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Abstract: Obesity is on the rise worldwide, and consequently, obesity-related non-communicable
diseases are as well. Nutritional overload induces metabolic adaptations in an attempt to restore the
disturbed balance, and the byproducts of the mechanisms at hand include an increased generation of
reactive species. Obesity-related oxidative stress causes damage to vulnerable systems and ultimately
contributes to neoplastic transformation. Dysfunctional obese adipose tissue releases cytokines
and induces changes in the cell microenvironment, promoting cell survival and progression of
the transformed cancer cells. Other than the increased risk of cancer development, obese cancer
patients experience higher mortality rates and reduced therapy efficiency as well. The fact that
obesity is considered the second leading preventable cause of cancer prioritizes the research on
the mechanisms connecting obesity to cancerogenesis and finding the solutions to break the link.
Oxidative stress is integral at different stages of cancer development and advancement in obese
patients. Hypocaloric, balanced nutrition, and structured physical activity are some tools for relieving
this burden. However, the sensitivity of simultaneously treating cancer and obesity poses a challenge.
Further research on the obesity–cancer liaison would offer new perspectives on prevention programs
and treatment development.
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1. Introduction

Body mass increase is mainly a result of overnutrition and sedentarism but can also
be a result of genetic factors [1]. The energy surplus is stored in lipid depots, primarily in
the fat tissue. Adults are classified as underweight, normal weight, overweight, or obese
according to the body mass index (BMI), with BMI ≥ 25 delimitating overweight and BMI
≥ 30 obesity. Significantly, metabolic health goes beyond a change in total body mass and
simplified parameters for its assessment; cardinal aspects to be considered in the context of
health are body fat and muscle mass ratios, body fat distribution, the quality and balance
in daily nutrients, and physical activity.

In 2016, 13% of the world’s adult population was estimated to be obese, whereas 39%
were overweight [2]. The number of obese people is nearly three times higher than 50 years
ago. Estimates made before 2020 were that in the majority of European countries, more
than one in five people will be obese by 2025 [3], while in the USA, by 2030, every second
adult will be obese [4]. These projections preceded and, to that end, could not foresee the
yet-to-be-unraveled effects the coronavirus disease 2019 (COVID-19) pandemic left behind.
An increase in appetite and weight gain have been considered one of the long-haul effects
of COVID-19 [5]. While it is too early to give accurate numbers, a study published in 2022
reported an increase in average BMI by 0.6% and in obesity prevalence by 3% in the USA
population during the period of lockdown in 2020 [6]. Both obesity and being overweight
are major risk factors for non-communicable diseases (Figure 1), such as type 2 diabetes,
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coronary heart disease, stroke, as well as certain types of cancer, to name a few [7,8]. Despite
extreme economic inequality, it is considered that today, obesity is causing more deaths
worldwide than hunger in all parts of the world, apart from sub-Saharan Africa and Asia.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 2 of 23 
 

 

1), such as type 2 diabetes, coronary heart disease, stroke, as well as certain types of cancer, 
to name a few [7,8]. Despite extreme economic inequality, it is considered that today, obe-
sity is causing more deaths worldwide than hunger in all parts of the world, apart from 
sub-Saharan Africa and Asia. 

Cancer is a vast, heterogeneous group of diseases, with the major common traits be-
ing the independent growth and proliferation of cells that go beyond organism control. It 
can affect any organ in the human body. Although cancer types are vastly different, and 
even the cells within the same tumor might bare significant differences, the fundamental 
processes bringing them to existence can be relatively similar [9–11]. About half of the 
deaths in men, as well as almost 40% in women, are caused by cancers connected to mod-
ifiable risk factors that are considered preventable [12]. The leading preventable causes of 
cancer are considered to be smoking, alcohol use, being overweight, and obesity. The In-
ternational Agency for Research of Cancer has identified 13 cancer hotspots where the 
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Among them, breast, pancreas, colorectal, liver, and thyroid cancer are placed in the top 
10 with the highest incidence and mortality in the world [14]. The number of metabolic 
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incline compared to other modifiable factors. In fact, due to the decline of smoking, at the 
present rate, it is estimated by 2043, obesity will overtake smoking as the lead preventable 
cause of cancer in women in the UK [15].  

Obesity can be a significant factor in cancer development (Figure 1). Recently, Harris 
et al. 2022 [16] systematically described how obesity affects cancer hallmarks. Here, we 
will look in more detail at how the oxidative stress that develops in obesity provides a 
“fertile ground” for cancer development and influences tumor progression. This review 
will briefly present the molecular connection between obesity and different types of can-
cer through oxidative stress. We propose a hypothesis that oxidative stress, consequential 
to metabolic disorder, and molecular pathological changes induced by constitutive high-
caloric and/or high-fat intake in obese individuals play an important part in tumorigenesis 
and set a formidable milieu for cell transformation and malignancy progression.  

 
Figure 1. Obesity increases the risk of developing non-communicable diseases. Obesity results from 
the interaction of environmental factors (high food intake, low physical activity) and genetic factors 
(some gene variants are thought to play a role in the development of the obese phenotype). The 
basis of obesity is the imbalance between energy intake and expenditure, which leads to increased 
body fat percentage and body mass index (BMI). Perpetual increased energy leads to metabolic dys-
functions. Systemic oxidative stress is a consequence of this impaired metabolism. Obesity-related 
cancer types are considered preventable non-communicable diseases. 

Figure 1. Obesity increases the risk of developing non-communicable diseases. Obesity results from
the interaction of environmental factors (high food intake, low physical activity) and genetic factors
(some gene variants are thought to play a role in the development of the obese phenotype). The basis
of obesity is the imbalance between energy intake and expenditure, which leads to increased body fat
percentage and body mass index (BMI). Perpetual increased energy leads to metabolic dysfunctions.
Systemic oxidative stress is a consequence of this impaired metabolism. Obesity-related cancer types
are considered preventable non-communicable diseases.

Cancer is a vast, heterogeneous group of diseases, with the major common traits being
the independent growth and proliferation of cells that go beyond organism control. It can
affect any organ in the human body. Although cancer types are vastly different, and even
the cells within the same tumor might bare significant differences, the fundamental pro-
cesses bringing them to existence can be relatively similar [9–11]. About half of the deaths
in men, as well as almost 40% in women, are caused by cancers connected to modifiable
risk factors that are considered preventable [12]. The leading preventable causes of cancer
are considered to be smoking, alcohol use, being overweight, and obesity. The International
Agency for Research of Cancer has identified 13 cancer hotspots where the disease is consid-
ered to be preventable by weight reduction in obese patients: esophagus adenocarcinoma,
gastric cancer, colorectal, liver, pancreas, postmenopausal breast, endometrial, ovary, renal
cell, meningioma, thyroid, gallbladder, and multiple myeloma [13]. Among them, breast,
pancreas, colorectal, liver, and thyroid cancer are placed in the top 10 with the highest
incidence and mortality in the world [14]. The number of metabolic diseases-contributed
cancer deaths in the period between 2010 and 2019 had the sharpest incline compared to
other modifiable factors. In fact, due to the decline of smoking, at the present rate, it is
estimated by 2043, obesity will overtake smoking as the lead preventable cause of cancer in
women in the UK [15].

