

The 8th International Electronic Conference on Medicinal Chemistry (ECMC 2022) 01–30 NOVEMBER 2022 | ONLINE

P-gp modulation and biosynthetic relationship of isolated compounds from *Plectranthus mutabilis* Codd

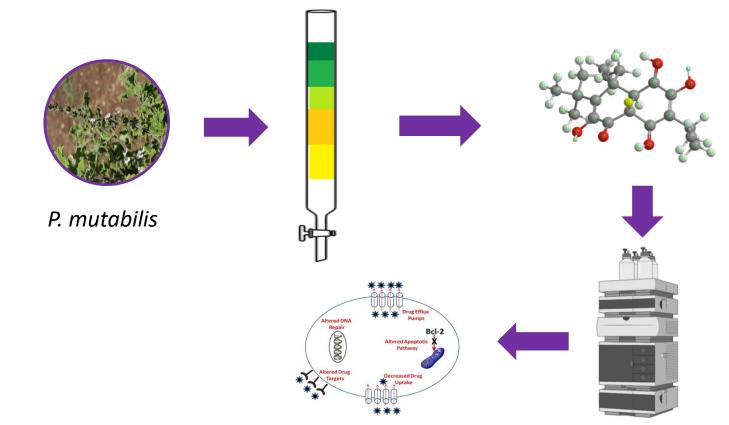
Chaired by **DR. ALFREDO BERZAL-HERRANZ**; Co-Chaired by **PROF. DR. MARIA EMÍLIA SOUSA**

Epole Ntungwe^{1,2}, Sofija Jovanović Stojanov³, Noélia Duarte⁴, Nuno R. Candeias⁵, Ana María Díaz-Lanza², Milica Pešić³, Patrícia Rijo1,4*Lastname ²

¹ CBIOS – Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal.
 ² University of Alcalá de Henares, Ctra. A2, Km 33.100–Campus Universitario, 28805 Alcalá de Henares, Spain
 ³ Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.

⁴ Research Institute for Medicines (iMED.Ulisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.

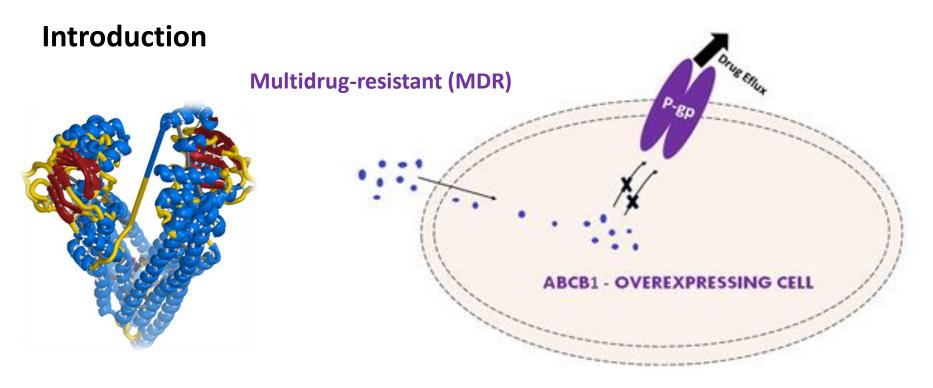
⁵ Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland..



* Corresponding author: patricia.rijo@ulusofona.pt

P-gp modulation and biosynthetic relationship of isolated compounds from *Plectranthus mutabilis* Codd

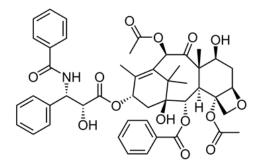
Graphical Abstract

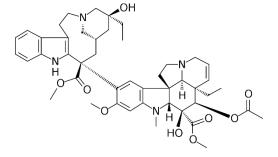


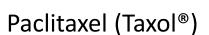
Abstract: The development of multidrug resistance (MDR) is one of the major challenges in the successful treatment of cancer. MDR is often associated with the P-glycoprotein efflux pump. Natural products are a source of promising lead compounds to overcome MDR and, among them, diterpenoids from Plectranthus spp. are known as P-gp modulators. Bioguided fractionation of P. mutabilis acetone extract led to the isolation of one new nor-abietane diterpene, mutabilol (1), and three coleon compounds (coleon-U-quinone (2), 8α , 9α epoxycoleon-U-quinone (3), and coleon U (4)). Moreover, an additional acetoxy derivative of an abietane diterpenoid was tentatively identified using HPLC-MS/MS. The compounds were quantified using HPLC-DAD and coleon U was found to be the major compound in the extract. Using computational studies, a biosynthetic relationship between compounds 2 - 4 revealed that both compounds 2 and 3 were formed directly from compound 4. Compounds 2 - 4 were found to be selective towards the cancer cell lines and their anticancer effect was not compromised by the P-gp activity in resistant NCI-H460/R cells. Importantly 2, 3, and 4 were able to inhibit P-gp activity in NCI-H460/R cells at longer exposure (72 h) and revert doxorubicin (DOX) resistance in combined treatment. None of the compounds influenced the P-gp expression in NCI-H460/R cells, while the extract significantly increased it. Our study identified abietane diterpenoids from P. mutabilis that can evade MDR in cancer cells and inhibit the P-gp activity in prolonged treatment.

