (100 MHz, DMSO-d6) δ 167.17 (S-C-N), 166.46 (C=O), 158.55 (C=O), 152.66 (C-23),
146.23 (C-25), 137.36 (C-5), 137.00 (C-11), 134.95 (C-4), 133.42 (C-24), 132.65 (C-16), 132.07
(C-18), 130.51 (C-19), 128.95 (C-17), 128.42(C-3), 128.29 (C-2), 127.64 (C-30), 126.85 (C-6),
126.56 (C-31), 126.40 (C-33), 124.73 (C-32), 121.98 (C-20), 121.04 (C-21), 41.24 (CH2-NH),
36.81 (2C, N-CH3), 18.98 (C-CH3). Found (%): C, 64.00; H, 4.22; N, 11.18; S, 13.54. Calc. for
C26H22N4O2S2 (%): C, 64.18; H, 4.56; N, 11.51; S, 13.18.

2-(Benzo[d]thiazol-2-ylthio)-1-[4-(4-phenylphthalazin-1-yl)piperazin-1-yl]ethan-1-one (2k). Yield
3.68 g (74%), colorless crystals, m.p. 162–163 ◦C (EtOH). 1H NMR (400 MHz, DMSO-d6, δ,
ppm): 3.53 (s, 2H, 2H-2′), 3.65 (s, 2H, 2H-6′), 3.88 (s, 2H, H-3′), 3.97 (s, 2H, H-5′), 4.57 (s, 2H,
SCH2), 7.31 (t, J 7.6, H-4′′′), 7.42 (t, J 7.6, H-6), 7.51–7.60 (m, 3H, H-5, H-3′′′, H-5′′′), 7.62–7.69
(m, 2H, H-6′′, H-7′′), 7.59–7.69 (m, 2H, H-7, H-6′), 7.99–7.80 (m, 5H, H-7, H-2′′′, H-6′′′,H-8′′),
8.22 (d, J 8.2, 1H, H-4). 13C NMR (100 MHz, DMSO-d6) δ 161.14(S-C=N), 159.82 (C=O),
155.43 (C-20), 152.07 (2C, C-5, C-23), 139.85 (C-30), 136.05 (C-4), 134.74 (C-22), 134.33 (C-33),
132.81 (2C, C-11, C-28), 129.65 (4C, C-16, C-18, C-25, C-31), 127.51 (2C, C-27, C-2), 126.19
(C26), 125.24 (2C, C-1, C-29), 124.48 (2C, C-32, C-34), 122.39 (2C, C-19, C-15), 121.56 (3C,
C-3, C-6, C-21). Found (%): C, 65.00; H, 4.39; N, 13.86; S, 12.99. Calc. for C27H23N5OS2 (%):
C, 65.17; H, 4.66; N, 14.07; S, 12.88.

2-(Benzo[d]thiazol-2-ylthio)-1-(4-(4-(p-tolyl)phthalazin-1-yl)piperazin-1-yl)ethan-1-one (2l). Yield
3.53 g (69%), colorless crystals, m.p. 155–156 ◦C (CH3CN). 1H NMR (400 MHz, DMSO-d6,
δ, ppm): 3.02 (s, 3H, CH3), 3.51 (s, 2H, 2H-2′), 3.63 (s, 2H, 2H-6′), 3.87 (s, 2H, H-3′), 3.97
(s, 2H, H-5′), 4.57 (s, 2H, SCH2), 7.27–7.47 (m, 4H, H-3′′′, H-4′′′, H-5′′′, H-6′′′), 7.52–7.58
(m, 2H, H-5, H-6), 7.78–8.01 (m, 5H, H-7, H-5′′–H-8′′), 8.21 (d, J 8.1, 1H, H-4). 13C NMR
(100 MHz, DMSO-d6) δ 166.50 (S-C-S), 165.94 (C=O), 155.37 (C-10), 152.95 (C-13), 147.79
(C-31), 139.59 (C-22), 135.21 (C-20), 134.37 (C-32), 131.49 (C-14), 129.79 (C-16), 127.77 (2C,
C-24, C-25), 126.85 (C-17), 124.98 (C-18), 123.32 (C-15), 122.96 (C-35), 122.32 (3C, C-21, C-23,
C-19), 121.51 (2C, C-33, C-34), 118.48 (C-36), 38.24 (4C, C-4, C-6, C-8, C-9), 20.20 (2C, C-2,
CH3). Found (%): C, 65.48; H, 4.69; N, 13.46; S, 12.74. Calc. for C28H25N5OS2 (%): C, 65.73;
H, 4.93; N, 13.69; S, 12.53.