Obesity can be a significant factor in cancer development (Figure 1). Recently,
Harris et al. 2022 [16] systematically described how obesity affects cancer hallmarks. Here,
we will look in more detail at how the oxidative stress that develops in obesity provides a
“fertile ground” for cancer development and influences tumor progression. This review
will briefly present the molecular connection between obesity and different types of cancer
through oxidative stress. We propose a hypothesis that oxidative stress, consequential
to metabolic disorder, and molecular pathological changes induced by constitutive high-
caloric and/or high-fat intake in obese individuals play an important part in tumorigenesis
and set a formidable milieu for cell transformation and malignancy progression.
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2. The “Goldilocks Paradox” of Reactive Species

Oxidative stress is a result of an imbalance between the concentration of reactive
species and the efficiency of the systems—comprising enzymes and small molecules that
mitigate them. Some examples of reactive oxygen species are superoxide (O2

·−) hydrogen
peroxide (H2O2), hydroxyl radical (·OH), ozone (O3), hypochlorous acid (HOCl), singlet
oxygen (1O2), lipid (hydro)peroxides (LOOH), peroxyl radical (LOO·), and alkoxyl radical
(RO·); relevant reactive nitrogen species are nitric oxide (·NO) and strong oxidizing agent
peroxynitrite (ONOO−) [17]. Different reactive species interact, e.g., NO and O2

·− react to
give ONOO−, and the acronym for reactive oxygen and nitrogen species (RONS) emerged
as a description of their interrelationship. The deleterious effects of reactive species, i.e.,
damage to DNA, proteins, and lipids that ultimately lead to cell death, were first discovered,
as was the obvious relationship they have with living systems. Over time and with advances
in methodology, an important aspect of reactive species related to life emerged—namely,
reactive species as mediators in cell signaling. However, to participate in cell signaling,
they must meet several requirements: Their synthesis and clearance must be coordinated to
maintain redox balance, and they must be stable enough to perform the required task. The
two RONS that meet these conditions are H2O2 [18] and ·NO [19]. Both species mediate
signal transduction by oxidative post-translational modifications of proteins that modify
protein function [18–21].

When the cell is exposed to low-level H2O2, the immediate response is to shift glu-
cose metabolism from glycolysis to the pentose phosphate pathway (PPP), which allows
increased production of nicotinamide adenine dinucleotide phosphate (NADPH) [22].
ROS, in fact, causes NADPH deficiency because it is used as an electron donor for the
detoxification systems (mainly glutathione and thioredoxin system) and is oxidized to
NADP+. Increased NADP+ leads to higher activity of the major rate-limiting enzyme in
PPP, glucose-6-phosphate dehydrogenase (G6PD), which determines the flux of G6P into
this metabolic pathway [23]. At the same time, through ROS oxidation of their cysteine
(Cys) residues, the proteins’ main redox molecular switches, glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) and pyruvate kinase M2 (PKM2), block glycolysis, ensuring the
detour of glucose catabolism products toward PPP. In addition, several electron-transport
chain (ETC) proteins are regulated through Cys residues as well [24]; thus, this immediate
response to ROS is followed by a reduction in mitochondrial respiration to limit endoge-
nous ROS production [25]. Adenosine monophosphate-activated protein kinase (AMPK)
is activated to promote NADPH production and prevent anabolic processes that require
NADPH consumption [26]. In summary, brief exposure to subtoxic concentrations of ROS
leads to metabolic adaptations of the cell to avoid redox imbalance (Figure 2).

When the cell is exposed to increased RONS for a prolonged period of time, the
genetically programmed response is initiated, and the detoxification systems are activated
(Figure 2). The first line of defense is mainly controlled by nuclear factor E2-related factor 2
(Nrf2), the main redox balance regulator. By binding to the antioxidant response element
(ARE 5′-TGACXXXGC-3′), Nrf2 promotes the expression of PRDX, TRX1, TRXR1, GCL,
GSR1, GPX, and CAT, as well as about 200 other cytoprotective genes [27]. If the Nrf2-
induced response still fails to handle the harmful RONS, other transcription factor genes get
their chance to restore homeostases, such as activator protein 1 (AP-1), hypoxia-inducible
factor 1α (HIF-1α), class O of the forkhead box transcription factors (FOXOs), nuclear factor
kappa B (NFκB), and peroxisome proliferator-activated receptor-gamma coactivator 1α
(PGC-1α).
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generators (e.g., NOX), and generally inhibiting anabolic processes with the main purpose of sup-
plying NADPH to the Trx and GSH detoxification systems. A sustained increase in RONS leads to 
a transcriptionally programmed response. At the center of the transcription factors that respond to 
the increase in RONS is Nrf2, but other factors (AP-1, FOXOs, NFκB, etc.) also contribute to the 
defense. Should the RONS continue to cause cell damage, the cell eventually triggers some of the 
cell death pathways to maintain the integrity of the surrounding tissue. The exact mechanism of 
triggered cell death depends on the context of oxidative stress. 
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high-fat, high-sugar intake through fast, processed food and drinks and an inactive way 
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consequences, but obesity is a problem far beyond that. Metabolic changes that happen as 
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type 2 diabetes, cardiovascular abnormalities, and cancer [31]. 

3.1. Metabolic Environment in Obesity 
Increased energy intake is primarily addressed by the adipose tissue, the main tissue 

specialized for energy storage in the form of lipids. Nevertheless, adipose tissue is not just 
a simple energy depo—it is also a very important endocrine center that synthesizes and 
secretes hormones (adipokines) and communicates with the liver, gut, brain, etc., regulat-
ing energy homeostasis. Adipose tissue can adjust to long-term nutrient overload by ex-
panding its capacity for lipid storage by increasing the size of the adipocytes (hypertro-
phy) and the number of differentiated cells in the tissue (hyperplasia) [32]. In obesity, the 
capacity of adipose tissue is surpassed, and lipids start to accumulate in surrounding tis-
sues and organs that are not specialized for this function, such as the liver, skeletal muscle, 
and kidneys, causing lipotoxicity, inflammation, and systemic oxidative stress) [33]. In-
deed, an increase in oxidative stress markers and impaired antioxidant defense was re-
ported in different stages of obesity, during its development as well as in obese patients 
with and without insulin resistance [34]. Recently, it was shown that nitrosative stress and 
glycoxidation of proteins are increased in obese women compared to healthy controls as 
well as that bariatric surgery vastly normalizes detected abnormalities in these processes 

Figure 2. Increase in RONS concentration causes an adaptive response or cell death. Moderate
redox imbalance leads to metabolic adaptation by shifting glycolysis products to the PPP, inhibiting
RONS generators (e.g., NOX), and generally inhibiting anabolic processes with the main purpose of
supplying NADPH to the Trx and GSH detoxification systems. A sustained increase in RONS leads
to a transcriptionally programmed response. At the center of the transcription factors that respond
to the increase in RONS is Nrf2, but other factors (AP-1, FOXOs, NFκB, etc.) also contribute to the
defense. Should the RONS continue to cause cell damage, the cell eventually triggers some of the
cell death pathways to maintain the integrity of the surrounding tissue. The exact mechanism of
triggered cell death depends on the context of oxidative stress.

