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Abstract: This narrative review paper provides an up-to-date overview of the potential of novel
synthetic and semisynthetic compounds as antibacterials that target virulence traits in resistant
strains. The review focused on research conducted in the last five years and investigated a range of
compounds including azoles, indoles, thiophenes, glycopeptides, pleuromutilin derivatives, lactone
derivatives, and chalcones. The emergence and spread of antibiotic-resistant bacterial strains is
a growing public health concern, and new approaches are urgently needed to combat this threat.
One promising approach is to target virulence factors, which are essential for bacterial survival and
pathogenesis, but not for bacterial growth. By targeting virulence factors, it may be possible to reduce
the severity of bacterial infections without promoting the development of resistance. We discuss the
mechanisms of action of the various compounds investigated and their potential as antibacterials.
The review highlights the potential of targeting virulence factors as a promising strategy to combat
antibiotic resistance and suggests that further research is needed to identify new compounds and
optimize their efficacy. The findings of this review suggest that novel synthetic and semisynthetic
compounds that target virulence factors have great potential as antibacterials in the fight against
antibiotic resistance.

Keywords: antibiotic resistance; virulence factors; novel synthetic compounds; biofilms; antibacte-
rial activity

1. Introduction

Antibiotic resistance is a major global health challenge, threatening the efficacy of cur-
rently available antibiotics [1]. The emergence and spread of multidrug-resistant bacteria
underscore the urgent need for new antibacterial agents that can overcome resistance mech-
anisms [2]. Estimates indicate that, annually, over 2 million infections caused by resistants
strains occur worldwide, with as many as approximately 30,000 fatal outcomes in the USA
alone and USD 5 billion in health care assets allocated to this issue. At the beginning of the
21st century, a list of pathogenic microorganisms that showed different levels of resistance
to antimicrobial agents was released, and it included Enterococcus faecium, Staphylococcus
aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobac-
ter spp. The list is also known as the famous register of ESKAPE pathogens. Traditional
antibiotics target bacterial growth, which can lead to the development of resistance through
the acquisition of mutations or the transfer of resistance genes [3]. In contrast, compounds
that target bacterial virulence traits, such as biofilm formation, quorum sensing, and motil-
ity, may be less prone to the development of resistance [4]. Bacterial infections remain a
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significant challenge in public health, and the emergence of antimicrobial resistance (AMR)
has further complicated the treatment of bacterial infections [5]. Despite the availability
of many antibiotics, the prevalence of bacterial infections caused by multidrug-resistant
bacteria has increased alarmingly. One strategy to overcome AMR is to target the virulence
traits of bacterial pathogens, which are distinct from traditional antibiotic targets [6]. Vir-
ulence factors are the attributes that enable pathogens to cause disease in a host, such as
adhesion, invasion, colonization, and the secretion of toxins and enzymes [7]. Therefore, the
inhibition of virulence factors is a promising approach to combating bacterial infections [8].

The virulence traits of resistant bacteria have received increasing attention in recent
years. Biofilm formation is one of the important virulence factors that contribute to bacterial
resistance [9]. Biofilms are complex communities of microorganisms that are encased in
a self-produced extracellular matrix, which confers resistance to antibiotics and immune
defense mechanisms [10]. Bacteria can cause disease by producing agents known as viru-
lence traits, which are specific compounds produced by bacteria that allow them to evade
the host’s immune system response. Virulence traits such as quorum sensing, motility, and
iron acquisition have also been reported to be involved in the pathogenicity and antibiotic
resistance of bacterial pathogens. As well as adhesins, invasins, and antiphagocytic factors,
toxins, hemolysins, and proteases are among the agents that cause harm to the host [11].

