Serbian Biochemical Society

President: Marija Gavrović-Jankulović **Vice-president:** Suzana Jovanović-Šanta **General Secretary:** Jelica Milošević **Treasurer:** Milica Popović

Organization Committee

Vladimir Mihailović Aleksandar Ostojić Nevena Đukić Jelena S. Katanić Stanković Marko Živanović Nikola Srećković Stefan Marković Slađana Đorđević Nataša Simin Milan Nikolić Milica Popović Jelica Milošević

Scientific Board

Marija Gavrović-Jankulović Suzana Jovanović-Šanta Marina Mitrović Tatjana Jevtović Stoimenov Ivan Spasojević Snežana Marković Melita Vidaković Natalija Polović Aleksandra Zeljković Romana Masnikosa Radivoje Prodanović

Proceedings

Editor: Ivan Spasojević Technical support: Dragana Robajac Cover design: Zoran Beloševac Publisher: Faculty of Chemistry, Serbian Biochemical Society Printed by: Colorgrafx, Belgrade

Serbian Biochemical Society Tenth Conference

with international participation

24.09.2021. Kragujevac, Serbia

"Biochemical Insights into Molecular Mechanisms"

Sclareol, a natural compound, inhibits P-glycoprotein activity in cancer cells

Ana Kostić¹, Ema Lupšić¹, Andrea M. Nikolić², Miodrag Dragoj¹, Sofija Jovanović Stojanov¹, Miroslav Novaković³, Igor M. Opsenica², Milica Pešić¹

¹Department of Neurobiology, Institute for Biological Research "Siniša Stanković"— National Institute of Republic of Serbia, University of Belgrade, Belgrade; Serbia ²Faculty of Chemistry, University of Belgrade ³Institute of Chemistry, Technology and Metallurgy, National Institute of Republic of Serbia, University of Belgrade

*e-mail: ana.kostic@ibiss.bg.ac.rs

P-glycoprotein (P-gp) is often expressed at the cellular membrane of cancer cells where it plays a significant role in protecting cancer cells from extracellular assault. It works as an export transporter for many substrates - xenobiotics including chemotherapeutics. Several generations of P-gp inhibitors have been developed and studied but they have not yet been introduced into clinics. The most promising fourth-generation comprises natural compounds. In this study, we evaluated the potential of sclareol, a naturally occurring labdane diterpene, to inhibit P-gp activity in human glioblastoma (U87, and its resistant variant U87-TxR with P-gp overexpression) and non-small cell lung carcinoma (NCI-H460, and its resistant variant NCI-H460/R with P-gp overexpression) cell lines. To that end, we used the accumulation assays of fluorescent P-gp substrates (rhodamine 123 and doxorubicin) that were analyzed by flow cytometry. An increase in the accumulation of the P-gp substrate corresponds to the level of P-gp activity suppression. Our results showed that simultaneous application of sclareol (20 μ M and 50 μ M) with either rhodamine 123 (5 uM) or doxorubicin (20 uM) significantly increased their accumulation in resistant cells (U87-TxR and NCI-H460/R) than in their corresponding sensitive cells (U87 and NCI-H460). The doxorubicin accumulation was also considerably increased in sensitive U87 cells implying that sclareol may interact with doxorubicin through other mechanisms in glioblastoma cells (not only by P-gp inhibition). Further investigations are envisioned to reveal the mechanisms behind sclareol and doxorubicin interaction in glioblastoma cells.

Acknowledgements

This study was supported by Ministry of Education, Science and Technological Development, Republic of Serbia (Contract No. 451-03-9/2021-14/200007).