The major redox systems in the cell are the glutathione (GSH) and thioredoxin (Trx)
systems. The GSH system consists of GSH, a small tripeptide that accepts electrons via the
thiol group, the GSH-synthesizing enzyme glutamate-cysteine ligase (GCL), glutathione
peroxidases (GPx)—a group of enzymes that catalyze the neutralization of H2O2 and
lipid peroxides on account of GSH, and glutathione reductase (GR), reducing the oxidized
glutathione (GSSG) on account of FAD group and NADPH. Components of the Trx system
include Trx, a small redox protein with a thiol group that has numerous redox-regulated
protein targets in the cell, and thioredoxin reductase (TrxR), whose main role is to reduce
oxidized Trx at the expense of NADPH. Trx-interacting protein (TXNIP) is often assigned to
this group because one of its roles is to inhibit Trx. These two thiol systems are the mainstays
of redox homeostasis within the cell. Other enzymes and small molecules also contribute
to the maintenance and regulation of free radical concentration and damage control made
by RONS: superoxide dismutases (SODs) reduce the superoxide anion into less toxic
H2O2, catalase (CAT) neutralizes H2O2, and peroxiredoxins (Prx), a group of enzymes,
catalyze the reduction of H2O2, as well as organic hydroperoxides and peroxinitrates. Trx
reduces oxidized Prx, thus enabling it to perpetuate the peroxide regulation. In addition,
glutathione-S-transferases (GST) conjugate free radicals and xenobiotics to GSH, thus
participating in the antioxidant defense of the cell as well. The key to redox balance
maintenance is the fine-tuned cooperation between these antioxidant lines of defense and
response regulated by the type and concentration of the radical species. As pointed out
by Cheung and Vousden [10], SODs cannot tackle oxidative stress alone if there is not
a “partner” waiting to take over the H2O2 produced. On the other hand, GR and TrxR
are NADPH-dependent, meaning antioxidant detoxification systems must cooperate with
metabolic pathways producing and relaying on NADPH [28].
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RONS can induce damaging modifications to proteins and DNA, and oxidize lipids,
creating new reactive species in the process [29]. If detoxification systems fail to protect
the cell from the accumulation of damage caused by RONS, the cell triggers some of the
self-destruction systems (apoptosis, necroptosis, ferroptosis, pyroptosis, autophagy, etc.,
depending on the context; Figure 2) [29]. For example, a substantial accumulation of
reactive species activates p38/MAPK-dependent apoptosis. H2O2 inactivates PTEN, which
is an inhibitor of the PI3K/Akt signaling pathway. Reduced Trx automatically inhibits the
p38/MAPK pathway; being in the oxidized state due to RONS detoxification, it no longer
inhibits the cell death signaling.

As Goldilocks seeks the balance between too cold and too hot porridge in the fairytale,
so do normal cells seek and maintain redox balance. Too little of RONS would mean
a “communication break” since the free radical species have important roles in the cell
signaling process and can act as efficient switches and regulators of effector proteins; too
much of them cause irreparable damage to the building blocks and result in cell death.
However, a perilous zone lurks between redox-balanced normal cells and cell death—
cells that bare mutations and damage but manage to adjust and survive can obtain the
transformed neoplastic phenotype and go rogue on the organism’s harmonious whole.

3. Metabolic Pathology in Obesity Brings Systemic Havoc

Obesity has become an inevitable burden of modern lifestyle that is characterized by
high-fat, high-sugar intake through fast, processed food and drinks and an inactive way
of life [30]. Most of the obesity treatments available today deal with visual and aesthetic
consequences, but obesity is a problem far beyond that. Metabolic changes that happen as
a result of physical inactivity and overload of high-calorie, nutrient-poor food are making
an environment suitable for the development of life-threatening diseases such as stroke,
type 2 diabetes, cardiovascular abnormalities, and cancer [31].

3.1. Metabolic Environment in Obesity

Increased energy intake is primarily addressed by the adipose tissue, the main tissue
specialized for energy storage in the form of lipids. Nevertheless, adipose tissue is not just
a simple energy depo—it is also a very important endocrine center that synthesizes and
secretes hormones (adipokines) and communicates with the liver, gut, brain, etc., regulating
energy homeostasis. Adipose tissue can adjust to long-term nutrient overload by expanding
its capacity for lipid storage by increasing the size of the adipocytes (hypertrophy) and the
number of differentiated cells in the tissue (hyperplasia) [32]. In obesity, the capacity of
adipose tissue is surpassed, and lipids start to accumulate in surrounding tissues and organs
that are not specialized for this function, such as the liver, skeletal muscle, and kidneys,
causing lipotoxicity, inflammation, and systemic oxidative stress) [33]. Indeed, an increase
in oxidative stress markers and impaired antioxidant defense was reported in different
stages of obesity, during its development as well as in obese patients with and without
insulin resistance [34]. Recently, it was shown that nitrosative stress and glycoxidation of
proteins are increased in obese women compared to healthy controls as well as that bariatric
surgery vastly normalizes detected abnormalities in these processes [35]. Interestingly, it
has been shown that nutritionally related glycoxidation increases the tumorigenic potential
of different cancer types [36,37] and glycoxidation has been recognized as a contributor
to the vicious cycle in the development of lung cancer [38]. A tight inverse association
was shown between the body fat percentage and antioxidant capacity [34] and decreased
anti-oxidative defense, together with increased nitrosative stress, was found in patients
with prostate and breast cancers [39]. At a systemic level, the presence of RONS and
low-grade inflammation is recognized as the main characteristics of obesity [31,40].