2-(Benzo[d]thiazol-2-ylthio)-N-(3-(6-methyl-[1,2,4]triazolo[3,4-a]phthalazin-3-yl)phenyl)acetamide
(2m). Yield 3.74 g (72%), colorless crystals, m.p. 235–237 ◦(DMFA). 1H NMR (400 MHz,
DMSO-d6, δ, ppm): 2.91 (s, 3H, Me), 4.38 (s, 2H, CH2), 7.27–7.36 (m, 1H, H-4′′), 7.37–7.51
(m, 2H, H-5, H-6), 7.80–7.92 (m, 4H, H-7′–H-10′), 8.00 (t, J 7.6, 1H, H-5′′), 8.17 (d, J 7.9, 2H,
H-4, H-7), 8.61 (d, J 7.9, 1H, H-6′′), 8.67 (d, J 2.0, 1H, H-2′′), 10.48 (s, 1H, NH). 13C NMR
(100 MHz, DMSO-d6) δ 166.50 (S-C=N), 165.95 (C=O), 155.37 (C-27), 152.95 (C-11), 147.79
(C-CH3), 143.79 (N-C-N), 139.58 (C-18), 135.21 (C-28), 134.37 (C-2), 131.49 (C-1), 129.79 (C-4),
127.77 (C-16), 127.43 (C-14), 126.85 (C-3), 124.98 (C-31), 123.32 (2C, C-6, C-15), 122.97 (C-17),
122.90 (C-5), 122.33 (C-32), 121.51 (C-33), 121.02 (C-30), 118.48 (C-19), 38.23 (CH2-C=O),
20.21 (CH3). Found (%): C, 62.00; H, 3.41; N, 17.21; S, 13.04. Calc. for C25H18N6OS2 (%): C,
62.22; H, 3.76; N, 17.41; S, 13.29.

2-(Benzo[d]thiazol-2-ylthio)-N-(2-methyl-5-(6-methyl-[1,2,4]triazolo[3,4-a]phthalazin-3-yl)phenyl)acetamide
(2n). Yield 3.87 g (78%), colorless crystals, m.p. 251–253 ◦C (DMFA). 1H NMR (400 MHz,
DMSO-d6, δ, ppm): 2.36 (s, 3H, Me), 2.87 (s, 6H, Me, DMSO), 4.39 (s, 2H, CH2), 7.32–7.42
(m, 3H, H-5, H-6, H-5′′), 7.84–7.89 (m, 3H, H-7, H-8′, H-9′), 7.96–8.03 (m, 1H, H-7), 8.13–8.18
(m, 2H, H-7′, H-10′), 8.61 (d, J 8.0, 1H, H-4′′), 8.69 (s, 1H, H-2′′), 9.67 (s, 1H, NH). 13C NMR
(100 MHz, DMSO-d6) δ 166.53 (S-C=N), 165.92 (C=O), 155.35 (C-27), 152.92 (C-11), 147.80
(C-7), 143.77 (C-10), 139.56 (C-18), 135.18 (C-28), 134.35 (C-16), 131.46 (C-17), 129.80 (C-2),
127.76 (C-1), 127.32 (C-4), 126.91 (C-14), 124.95 (C-3), 123.30 (C-31), 122.99 (2C, C-6, C-32),
122.91 (C-15), 122.34 (C-5), 121.50 (C-33), 121.07 (C-30), 118.46 (C-19), 38.24 (C-23), 24.51
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(CH3), 20.19 (CH3). Found (%): C, 62.56; H, 4.40; N, 17.11; S, 13.15. Calc. for C26H20N6OS2
(%): C, 62.88; H, 4.06; N, 16.92; S, 12.91.