Keywords: Plecthranthus; P. mutabilis; isolation; P-glycoprotein

ECMC 2022

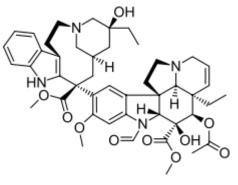



- Greatly hinders the efficacy of chemotherapy
- Major challenge to cancer therapy
- **P-gp** is one of the major contributors to MDR
- Need to develop new reversal MDR agents


Introduction

Natural products

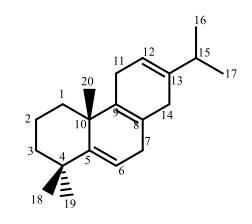
- Source of bioactive compounds
- Source of anti-cancer drugs
- 60% of available anticancer drugs in clinic
 - are derived from natural sources



Vinblastine

Vincristine

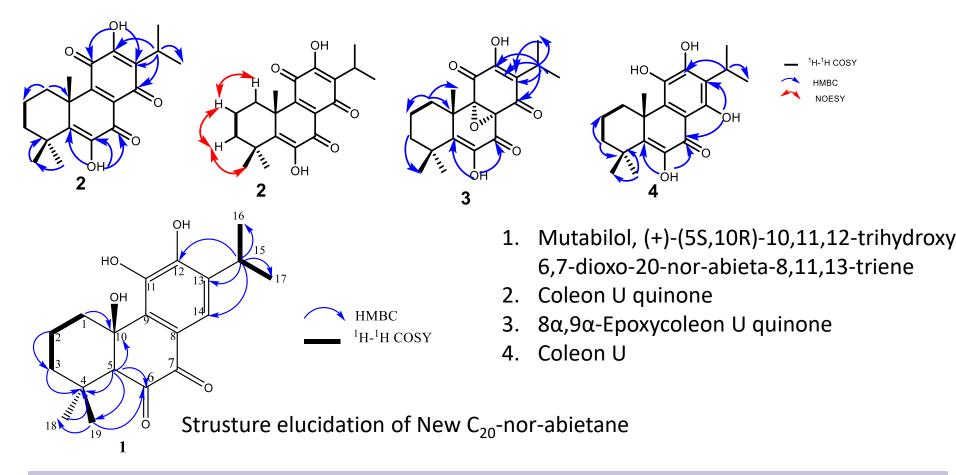
Nat Rev Drug Discov 20, 200–216 (2021). https://doi.org/10.1038/s41573-020-00114-z



Introduction

Plectranthus genus (Lamiaceae)

- Traditional medicinal practice
- Treatment of ailments
- Treatment of different types of cancer


- Source of bioactive compounds:
- ✤ abietane-type diterpenoids
- antibacterial, antifungal, antiplasmodial, and

antitumoral

ECMC

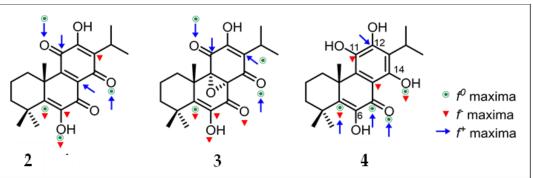
2022

Plectranthus mutabilis Codd. phytochemical study

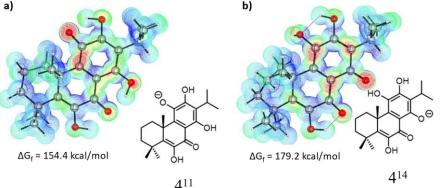
Epole N. Ntungwe; et al. ACS Medicinal Chemistry Letters, 2022, https://doi.org/10.1021/acsmedchemlett.1c00711

Plectranthus mutabilis Codd. phytochemical study

Abietane Diterpenoids compositions of *P. mutabilis* extract by HPLC–DAD


Compounds	Concentration µg/mg	LOD µg/mg	LOQ µg/mg
Mutabilol (1)	51±0.008	1.120	3.39
Coleon U quinone (2)	35±0.005	0.102	0.310
8α,9α-Epoxycoleon U quinone (3)	36±0.018	0.828	2.510
Coleon U (4)	96±0.048	0.78	2.35

Results are expressed as average ± standard deviation (SD) of three determinations. Compounds 2 and 3 were quantified at 270 nm and compounds 1 and 4 at 254 nm.