Although adipose tissue is specialized for lipid storage, its long-term lipid overload
also comes with the price of impaired adipokine secretion and insulin sensitivity, dyslipi-
demia, a rise of tissue inflammation, and oxidative stress (Figure 3), which all can stimulate
biological mechanisms underlining cancer onset, progression, and metastasis [41]. Several
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studies, including ours, reported the presence of oxidative stress in the adipose tissue of
animals genetically predisposed to be obese or fed a high-fructose diet [42,43]. One of
the main enzymes that produce ROS outside of mitochondria is nicotinamide adenine
dinucleotide phosphate oxidase (NOX). This enzyme uses intracellular NADPH as a donor
of an electron in the process of production of O2

·− and H2O2 [44]. Obese mice were shown
to have higher levels of NOX4 in adipose tissue [42], and a high-fat diet was followed by
adipose tissue upregulation of NOX4 and ROS production [45]. Interestingly, overexpres-
sion of NOX proteins was detected in many malignancies. Inhibition of NOX4 has been
shown to decrease the aggressiveness of non-small cell lung cancer, inhibit cell adhesion
and invasive potential of gastric cancer, and suppress cell growth in human neuroblastoma
cells [46–48]. Other isoforms of NOX are also involved in the onset and progression of dif-
ferent types of cancers: NOX2 was connected with the growth of prostate, colorectal, breast,
and gastric tumors as well as myelomonocytic leukemia; NOX5 in Barrett’s esophageal
adenocarcinoma and prostate cancer [48]. Pro-tumorigenic role of NOX proteins has led
scientists to consider it as an important therapeutic target in cancer, but its obesity-related
increase is shedding new light on its functions.
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Figure 3. Adipose tissue dysfunction brings oxidative stress. Adipose tissue expansion in obesity
is not harmonized with angiogenesis; therefore, as fat mass increase, portions of the tissue are cut
off from the oxygen supply. This state of hypoxia further exacerbates inflammation and redox
imbalance in adipose tissue. Pro-inflammatory M1 macrophages, along with increased NOX activity,
mitochondrial ROS production, and decreased expression of antioxidant enzymes, lead to systemic
oxidative stress not limited to adipose tissue.

Obesity was shown to change the synthesis and secretion of adipokines (Figure 3),
and shifts in adipokine regulation have been associated with different types of cancers and
their metastatic potential [49]. Patients with esophageal and hepatocellular carcinomas
have increased levels of leptin, known to stimulate growth hormones that can increase
angiogenesis, cellular proliferation, and differentiation or inhibit apoptosis [50,51]. In
line with this, adiponectin, which has an anti-inflammatory and protective role from
cancerogenesis, was found to be reduced in several types of tumors, and its lower level in
circulation was associated with cancer severity [52].

The enlargement of adipose tissue is followed by transient hypoxia and the rise of
inflammation (Figure 3). Anti-inflammatory M2 macrophages are helping adipose tissue
preserve its homeostasis through remodeling processes, but prolonged lipid overload can
initiate a macrophage switch from anti- to pro-inflammatory, leading to increased pro-
duction of pro-inflammatory cytokines IL-1β, IL-6, TNFα, etc. Prolonged and unresolved
inflammation has been connected with DNA damage progressing into colon and liver can-
cer as well as premalignant mouth lesions [53–57]. In addition, macrophages can produce
ROS, which may further potentiate the expression of pro-inflammatory adipokines (MCP-1,
IL-6, PAI-1), decrease the expression of anti-inflammatory adipokines (adiponectin), and
inhibit anti-oxidative enzymes (SOD1, SOD2, CAT, etc.) [42]. Different kinds of ROS can
trigger various mechanisms to activate and sustain inflammation on their own. H2O2 was
shown to activate the main pro-inflammatory transcriptional regulator, NFκB, by stimu-
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lating phosphorylation and dissociation of the NFκB inhibitor, IκB, from the NFκB-IκB
complex [58]. Both inflammation and oxidative stress were shown to have the ability to
cause insulin resistance. It has been shown by us and others that inflammation can, directly
and indirectly, lead to insulin signaling impairment and resistance of adipose tissue cells to
insulin [43,59,60]. Similarly, accumulated ROS, as well as proteins damaged by ROS, can
activate c-Jun-N-terminal kinase (JNK) and cause inhibitory phosphorylation of insulin
receptor substrate 1 (IRS1) on Ser307, resulting in insulin signaling impairment [34,58,61].
Both hyperinsulinemia and insulin resistance have been shown to decrease the levels of
insulin-like growth factor-binding proteins (IGF-BPs), therefore, increasing the level of
IGF-1 [51], which has been correlated with breast, pancreas, and colorectal cancer [62–64].
In addition, IGF-1 has been associated with a decline in globulin that binds and transports
sex hormones. Therefore, an increase in free estrogen, which is known to upregulate
genes involved in cell proliferation and progression of a cell cycle, could be the base of the
connection between obesity and increased risk of breast and endometrial cancers [65,66].
This obesity-caused vicious cycle between inflammation and oxidative stress in the adipose
tissue could be the driving force initiating adipose tissue metabolic disturbance, making
specific molecular surroundings that can potentiate tumor onset and propagation.

This is why measuring levels of oxidative stress markers has been proposed to be an
informative and important predictor of the onset and development of the main metabolic
disturbances that accompany obesity, such as hypertension, insulin resistance, and the de-
velopment of metabolic syndrome and cancer [67,68]. Interestingly, rats fed a high-fructose
diet had increased levels of anti-oxidative enzymes and pro-inflammatory cytokines even
before adipose tissue mass or BMI was changed, and obesity formally developed [43].
Similarly, an increase in adipose tissue depots in non-obese men was shown to be followed
by elevated levels of lipid peroxidation [69]. The high-fat diet was followed by upreg-
ulation of NOX4 and ROS production in adipose tissue before the onset of obesity (or
insulin resistance) [45]. This indicates that oxidative stress has the potential to be the cause
and probable underlying mechanism of obesity development and the onset of associated
metabolic disturbances in addition to its position as a metabolic consequence of obesity.

Off-topic, there are sex differences in the intensity of oxidative stress and anti-oxidative
defense as well as in the incidence of different cancer types [70,71]. Some of the differences
could be attributed to social and environmental factors (for example, increased use of
tobacco in males compared to females in developed countries), but most disparities come
from their different anatomy and physiology with an accent on the endocrine system and
different roles of testosterone and estrogen [72]. Nevertheless, oxidative stress is the most
common underlining mechanism of sex-specific carcinogens [70] (PMID: 27481070), which
is why genders were not evaluated separately in this review and focus was given to the
general molecular mechanism of oxidative stress in cancer and obesity.