2-(Benzo[d]thiazol-2-ylthio)-N-(5-(p-tolyl)benzo[4,5]imidazo[2,1-a]phthalazin-9-yl)acetamide (2o).
Yield 4.68 g (88%), colorless crystals, m.p. 248–250 ◦C (DMFA). 1H NMR (400 MHz, DMSO-
d6, δ, ppm): 2.52 (s, 3H, Me), 4.40 (s, 2H, CH2), 7.33–7.44 (m, 3H, H-3′′, H-5′′, H-10′),
7.57–7.69 (m, 3H, H-2′′, H-6′′, H-11′), 7.76–8.03 (m, 6H, H-5, H-6, H-1′–H-4′), 8.26 (d, J 1.8,
1H, H-8′), 8.74–8.78 (m, 2H, H-4, H-7), 10.47 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d6) δ
166.59 (S-C=N), 165.60 (2C, N=C-N, C=O), 152.98 (C-33), 142.42 (C-8), 141.68 (C-16), 139.63
(C-24), 136.57 (C-17), 135.21 (C-19), 133.47 (C-34), 132.25 (C-22), 130.20 (2C, C-23, C-25),
129.61 (2C, C-26, C-27), 128.68 (C-11), 127.97 (C-12), 126.86 (C-9), 125.35 (C-10), 124.97 (C-13),
124.21 (C-36), 124.12 (C-37), 122.35 (C-20), 121.51 (C-35), 116.21 (C-38), 111.51 (C-14), 109.66
(2C, C-18, C-21), 38.34(CH2-C=O), 21.44 (CH3). Found (%): C, 67.42; H, 4.21; N, 13.54; S,
12.36. Calc. for C30H21N5OS2 (%): C, 67.77; H, 3.98; N, 13.17; S, 12.06.

2,2′-{[(2,5-Dimethyl-1,4-phenylene)bis(methylene)]bis(sulfanediyl)}bis(benzo[d]thiazole) (3a). Yield 90%,
colorless crystals, m.p. 170–171 ◦C (methylcellosolve), 1H NMR (200 MHz, DMSO-d6, δ,
ppm): 2.32 (s, 6H, 2Me), 4.54 (s, 4H, 2CH2), 7.26 (s, 2H, H-3′′, H-5′′), 7.34–7.37 (m, 2H, H-5,
H-5′), 7.43–7.47 (m, 2H, H-6, H-6′), 7.86 (d, J 1.1, H-7), 7.88 (d, J 1.1, H-7′), 7.92 (d, J 1.3, H-4),
7.93 (d, J 1.3, H-4′). 13C NMR (100 MHz, DMSO-d6) δ 166.60 (S-C=N), 165.72 (S-C-S), 152.92
(C-5), 142.40 (C-23), 141.62 (C-14), 136.56 (C-17), 135.23 (C-4), 133.24 (C-22), 130.20 (2C, C-13,
C-16), 129.63 (2C, C-12, C-15), 127.97 (C-1), 126.86 (C-2), 125.35 (C-27), 124.97 (C-26), 124.23
(2C, C-3, C-25), 124.11 (2C, C-6, C-28), 37.15 (2C, C-11, C-18), 21.42 (2C, CH3). Found (%): C,
62.36; H, 4.56; N, 6.34; S, 27.81. Calc. for C24H20N2S4 (%): C, 62.03; H, 4.34; N, 6.03; S, 27.60.

2,2′-{[(2,5-Dimethoxy-1,4-phenylene)bis(methylene)]bis(sulfanediyl)}bis(benzo[d]thiazole) (3b).
Yield 95%, colorless crystals, m.p. 184–186 ◦C (DMFA). 1H NMR (400 MHz, DMSO-d6, δ,
ppm): 3.79 (s, 6H, 2OMe), 4.56 (s, 4H, 2CH2), 7.18 (s, 2H, H-3′′, H-6′′), 7.30–7.36 (m, 2H,
H-5, H-5′), 7.41–7.47 (m, 2H, H-6, H-6′), 7.84–7.92 (m, 4H, H-4, H-4′, H-7, H-7′). 13C NMR
(100 MHz, DMSO-d6) δ 166.59 (S-C=N), 166.45 (S-C-S), 159.14 (2C, C-OCH3), 152.66 (C-5),
148.82 (C-23), 137.53 (C-4), 136.67 (C-22), 133.48 (C-15), 132.65 (C-12), 132.05 (2C, C-1, C-17),
128.44 (2C, C-2, C-26), 127.65 (2C, C-3, C-25), 124.78 (2C, C-6, C-28), 121.05 (2C, C-13, C-16),
53.28 (2C, O-CH3), 36.84 (2C, C-11, C-18). Found (%): C, 58.40; H, 4.29; N, 5.26; S, 25.49.
Calc. for C24H20N2O2S4 (%): C, 58.04; H, 4.06; N, 5.64; S, 25.82.