A variety of natural and synthetic compounds have been reported to possess anti-
virulence activity against resistant bacteria. Among them, azoles, indoles, thiophenes,
glycopeptides, pleuromutilin derivatives, lactone derivatives, and chalcones have been
found to exhibit promising antivirulence activity [12–15]. These compounds target various
virulence factors and interfere with the pathogenicity of bacterial pathogens (Figure 1),
thus enhancing the efficacy of antibiotics and reducing the emergence of resistance.
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Chalcones are a class of natural and synthetic compounds that have been shown to
inhibit bacterial biofilm formation and quorum sensing [16]. Azoles, including pyrazoles,
oxadiazoles, and triazoles, have been extensively studied as antifungal agents, but recent
studies have shown that they also have antibacterial activity against resistant strains [17].
Coumarins have been found to inhibit bacterial quorum sensing and motility [18], while
indoles and thiophenes have also shown potential as quorum sensing inhibitors [19]. Quino-
lines have been proposed as inhibitors of bacterial type II topoisomerases and have shown
activity against multidrug-resistant bacteria [20]. Terpenoids, including triterpenoids and
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other scaffolds, have been mainly studied as semisynthetic analogues with promising
antibacterial activity [21]. Glycopeptides, such as vancomycin and teicoplanin, have been
widely used as antibiotics, but semisynthetic analogues have been developed to over-
come resistance mechanisms [22]. Pleuromutilin derivatives, including retapamulin and
lefamulin, have been approved for clinical use and have shown efficacy against resistant
strains [23]. Finally, albocyclin and other lactone derivatives have shown activity against
Gram-positive and Gram-negative bacteria, including resistant strains [24].

Targeting virulence traits is an attractive strategy to combat resistant bacteria. The use
of compounds that target virulence factors can complement traditional antibiotic therapies,
leading to enhanced efficacy and reduced resistance. Therefore, continuous research on the
development of anti-virulence compounds and their mechanisms of action is crucial in the
fight against AMR. In this review, we discuss recent studies on synthetic and semisynthetic
compounds with antibacterial activity, focusing on their ability to target virulence traits in
resistant strains. We also highlight the potential of these compounds to overcome antibiotic
resistance mechanisms and suggest directions for future research. The presented review
article mainly summarizes the progress in this field in the last 5 years, but its also covers
some older important data. The fresh perspectives of compounds newly identified as
potential therapeutics targeting virulence factors are presented, along with the established
antimicrobial properties of certain novel compounds and the repurposing of existing
antibacterial/antifungal therapeutics.

2. Indoles

Indoles, a widespread naturally occurring class of alkaloid compounds, are not only
important bacterial intercellular signal molecules, but also a crucial component of the
amino acid tryptophan. They are a particularly intriguing class of compounds covering a
range of pharmacological activities, including antiinflammatory, antihistaminic, antitumor,
antioxidative, and antidiabetic properties. Research covering this topic is quite important
due to the versatile nature of indole compounds, which may lead to numerous chemical
modifications, i.e., presenting possibilities for drug development. With respect to the
subject of this review, their antibacterial potential, particularly their targeting of virulence
factors, is thoroughly elaborated herein.