3.2. Obesity-Induced Oxidative Stress Causes DNA Instability

Elevated oxidative stress in obesity can have direct and indirect effects on DNA
stability and, consequently, tumorigenesis. Namely, when exposed to oxidative stress, DNA
nucleotides can be oxidized as well. The most common oxidative changes in DNA made
by reactive species are the 7,8-dihydro-8-oxoadenine and 8-hydroxy-2′-deoxyguanosine
(8-OHdG). Guanines are considered the most vulnerable because, in comparison to other
bases, they possess low redox potential [31]. Oxidized guanine bases can serve as a
place for replication mistakes and substitutions. Namely, there is up to a 75% chance
that DNA polymerase will, instead of cytosine, incorporate adenine opposite to oxidized
guanine [73]. This can result in GC to TA mutation, but also GC to AT and even GC
to CG [31,74,75]. Interestingly this is exactly the type of mutation frequently detected
in the p53 tumor suppressor gene and RAS oncogene in patients with breast, lung, and
skin cancers [76–78]. Beyond replication mistakes, the oxidation of guanines can influence
surrounding nucleotide sequences and, for example, inhibit the interaction of methyl-
cytosine and methyl-binding proteins changing epigenetic patterns [79]. There are some
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indications connecting the level of DNA oxidative damage and obesity. Measurement of
8-OHdG in urine and blood showed a positive correlation with the obesity status of adults,
teenagers, and children and even the status of gestational diabetes mellitus in pregnant
women [80–82]. By estimate, there is an increase of up to 50% of 8-OHdG in transformed
cells compared to non-transformed cells [83], which is why 8-OHdG is considered a reliable
marker of ROS-induced mutagenesis and tumorigenesis.

Apart from the direct effect that obesity-related ROS can have on DNA, studies show
that oxidative stress caused by obesity can achieve indirect effects through byproducts of
lipid peroxidation or secondary bile acid metabolites [31]. As mentioned, adipose tissue
dysfunction is one of the hallmarks of obesity and related metabolic disorders. Obesity-
initiated oxidative stress leads to increased lipid peroxidation in adipose tissue and the
formation of reactive aldehyde byproducts malondialdehyde (MDA), 4-hydroxynonenal
(4-HNE), and acrolein [84,85]. It has been shown that MDA can cause frameshift mutations
and substitutions in sequences rich in repetitive CG [86]. Niedernhofer et al. [87] investi-
gated the mutagenic effects of MDA on human cells, showing that MDA can induce DNA
inter-strand crosslinks that can interfere with replication and transcription. If not repaired
properly, DNA damage made by MDA can have detrimental effects, causing point and
frameshift mutations as well as strand breaks, arrest of the cell cycle, and apoptosis [87].
Similar damage was shown for 4-HNE, which at increased concentration can cause muta-
tions of GC to AT, interfere with DNA replication and transcriptions, and have genotoxic
and cytotoxic roles. It has been shown that 4-HNE can cause mutations in codon 249 of the
p53 tumor suppressor, which is a unique hotspot found in hepatocellular carcinoma [88].
Acrolein is another product of lipid peroxidation that has cancerogenic effects. Interchange
DNA and protein DNA crosslinks formed as an acrolein effect were connected to cancers
in several organs such as the liver, lung, and bladder [89,90]. Interestingly, acrolein has the
ability to interact with the lysine residues of H4’s newly formed histones that interfere with
chromatin assembly [91].

4. So It Begins: Obesity-Related Cell Transformation and Tumor Development

It was previously described how increased oxidative stress could be a cell-death
trigger—the damaged cells undergo self-destruction as a way of damage control to limit
the possible harmful effect on the surrounding cells and the organism as a whole. Various
checkpoints and pathways involved in cell death consequential to oxidative stress are
described elsewhere [29,92]. Oxidative stress, obesity-related as well as in general, has
an important role in cell transformation and cancer development, with similar mecha-
nisms determining the process (Figure 4). The transformed cells protect themselves by
upregulating antioxidant enzymes and introducing metabolic adjustments to avoid cell
death [17,85,93]. In fact, metabolic reprogramming is one of the prerogatives in the early-
stage transition from normal to transformed cells since new demands are emerging, such as
rapid proliferation [93]. While cancer cells successfully avoid cell death, oxidative stress is
still constitutively increased in cancer relative to normal cells [94], and this is of particular
significance for maintaining a high mutation rate and genomic instability as well [95].
With the critical oncogenes activated, protective mechanisms are propelled to limit and
regulate the RONS level to the transformed cell advantage. Nrf2 is found upregulated
in different types of cancer; the increased expression is considered essential to cancer cell
proliferation and tumorigenesis and in correlation with tumor malignancy (Figure 4) [85,96].
DeNicola et al. reported that oncogenes K-Ras, B-Raf, and Myc regulate Nrf2 transcription,
thus reducing oxidative stress [97]. Gain-of-function mutations of Nrf2 and inactivating
mutations of Nrf2-inhibitor Keap1 have been reported in different types of cancer [27].
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Figure 4. Adipose tissue promotes the neoplastic transformation of the cells. Adipose tissue releases
pro-inflammatory cytokines, hormones, and free fatty acids (FFAs) into the bloodstream. The resulting
systemic oxidative stress and inflammation promote mutagenesis in oncogenes and tumor suppressor
genes, contributing to cell transformation. In transformed cells, high metabolic activity leads to
high RONS concentrations. To avoid cell death, the cell increases the production of antioxidant
enzymes; nevertheless, RONS levels are relatively high and support genomic instability. Metabolism
subordinate to rapid growth and proliferation favors a reducing environment in which NADPH, with
PPP as the major source, can be used for the components of the Trx and GSH detoxification systems
(TrxR1 and GR) and for nucleotide (nt) synthesis. Uncontrolled proliferation leads to the formation
of neoplasms.

Reactive species can act as context-dependent regulators of oncogenic tyrosine ki-
nases [98]. Accordingly, oncogenic tyrosine kinases modulate the activity of M2-type
pyruvate kinase (PKM2) so that PKM2 promotes a redirection of glucose metabolites
towards PPP, ultimately providing the cell with much-needed NADPH [99]. Since uncon-
trolled proliferation prerequisites a favorable redox milieu, the high level of NADPH can
support both nucleotide synthesis and detoxifying redox systems [23,28]. As previously
mentioned, both GSH and Trx systems depend on NADPH. Not surprisingly, Trx and GSH
system proteins are often upregulated in cancer cells and essential in supporting tumor
growth (Figure 4) [17,100]. RONS affect cell proliferation in numerous ways. One of them
is through calcium release from intracellular depots, indirectly activating protein kinase C
(PKC) [101].

Increased expression of NFκB is one of the standard features of transformed cancer
cells (Figure 4). As one of the primary transcription regulators of IL-6, the hyperactivation
of NFκB leads to an increase in IL-6. IL-6 is considered to be the critical factor connecting
the state of chronic inflammation with tumor progression [102]. Increased IL-6 binds to
receptor IL-6Rα, inducing the formation of an effector complex between IL-6, IL-6Rα,
and IL-6Rβ/gp130, which further activates the JAK/STAT3 signaling pathway (Figure 4),
leading to the transcription of STAT3 targeted genes. Along with the mutated genes for
JAK in the occurrence of some tumors, IL-6 also contributes to JAK/STAT3 constitutive
activation in tumor cells, thus enabling proliferation, survival, and suppression of antitumor
immune response. Furthermore, STAT3 regulates the synthesis of IL-6, and IL-6 is also
released by the immune cells in the tumor microenvironment. In normal cells, Nrf2 will
activate to amortize the inflammation ROS by negative regulation of IL-6 and induction of
PPARγ [103].