3.1.2. Synthesis of 9-((4-(Benzo[d]thiazol-2-yl)piperidin-1-yl)sulfonyl)-4-methoxy-6-methyl-
5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-g]isoquinoline (5)

Compound 5 was obtained from 2-(piperidin-4-yl)benzo[d]thiazole 4 and 4-methoxy-
6-methyl-5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-g]isoquinoline-9-sulfonyl chloride according
to a modified procedure [31].

Yield 2.71 (54%), colorless crystals, m.p. 164–166 ◦C (EtOAc). 1H NMR (400 MHz,
DMSO-d6, δ, ppm): 1.81–1.96 (m, 2H, 1H-3′′, 1H-5′′), 2.17–2.26 (m, 2H, 1H-3′′, 1H-5′′), 2.35
(s, 3H, Me), 2.84–2.93 (m, 2H, H-7), 3.01–3.10 (m, 5H, H-2′′, H-4′′, H-6′′), 3.32 (s, 2H, H-8),
3.78–3.82 (m, 2H, H-5), 4.06 (s, 3H, OMe), 6.05 (s, 2H, H-2), 7.33–7.48 (m, 2H, H-5′, H-6′),
7.88–7.96 (m, 2H, H-4′, H-7′). 13C NMR (100 MHz, DMSO-d6) δ 169.34 (N=C-S), 168.86
(C-O), 159.42 (C-26), 145.81 (C-3), 144.37 (2C, C-2, C-25), 130.18 (2C, C-29, C-30), 119.22 (2C,
C-28, C-31), 113.57 (2C, C-4, C-5), 112.99 (C-6), 94.14 (O-C-O), 74.04 (C-34), 40.90 (3C, C-7,
C-9, C-35), 36.65 (2C, C-18, C-22), 31.11 (C-20), 28.15 (2C, C-19, C-21), 19.54 (C-10). Found
(%): C, 57.18; H, 5.29; N, 8.15; S, 12.41. Calc. for C30H21N5OS2 (%): C, 57,47; H, 5.43; N, 8.38;
S, 12.78.

3.1.3. Synthesis of 2-{1-[(2-Tosylpyridin-3-yl)methyl]piperidin-4-yl}benzo[d]thiazole (6)

A mixture of 2-(piperidin-4-yl)benzo[d]thiazole 4 (2.18 g, 0.01 mol), 3-(chloromethyl)-2-
tosylpyridine (2.82g, 0.01 mol), and NaHCO3 (1.68 g, 0.02 mol) in DMF (20 mL) was stirred
24 h at 20–25 ◦C, water (40 mL) was added, the precipitate was filtered off and washed
with water (3 × 15 mL).
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Yield 3.61 g (78%), colorless crystals, m.p. 153–155 ◦C (EtOAc). 1H NMR (400 MHz,
DMSO-d6, δ, ppm): 1.90–1.98 (m, 2H, 1H-3′′′, 1H-5′′′), 2.11–2.16 (m, 2H, 1H-3′′′, 1H-5′′′),
2.33–2.40 (m, 2H, 1H-2′′′, 1H-6′′′), 2.46 (s, 3H, Me), 2.93–2.97 (m, 2H, 1H-2′′′, 1H-6′′′),
3.10–3.22 (m, 1H, H-4′′′), 4.07 (s, 2H, CH2), 4.34–4.48 (m, 4H, H-5, H-6, H-3′, H-5′), 7.54–7.58
(m, 1H, H-5′′), 7.80–7.86 (m, 2H, H-2′, H-6′), 7.89–7.94 (m, 2H, H-4, H-7), 8.22 (d, J 7.7, 1H,
H-4′′), 8.38–8.42 (m, 1H, H-6′′). 13C NMR (100 MHz, DMSO-d6) δ 175.96 (S-C-N), 156.54
(C=N), 153.10 (C-5), 147.82 (C-20), 144.93 (C-29), 140.62 (C-26), 136.71 (C-4), 134.79 (C-18),
134.54 (C-17), 130.06 (2C, C-28, C-30), 129.18 (2C, C-27, C-31), 127.77 (C-1), 126.52 (C-2),
125.29 (C-19), 122.75 (C-6), 122.61 (C-3), 56.70 (C-16), 53.17 (2C, C-12, C-14), 40.65 (C-10),
32.37 (2C, C-11, C-15), 21.58 (CH3). Found (%): C, 64.48; H, 5.16; N, 9.15; S, 13.60. Calc. for
C25H25N3O2S2 (%): C, 64.77; H, 5.44; N, 9.06; S, 13.83.