Epole N. Ntungwe; et al. ACS Medicinal Chemistry Letters, 2022, https://doi.org/10.1021/acsmedchemlett.1c00711

Biosynthetic relation between 2-4

Positions with higher Fukui indexes

Electrophilic (f_k^{-}) , nucleophilic (f_k^{+}) and radical (f_k^{0}) Fukui functions of **2-4**. The higher condensed Fukui indexes are indicated as green circles, red triangles, and blue arrows, respectively representing the sites in the molecules that are most susceptible for a radical attack, most nucleophilic. and most electrophilic.

Hydrogen Bond Dissociation Energies (BDEs; kcal/mol) of O-H bonds in 4.

Position of OH in 4	O-H Bond Dissociation Energy (kcal/mol)	
C6	103.8	
C11	84.1	
C12	103.0	
C14	116.5	

- BDE O-H at the C11 is lowest -the hydroquinone to quinone
- 25 kcal/mol difference in the Gibbs free energy
- That the hydroxyl deprotonation at position 11 is preferable
- both the quinone 2 and the epoxyquinone 3 are formed directly from Coleon U

Epole N. Ntungwe; et al. ACS Medicinal Chemistry Letters, 2022, https://doi.org/10.1021/acsmedchemlett.1c00711

есмс 2022

Selectivity towards cancer cells

Inhibition of cell viability assayed by MTT

Human non-small cell lung carcinoma cells (NCI-H460), its MDR variant with P-gp ex-pression (NCI-H460/R), and human embryonic pulmonary fibroblasts (MRC-5)

Compounds	NCI-H460	NCI-H460/R	MRC-5	Selectivity index ^a
1	> 50	> 50	> 50	n.a.
2	22.96±0.56 ^b	20.37±0.43	44.13±1.19	2.0
3	20.23±0.59	17.26±0.26	40.22±0.44	2.0
4	14.11+0.19	14.50+0.18	35.47±0.56	2.5
extract	15.30±0.37 ^c	15.66±0.47	16.68±0.69	1.0
Paclitaxel	0.0006 ± 0.0001	$\textbf{0.117} \pm \textbf{0.013}$	0.523 ± 0.001	872

^aSelectivity index was calculated as a relation between IC_{50} for MRC-5 cells and IC_{50} for NCI-H460 ^b IC_{50} values in μ M for compounds,

 $^{\circ}IC_{50}$ values in µg/mL for extract

- ✤ Reduction of cancer cell viability
- ✤ All compounds and the extract are not substrates for P-gp

Interaction with P-gp

Rho 123 accumulation assay in MDR NCI-H460/R cells

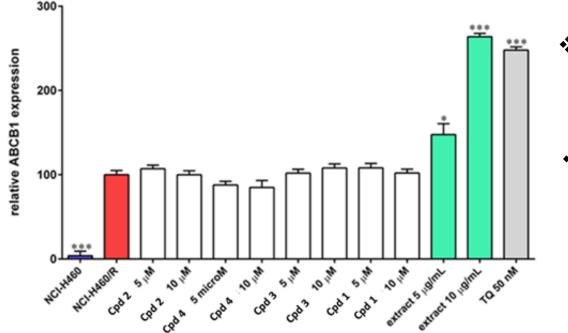
Compo Li	unds/(Cell ines)	MFI ^a	FAR±S.E. ^b	SI±S.E.c	
NCI	-H460 ^d	2479.3	3.06±0.61		
NCI-	H460/R	811.1		32.71±1.65	Tariauidar (TO) Desitive control
TQ	50 nM	3004.0	3.70±0.54 ^e	121.16±0.88 ^e	Tariquidar (TQ) – Positive control
Extract	5 μg/mL	339.5	0.42±0.20 ^f	13.69±3.24 ^f	
EXITACI	10 μg/mL	307.7	0.38±0.20	12.41±3.15	
1	5 μΜ	265.9	0.33±0.21	10.72±3.55	
	10 µM	254.5	0.31±0.22	10.26±3.63	Mean fluorescence intensity (MFI)
2	5 μΜ	277.3	0.34±0.20	11.18±3.29	Fluorescence activity ratio (FAR)
2	10 µM	242.0	0.30±0.20	9.76±3.44	 Sensitivity index (SI)
3	5 µM	289.7	0.36±0.20	11.68±3.29	
	10 µM	276.6	0.34±0.21	11.16±3.41	
	5 µM	173.5	0.21±0.24	7.00±3.99	
4	10 µM	109.7	0.14±0.29	4.43±4.71	
1					