4.1. Examples of How Obesity-Driven Oxidative Stress Can Be a “Trump Card” to
Cancer Development

Fat is stored primarily in subcutaneous adipose tissue (SAT) in healthy individuals.
However, with long-term increased energy intake, leading to increased fat storage, the
adipose tissue has a limited growth rate, thus, a limited fat storage capacity. Apart from
excess accumulation of fat in SAT, obesity is accompanied by ectopic fat accumulation in
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visceral adipose tissue and the liver, skeletal muscles, pancreas, and heart [104,105]. The
“out of place” fat tissue calls immune cells for help in an attempt to reestablish homeostasis.
However, this chronic state of inflammatory response contributes more to organ damage
than rescue. Furthermore, ectopic fat is considered a more significant risk factor in obesity
and associated diseases outcome than subcutaneous fat accumulation [104,106–108]. This
section will review research where adipose tissue accumulation promotes and supports the
genetic and metabolic changes in neoplastic transformation.

In postmenopausal women, adipose tissue is the primary source of estrogen. Being
exposed for a long time to high levels of estrogen may propose a risk factor and contribute
to estrogen receptor-positive breast cancer development [109]. In obesity, the fat storage
overload imposes an increased metabolic burden in adipocytes, consequently inducing a
state of chronic inflammation, the release of transcription factors (e.g., NFκB, STAT3, HIF1α)
and inflammatory cytokines (e.g., TNFα, Il-6, Il-8), subsequently leading to oxidative stress
in breast fat tissue [85,110]. Therefore, in obesity, breast tissue is exposed to a surplus of
estrogen, reactive species, and inflammation factors. Oxidative stress induces mutations in
oncogenes and tumor suppressors, while alterations in growth and proliferation signaling
in adipose tissue act as a support system for transformed cells. Further, the release of free
fatty acids and inflammatory cytokines significantly contributes to remodeling the tumor
microenvironment [111]. Mutations in breast cancer 1 (BRCA1) gene were discovered to be
highly frequent in ovarian and breast cancer patients [112]. In the following investigations,
BRCA1’s roles in cell cycle control, genome integrity maintenance, and gene transcription
regulation were identified, yet the research on how it suppresses tumor occurrence is ongo-
ing [113]. Relative to oxidative stress, Gorrini et al. [114] identified BRCA1 as an activator
of Nrf2, contributing to Nrf2 stability and preventing oxidative stress-caused damage.
Following, a tumor suppressor of high relevance to ovarian and breast tumor emergence is
involved in response to oxidative stress as well, and loss-in-function contributes to redox
disbalance leading to cancer formation. On the other hand, oxidative stress has a vital
role in the recurrence of Her2-positive breast cancer [100]. Namely, the decrease in growth
factor Her2 due to doxycycline treatment is followed by an increase in oxidative stress,
and, at this point, Nrf2-driven metabolic reprogramming of the cancer cells are of pivotal
significance for their survival and tumor progression of the dormant cells.

Fat accumulation in the liver causes an inflammatory response. If this chronic re-
sponse persists, the initial state of obesity might advance into organ damage, leading to
nonalcoholic steatohepatosis (NASH), fibrosis, cirrhosis, and even hepatocellular carci-
noma [115–117]. A meta-analysis from 2018 indicated that a BMI ≥ 30 is linked to twice the
risk of HCC-associated mortality, while the same results were not observed for moderately
obese with BMI ≥ 25 [118]. On the cellular level, excessive lipid droplets in the hepato-
cytes cause lipotoxicity, leading to cell death and immune cell activation. Cell death and
inflammation further cause changes in the microenvironment of the liver, in some cases
abetted by the genetic changes and cell signaling supportive of the neoplastic transfor-
mation [117]. All the while, these metabolic changes are accompanied by increased ROS
concentrations. In addition, it has been reported that a high concentration of palmitate,
associated with a high-fat diet, causes an increased glucose uptake and metabolism in vivo
and in vitro and that these changes in glucose metabolism, much resembling the ones
occurring in transformed, neoplastic cells [119], are dependent on peroxisomal oxidation of
palmitate and H2O2 production [120]. Brahma et al. [121] recently described the sources
and proposed mechanisms of how oxidative stress is connected to the development of
hepatocellular carcinoma, pointing out that in some cases, the exact mechanisms of how
obesity leads to HCC, without perceivable preceding liver damage, or why in some patients
tissue damage is not followed by tumorigenesis remains to be determined. Beyond obesity,
oxidative stress in the liver induced by other diseases is implicated in HCC development
as well [122].

Pancreatic ductal adenocarcinoma is prevailingly a lethal disease: at early stages,
the disease causes no symptoms and is considered practically undiscoverable until the
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tumor late progression, when it is basically untreatable. Strikingly, obesity more than
doubles the risk of pancreatic cancer development [123]. Chronic pancreatitis and type 2
diabetes, both identified as predictable consequences of obesity, are also associated with
the development of pancreatic cancer [124]. The exact mechanisms proposed as the linking
factors between obesity and various cancer types are also suggested for obesity-related
pancreatic cancer: chronic inflammation, insulin resistance, circulating lipids, and cytokines.
Pro-inflammatory adipokines (MCP-1, IL-6, PAI-1), usually stimulated and increased in
obesity, are closely associated with pancreatic tumors [49]. A suggested enhancer of car-
cinogenesis in pancreatic cancer is receptors of advanced glycation end products (RAGE),
where AGE/RAGE signaling induces inflammation and generates reactive species, acti-
vating NFκB along the way [37]. Not long ago, it was pointed out that stress granules
(SGs) have a substantial role in pancreatic cancer development and, in fact, that they are a
compulsory component in the process of neoplasm formation [63]. SGs are assemblies of
untranslating messenger ribonucleoprotein granules; they develop in response to different
stressors, e.g., oxidative stress and inflammation, with a prominent role in determining
the course of the stress response [125]. The animal-based study reported that the depen-
dence of early-stage tumors upon SGs is more pronounced in stress conditions brought by
obesity, with IGF1/IGF1R signalization identified as the principal mediator between the
two conditions [63].