3.1.4. Synthesis of N-[6-(4-Bromo-1H-pyrazol-1-yl)pyridin-3-yl]benzo[d]thiazole-6-carboxamide (8)

A mixture of benzo[d]thiazole-6-carboxylic acid 7 (1.80 g, 0.01 mol), SOCl2 (1.43 g,
0.87 mL, 0.012 mol), CHCl3 (20 mL) and DMF (0.05 mL) was refluxed until gas evolution
stops, cooled, and the resulting solution of benzo[d]thiazole-6-carbonyl chloride was added
dropwise at 0 ◦C to the solution of 6-(4-bromo-1H-pyrazol-1-yl)pyridin-3-amine (2.39 g,
0.01 mol) in CHCl3 (20 mL) and Et3N (2.02 g, 2.79 mL, 0.02 mol). In 10 min, a solution of
NaHCO3 (2.52 g, 0.03 mol) and water (50 mL) were added. The organic layer is separated
and dried, and the solvent is distilled off in a vacuum at 35–40 ◦C. Furthermore, precipitate
was filtered off and washed with water (3 × 15 mL).

Yield 3.12 g (78%), colorless crystals, m.p. 247–248 ◦C (EtOH). 1H NMR (400 MHz,
DMSO-d6, δ, ppm): 7.74 (s, 1H, H-2′), 7.91 (d, J 8.9, 1H, H-4′), 8.17–8.21 (m, 2H, H-4, H-5),
8.43 (dd, J 8.9, 2.5, 1H, H-5′), 8.62 (s, 1H, H-7), 8.78 (s, 1H, H-5′′), 8.88 (d, J 2.5, 1H, H-3′′),
9.46 (d, J 1.6, 1H, H-2), 10.58 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d6) δ 165.81(C=O),
159.91 (S-CH2-N), 155.48 (C-5), 146.32 (C-16), 142.53 (C-22), 140.24 (C-14), 135.33 (C-4),
134.20 (C-20), 131.74 (C-13), 131.25 (C-2), 127.53 (C-18), 126.22 (C-1), 123.32 (C-3), 123.23
(C-6), 112.24 (C-17), 96.09 (C-Br). Found (%): C, 48.32; H, 2.68; Br + S, 27.64; N, 17.21. Calc.
for C16H10BrN5OS (%): C, 48.01; H, 2.52; Br, 19.96; N, 17.50; S, 8.01.

3.1.5. Synthesis of N-(6-Bromobenzo[d]thiazol-2-yl)-2-(4-methyl-1-oxophthalazin-2(1H)-yl)
acetamide (10)

A mixture of 2-(4-methyl-1-oxophthalazin-2(1H)-yl)acetic acid 9 (2.18 g, 0.01 mol),
SOCl2 (1.43 g, 0.87 mL, 0.012 mol), CHCl3 (15 mL) and DMF (0.05 mL) was refluxed until
gas evolution stops, cooled and the resulting solution of 2-(4-methyl-1-oxophthalazin-2(1H)-
yl)acetyl chloride was added dropwise at 0 ◦C to a solution of 6-bromobenzo[d]thiazol-2-
amine (2.29 g, 0.01 mol) in DMF (15 mL) and piridine (2.23 mL, 0.03 mol). Then the mixture
was stirred 0.5 h, NaHCO3 (9.5 g), water (100 mL) and petroleum (20 mL) were added. The
precipitate was filtered off and washed with water (3 × 15 mL).