✤ TQ increases the accumulation of Rho123 and thus inhibits P-gp activity

Compounds and extract stimulate P-gp activity in a direct interaction assessed after 30 min

Epole N. Ntungwe; et al. ACS Medicinal Chemistry Letters, 2022, https://doi.org/10.1021/acsmedchemlett.1c00711

Rho123 accumulation after 72 h treatment with compounds and extract


Compound	ls/(Cell Lines)	MFI ^a	FAR±S.E. ^b	SI±S.E. ^c
NCI	NCI-H460 ^d		4.19 ± 0.45	
NCI-	H460/R	513.7		23.88±2.22
TQ	50 nM	3004.0	3.70 ± 0.54^{e}	121.16 ± 0.88^{e}
Extract	5 μg/mL	654.0	1.27 ± 0.96^{e}	30.40 ± 2.14
Extract	10 µg/mL	473.4	$0.92{\pm}0.96^{\rm f}$	22.01±2.14
1	5 μΜ	595.3	1.16 ± 0.98	27.68±2.18
	10 µM	573.0	1.12 ± 1.03	26.64±2.29
2	5 μΜ	669.6	$1.30{\pm}1.00$	31.13±2.22
2	10 µM	991.3	1.93 ± 0.86	46.09 ± 1.90
3	5 µM	711.6	1.39 ± 0.98	33.08±2.19
	10 µM	666.1	1.30 ± 1.02	30.97±2.26
	5 µM	1258.8	2.45 ± 0.78	58.52±1.73
4	10 µM	253.0	0.49 ± 1.25	11.76±2.78
	•			

Lower concentration -increased the Rho123 accumulation - inhibiting P-gp

At higher conc. the extract and **4** decreased Rho123 accumulation – stimulating P-gp

Epole N. Ntungwe; et al. ACS Medicinal Chemistry Letters, 2022, https://doi.org/10.1021/acsmedchemlett.1c00711

Effects on P-gp (ABCB1) expression after 72 h treatment of NCI-H460/R cells

- None of the compounds had influence on ABCB1 expression
- The extract significantly increased ABCB1 expression in a concentration-dependent manner

The extract can increase resistance by stimulating P-gp expression. Therefore, it would not be wise to use the extract in combination with chemotherapeutics which are P-gp substrates.

Epole N. Ntungwe; et al. ACS Medicinal Chemistry Letters, 2022, https://doi.org/10.1021/acsmedchemlett.1c00711

Reversal of doxorubicin (DOX) resistance in NCI-H460/R cells

Compounds	Concentration	IC ₅₀ for DOX	Relative reversal index
DOX		1.620±0.084	
	1 μM	0.565±0.012	2.867***
2	2 μM	0.482±0.010	3.361***
	<u>5 μΜ</u>	0.217±0.004	7.465***
3	1 μM	0.820±0.016	1.976***
	2 µM	0.345±0.007	4.696***
	5 μΜ	0.343±0.006	4.723***
	1 μM	0.625±0.013	2.592***
4	2 μM	0.540±0.012	3.000***
	5 μΜ	0.268±0.006	6.045***

DOX (0.1, 0.2, 0.5, 1 and 2 μ M) was administrated after 72 h pre-treatment with 2, 3, and 4 applied in three concentrations below their IC₅₀ (1, 2, and 5 μ M).

- ✤ All combinations of all compounds with DOX showed significant reversal potential
- * The most potent sensitization of NCI-H460/R cells to DOX was achieved with 5 μM of 2 and 4

Epole N. Ntungwe; et al. ACS Medicinal Chemistry Letters, 2022, https://doi.org/10.1021/acsmedchemlett.1c00711

Conclusions

pubs.acs.org/acsmedchemiett

C₂₀-nor-Abietane and Three Abietane Diterpenoids from Plectranthus mutabilis Leaves as P-Glycoprotein Modulators

Published as part of the ACS Medicinal Chemistry Letters virtual special issue "Medicinal Chemistry in Portugal and Spain: A Strong Iberian Alliance".

Epole N. Ntungwe,[◆] Sofija Jovanović Stojanov,[◆] Noélia M. Duarte, Nuno R. Candeias, Ana M. Díaz-Lanza, Máté Vágvölgyi, Attila Hunyadi, Milica Pešić,* and Patrícia Rijo*

ECMC 2022

The 8th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2022 | ONLINE Letter

Acknowledgments

FCT Fundação para a Ciência e a Tecnologia MINISTÉRIO DA CIÊNCIA. TECNOLOGIA E ENSINO SUPERIOR

Short Term Scientific Mission (STSM) of the COST ACTION: CA17104

This project is funded by the UIDB/04567/2020, UIDP/04567/2020 PADDIC 2019 (ALIES-COFAC)

ECMC 2022