Protracted inflammation induces excessive RONS production, and increased RONS
launch a pro-inflammatory response; essentially, chronic inflammation and reactive species
form a positive feedback loop [126]. Excessive and unregulated production of reactive
species over an extended period of time causes permanent harm to the cells. Considering all
this, it would be reasonable to assume chronically inflamed tissue is more prone to succumb
to neoplastic transformation. In the context of colorectal cancer (CRC), the first reports of
how inflammatory bowel disease relates to cancer development date back almost a century
ago [127]. The mechanistic description of how inflammation leads to colorectal cancer was
previously depicted by Terzic et al. [128]. Several studies implied a hypercaloric diet, rich in
fats and sugar, correlates with chronic colon inflammation and increased RONS [129–131].
Most frequently used is the chemically inducible murine model of colitis-associated cancer,
which was developed by a combination of carcinogen drug injection azoxymethane and
colitogen dextran sodium sulfate [132–135]. Through the induction of oncogenic pathways
and inflammation, these two drugs induce normal crypt cells to transform, forming aberrant
and divided crypts, with the ultimate formation of micro-tumors along the colon, at which
the microadenomas location is a strain-specific trait [135]. The molecular features of this
model are the activation of β catenin and Wnt signaling activity, enhanced inflammatory
response (increased IL-6, TNFα, NFκB and a high number of inflammatory cells), increased
activity of JAK/STAT3, as well as PI3K/Akt signaling pathway, and increased inducible
nitric oxidase (iNOS). The described murine model closely simulates the human condition,
with some discrepancies since additional activation mutations of KRAS oncogene and p53
tumor suppressor characterize human colon adenocarcinomas.

Furthermore, intestinal microbiota, as a dynamic system, responds to food intake, and
it has been reported a high-fat/high-sugar diet promotes dysbiosis and the advancement
of pathogenic bacteria [136]. These pathogenic bacteria can further endorse inflammation
and participate in supporting the formation of the tumor microenvironment. It has been
suggested that intestinal inflammation promotes tumorigenesis through modifications
in microbial content as well [137]. Some of the species identified as contributors to CRC
carcinogenesis are Fusobacterium nucleatum, Bacteroides fragilis, and Escherichia coli [138]. In
addition to oxidative stress being the consequence of inflammation, the microbiota can
be a direct source of reactive species. For example, Enterococcus faecalis, another bacterial
strain closely connected to CRC, in addition to inducing H2O2 production in macrophages,
can also be a direct source of H2O2 [139]. The evidence of CRC-specific microbiome is
accumulating [140,141], which led to suggesting the non-invasive stool sample analysis
for the specific microbial strains as biomarkers and a screening test in CRC diagnostics.
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Knowledge of the importance of the pathogenic (and beneficial to host) species significantly
extends to an effective therapeutic tool and manipulation of the microbiome to suppress
tumorigenesis or cancer progression.

4.2. The Clandestine Connection between Obesity and Cancer

The process of cancer development in obese patients has been studied, and the main
molecular pathways, primarily connected to adipokines circulation, oxidative stress, and
inflammation, in different cancer types, have been identified. However, the relationship
between obesity and cancer is not a linear one, and there is a lot more to be explained and
investigated. For example, why do tumors develop in some obese patients and in some not?
Or how does obesity in some periods of life affects the risk of tumor later in life? For exam-
ple, childhood obesity can be a risk factor for some tumor types later in life [142–144], while
premenopausal overweight women have a lower risk of developing breast cancer [145].
Are some tumor types, developed in tissues not directly involved in metabolism regulation,
also triggered by obesity-induced adaptations? Are some micronutrients of particular
importance for cancer development, and if so, is the cancer development in obesity the
result of excess adipose tissue or nutritive deficiency? With this in mind, it appears the
connecting mechanisms identified so far are just the tip of the iceberg, and this complex
relationship has many faces yet to be recognized.

Recently, Sachdeva et al. [144] hypothesized how childhood obesity might be con-
nected to glioblastoma, proposing systemic inflammatory cytokines as one of the con-
tributors. Glioblastoma is the leading cause of brain cancer death; it accounts for about
half of the malignant primary brain tumors, with the median survival if treated being
14.6 months [146]. Concerning 2005, although 2- and 3-year survival has increased among
patients, 5-year survival remains unchanged and happens in only 3–4% of patients [147].
In more than a century of efforts, there have been only five drugs approved for treat-
ing glioblastoma, with little to no effect on patient survival rate [148]. In other words,
glioblastoma remains a practically incurable malignant disease.

A study by Howell et al. [149] indicated a positive correlation between genetically pre-
dicted childhood extreme obesity and all gliomas, glioblastoma included. Here, we would
like to propose that systemic oxidative stress, along with chronic inflammation taking place
in obesity, is a contributor to brain neoplasm development. A fructose-rich diet, alone and
especially pronounced in combination with chronic stress, caused a decrease in antioxidant
defense in the hypothalami of female rats [150]. Increased oxidative stress and inflamma-
tion in obese brain has been reported as well [151]. A decreased antioxidant defense would
make the brain tissue more susceptible to oxidative damage and mutagenesis, thus leading
to neoplastic transformation. Previous studies implied obesity, and BMI do not affect
prognosis and survival in GBM patients [152,153]. However, an increased BMI in late ado-
lescence increases the risk of glioblastoma development later on in life by four times [154],
while being underweight in the early twenties decreases the probability of overall glioma
development [155]. Despite possible decreased defense systems against oxidative stress be-
fore or at the time of occurrence of the tumor in brain tissue, leading to the transformation,
it has been established glioblastoma patients have increased activity of the Trx system [156],
in correlation with poor prognosis and higher resistance to therapy [157,158]. A highly
active Trx system ensures the survival and proliferation of cancer cells in a variable, hy-
poxic, redox-imbalanced environment. Notwithstanding, the cancer cells are becoming
dependent on the highly active Trx system, making it a perspective therapy target, which
was further explored and discussed in more detail previously [17,159,160].

In obesity, both serum selenium (Se) and Se intake were implied as decreas-
ed [161–163]. Previously, low Se has been suggested as a risk factor for some cancers [164].
Despite high heterogeneity among the reported studies, a weight reduction increases Se
antioxidant proteins, which suggests obesity indeed is a relevant debilitating factor in
maintaining Se homeostasis [165]. An alluring hypothesis is that Se deficiency observed
in obesity is one of the important culprits in setting the spark of the event cascade related
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to thyroid cancerogenesis. In thyrocyte follicular cells, thyroid peroxidases use H2O2
as the oxidizing agent for the iodine incorporation into thyroglobulin, which could be
considered an essential step in thyroid hormone synthesis. The delicate balance between
H2O2 production and reactive oxygen species neutralization in thyrocytes is of utmost
importance. Although H2O2 is not a direct threat to DNA, the derived hydroxyl radicals
are quite efficient damage-inducing oxidizing agents. Increased oxidative stress and DNA
damage that follows are considered to be one of the initial steps in thyroid cancer tumorige-
nesis [166,167]. Multiple studies reported decreased antioxidative defense, accompanied by
increased oxidative stress in tumor tissue and serum of thyroid cancer patients [168]. Inter-
estingly, the increased concentration of reactive species was localized and more pronounced
at the edge of the tumor compared to the tumor core and normal thyroid tissue [169]. Im-
portantly, the detected oxidative stress corresponded to more malignant tumors [169]. The
main enzyme catalysts of H2O2 are Prx (functionally Trx system dependent), GPx, and
catalase. Studies have reported a decreased content and/or activity of TrxR1, GPx, and
catalase in the cancer tissue and serum of thyroid cancer patients [170,171]. As suggested
by some [172], the decrease of these crucial detoxifying selenoproteins, TrxR1 and GPx, is
possibly a consequence of the Se decrease in thyroid cancer patients.