Yield 2.23 g (52%), colorless crystals, m.p. 271–272 ◦C (DMF). 1H NMR (400 MHz,
DMSO-d6, δ, ppm): 2.60 (s, 3H, CH3), 5.07 (s, 1H, CH2), 7.51 (dd, J 8.6, 2.0, 1H, H-4), 7.65 (d,
J 8.6, 1H, H-5), 7.83–7.88 (m, 1H, H-7′), 7.93–7.95 (m, 1H, H-6′), 8.09 (d, J 2.0, 1H, H-7), 8.32
(d, J 7.7, H-8′), 12.65 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d6) δ 167.85 (C=O), 159.11
(C=O), 158.87 (C-8), 148.14 (C-5), 144.39 (C-17), 134.09 (2C, C-4, C-24), 130.07 (C-18), 127.22
(2C, C-1, C-19), 126.57 (2C, C-23, C-26), 124.80 (2C, C-3, C-25), 116.08 (2C, C-2, C-6), 54.17
(CH2-C=O), 18.87(CH3). Found (%): C, 50.12; H, 2.86; Br + S, 26.31; N, 13.05. Calc. for
C18H13BrN4O2S (%): C, 50.36; H, 3.05; Br, 18.61; N, 13.05; S, 7.47.

3.2. Biological Evaluation
3.2.1. Antibacterial Activity

The following Gram-negative bacteria: Escherichia coli (ATCC 35210), Enterobacter cloa-
cae (clinical isolate), Salmonella typhimurium (ATCC 13311), as well as Gram-positive bacteria:
Listeria monocytogenes (NCTC 7973), Bacillus cereus (clinical isolate), and Staphylococcus aureus
(ATCC 6538) were used. The organisms were obtained from the Mycological Laboratory, De-
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partment of Plant Physiology, Institute for Biological Research “Siniša Stankovic”, Belgrade,
Serbia. The minimum inhibitory (MIC) and minimum bactericidal (MBC) concentrations
were determined by the modified microdilution method as previously reported [32,33].

3.2.2. Antifungal Activity

The evaluation of the antifungal activity against the fungi used was performed as
detailed described earlier [5,34,35].

3.3. Docking Studies

AutoDock 4.2® software was used for the in silico studies and detailed procedure is
reported in our previous paper [36].

3.4. Drug Likeness

Five filters were used to predict Drug-likeness [37–40] by the Molsoft software (San
Diego, CA, USA) and SwissADME program (http://swissadme.ch, accessed on 25 Octo-
ber 2022) via the ChemAxon’s Marvin JS structure drawing tool.

4. Conclusions

This work presents the synthesis and study of antibacterial and antifungal activities
against a panel of bacterial and fungal pathogens of twenty-one new benzohiazole deriva-
tives. The antibacterial activity of tested compounds revealed that they have moderate
activity with minimal inhibitory concentration being 0.23–2.5 mg/mL and minimal bacteri-
cidal at 0.47–0.75 mg/mL. Compounds appeared to be very active against En. cloacae but
not against S. aureus.

All compounds exhibited good antifungal potency, with an MIC in range of 0.06–0.47 mg/mL
and MFC at 0.11–0.94 mg/mL. Compound 2d demonstrated the best activity among all
tested with MIC/MFC at 0.008–0.17/0.11–0.23 mg/mL, respectively. The most sensitive
fungal to compounds tested was T. viride, while A. fumigatus was the most resistant one.
The behavior of bacteria and fungi toward our compounds was different probably due
to the differences in organization of their genetic material as well as a consistence of the
cell wall.

According to docking results it seems that inhibition of the MurB enzyme is a putative
mechanism of antibacterial activity, whereas inhibition of CYP51 reductase is suggested to
be responcible for antifungal activity of the compounds.
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