5. Discussion

In this manuscript, we explored the up-to-date literature on the molecular connections
between obesity and cancer, how one disease leads to another, and suggested oxidative
stress is an important protagonist in this progression. It is important to draw attention to
how the state of obesity can insidiously change the cellular microenvironment, causing the
cells to transform and form malignancies we might not be able to detect until it’s too late.

Investigating Western diet-induced pathology, and non-communicable diseases asso-
ciation, is most often approached through BMI-defined obesity. However, BMI, as well as
waist circumference and waist-to-hip ratio, are not without limitations in assessing whether
a person is negatively affected by a mass increase or a diet. For example, some professional
sportsmen can be classified as obese, according to the BMI, but their mass increase can
be on account of the muscle mass, not adipose tissue, and as such, they are not at higher
risk for most non-communicable diseases. On the other hand, there are “normal-weight
obese” or “metabolically obese” [173,174] individuals with a high percentage of body fat,
visceral obesity, low percentage of muscle mass, insulin resistance, and dyslipidemia, and
generally, a higher risk of developing metabolic disease and possibly, related ones, includ-
ing cancer. High body fat and impaired adipose tissue homeostasis are considered more
reliable indicators of insulin resistance and attributed complications than anthropometric
parameters. The lack of straightforward criteria makes it difficult to truly grasp the effect
oxidative stress, resulting from metabolic stress, has on cancer development. As striking as
it might seem, with the data as limited as they are, and with all previously considered, this
implies the prognosis of cancer might be an even more probable outcome of (metabolic)
obesity than the BMI-based studies imply.

Treating cancer in obesity is particularly challenging [175,176]. A cause of this is that
doses and treatment regimens are developed on a normal weight population, taking into
consideration body surface area. Recommendations are that special care should be taken
when calculating the doses for overweight and obese patients, taking into account their
body weight. More often than not, obese patients with cancer have an increased poor prog-
nosis, despite the treatment success in the general population [177]. Adipose tissue can be
of particular nuisance in chemotherapy, as it can sequester some of the therapeutics [178] or
provide cancer cells with alternative survival strategies [179]. The tumor microenvironment
in obese patients differs from normal weight patients, meaning the research of therapeutic
efficacy may not apply to this “unknown” setting. However, it has been shown in some
types of cancers and particular therapeutic modalities, obese patients have a better response
to therapy, compared to normal-weight patients, by experiencing decreased toxicity to
chemotherapeutics, an improved response to a combination of radiation and chemo, and
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enhanced efficacy of immunotherapy [177]. An obvious question imposes itself—how
does weight reduction affect cancer treatment and the disease outcome? Despite some
discrepancies in reported studies ascribed to differences in weight loss programs, in most
cases, reduction of weight through balanced nutrition, with moderate caloric reduction, ac-
companied by structured and guided physical activity and behavioral changes, reduces the
complications of cancer treatment, improves the quality of life and survival outcome [176].

Apart from cancer being a preventable, possibly deadly, outcome of obesity, affecting
the quality of life for both patients and their loved ones, not insignificant is the economic
burden obesity brings to society. Overweight and obesity burden was estimated at 2.19%
of the global growth domestic product (GDP), with projections that by 2060, taking into
account current rates, this will make up to 3.29% of global GDP [180]. Reducing the
current rates of overweight and obesity by 5% per year could translate into a global annual
reduction in costs of illness by $429 billion [180].

A weight reduction≥ 5% of total body mass reduces the obesity-related cancer risk for
breast, endometrial, and colorectal cancer in postmenopausal women [181–183]. Principally,
weight reduction is advised to be accomplished through adopting healthy life habits,
balanced nutrition with moderate caloric restriction, and increased physical activity. For
example, moderate caloric restriction is shown to decrease markers of oxidative stress and
partially improve the oxidative status of the patients [184]. Healthy dietary regimes, such
as the Mediterranean diet, have been suggested as well for improving health parameters by
reducing inflammation and oxidative stress in obesity, thus reducing the risk of cancer [185].
Physical activity is known to be a “two-edged sword” regarding oxidative stress—in
moderation and with progressive improvement, it can ameliorate oxidative stress and boost
the immune system, but excessive physical activity (and this can be rather individual what
excessive is) can be the source of oxidative stress and promote inflammation [186–188].
Bariatric surgery in obese patients reduces the risk of obesity-related cancers as well [189].
Although limited, some pharmaceutical solutions for treating obesity with remarkable
improvement in health parameters do exist [190]. Other pharmaceuticals that do not
directly target obesity are being investigated, but the evidence of cancer risk reduction is
quite weak so far [191].

Another important issue is society’s perception of the link between obesity and car-
cinogenesis. There are studies showing that awareness of obesity as a risk factor for cancer
is suboptimal, and obese people often do not have heightened risk perceptions [2,192,193].
In the study that assessed average cancer risk versus personal risk based on personal
characteristics and behaviors, only 52% of respondents correctly identified obesity as a
risk factor for cancer [194,195]. The results of the study by Silverman et al. [195] showed
that the likelihood of identifying obesity as a risk factor for cancer was significantly lower
compared with having a family history of cancer, while Burkbauer et al. [196] showed that
knowledge of the association between obesity and breast cancer risk was associated with
willingness to participate in a weight loss intervention. It appears that future prospects rest
on the development of better education and communication tools to improve awareness of
the link between obesity and cancer. Such an approach is likely to improve the adoption of
healthy lifestyles, especially among high-risk patients.

To answer the question regarding obesity being the ‘radical trigger’ to cancer, the
conditions of oxidative stress and inflammation taking place in obesity certainly can
propose a threat to human health and result in cancer in some cases. The hypothesis that
started as a series of correlation studies is starting to unveil the molecular pathways at play.
The relationship between obesity and cancer is quite complex and, in some circumstances,
a challenge to explain straightforwardly, especially when there is a time gap between
the two states. The origin of cancer is convoluted, and, in all likelihood, there is not one
thing that causes it. However, the identification and understanding of the culprits that
can be dealt with can provide opportunities to reduce the risk and perhaps even prevent
cancer. The prevention of chronic obesity should be considered an important part of cancer
prevention. When compared to the overall cost of obesity and related disease, from an
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economic point of view, it seems reasonable to invest in education about healthy lifestyles
and solutions for dealing with obesity before the problem worsens. From the humane point
of view, curing obesity offers a choice to fight a battle one may win.
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