In the following section, we present the antibacterial potential of selected indole-
derived compounds against clinically relevant strains, namely the causative agents of
urinary and skin infections as well as gastroenteritis-causing bacteria. According to Bal-
cerek et al. [25], commercial compounds, such as 5-halo-1H-indole-2-carboxylic acids,
(Figure 2) were efficient against a panel of bacterial strains, particularly Listeria monocyto-
genes. The obtained results indicated that this activity may be used for the development of
medicines in the treatment of listeriosis in cases when resistance/allergy is present. Along
with these results, assays also showed that indol-2-one (Figure 2) with a morpholinosul-
fonyl component acted as a potent inhibitor of the DNA gyrase of both Gram-positive and
Gram-negative bacteria, with activity against S. aureus even better than ciprofloxacin (IC50
values 18.75 µM and 26.43 µM, respectively) [26]. Furthermore, Alzahrani et al. [27] showed
that novel derivatives of the compound thiazolo-indolin-2-one exerted rather promising
antibacterial activity, with a noteworthy ability to affect virulence traits such as biofilm for-
mation in S. aureus (ATCC 29213) and P. aeruginosa (biofilm inhibition concentration (BIC50)
of 1.95 µg/mL and 3.9 µg/mL, respectively). As for the ability to affect traits of A. baumanii,
literature data indicate that d-pyrimido[4,5-b] indole derivatives show inhibitory potential
against this pathogen in the range of 0.25–1 gmL−1 [28]. Furthermore, 3-amino indoles
(Figure 2), 4-hydroxy-2-pyridone derivatives containing indolyl, 2-hydrazino2-imidazoline,
and bis-indolyl methane Schiff bases have also been identified as potential antimicrobial
agents that may also inhibit the growth of MDR A. baumanii. Recent research conducted
by Raorane et al. [29] showed that halogenated indole 5-iodoindole (Figure 2) promptly
affected the development and motility of A. baumannii, disrupted its biofilm formation,
and eventually eradicated this pathogenic microorganism as effectively as ciprofloxacin
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and gentamicin. This was achieved via the development of ROS, which had a profound
influence on the integrity of the plasma membrane, eventually leading to a loss of bacte-
rial viability. Furthermore, the tested compound turned out to be verry effective against
Escherichia coli and S. aureus but did not influence the viability of P. aeruginosa. According
to Kim et al. [30], indole and its derivatives also proved efficient in the inhibiting single-
species and multi-species biofilms of the acne-forming bacterial skin strains Cutibacterium
acnes and S. aureus, with 3,3′-diindolylmethane as the most potent inhibitor. The obtained
results indicated that indole-derived compounds may be useful in developing efficient skin
treatments related to the tested bacteria.
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The eradication of the nosocomial pathogen Enterococcus faecalis has been shown to be
quite challenging in recent years, with biofilm development and resistance to antibiotics
as the two main causes. Hence, new treatments are urgently needed, particularly those
affecting these two traits. A study by Tatta et al. [31] showed that the indole terpenoid
compound rhodethrin (Figure 3) in combination with chloramphenicol disrupted the
overall formation of biofilm, which may lead to the easier and more effective treatment of
vancomycin-resistant E. faecalis.
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Nosocomial urinary infections related to catheter application are most often caused
by Proteus mirabilis. Due to biofilm development, they have been increasingly harder to
treat, leading to a demand for novel and efficient treatments. Hence, Amer et al. [32]
developed new Foley catheters impregnated with indole compounds (indole extract from
the supernatant of the rhizobacterium Enterobacter sp. Zch127) in order to disrupt the
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biofilm formation of Proteus mirabilis. The results showed a reduction in the formation of
biofilm of 60–70% in terms of biomass, which was confirmed by the expression of virulence
genes responsible for biofilm formation, while genes that regulate the formation of capsular
polysaccharides were not affected. The catheters were considered safe for use, since they
had no cytotoxic effects on fibroblasts. Along with nosocomial P. mirabilis, uropathogenic
E. coli is a common inhabitant of the human urinary tract, leading to recurrent infections.
The recurrence rate depends on the pathogen’s ability to infiltrate the urinary epithelium
and evade host defense mechanisms. Boya et al. [33] demonstrated that 4-chloroindole,
5-chloroindole, and 5-chloro 2-methyl indole may profoundly impact biofilm formation at
an average dose of 20 g/mL by as much as 67%, along with their ability to reduce bacterial
motility, necessary for colony dispersal. A more in-depth study showed that the tested
compounds affected the expression of genes related to adhesion and toxin production,
which may be of importance in managing clinical manifestations of these health conditions.

Due to their ability to regulate internal environments by removing toxic substances,
efflux pumps are an important target when considering the development of new drugs. Ac-
cording to Cernicchi et al. [34], indole derivatives could also have wide-ranging applications
in this area, which could increase their use in clinical practice.

Along with the fact that indoles are highly active against pathogenic microorganisms of
clinical relevance, they have also been shown to be very efficient in targeting virulence traits
of Agrobacterium tumefaciens. This may be rather important with respect to the economy,
since this microorganism is known as a plant pathogen causing significant lossess in various
crops. As Ahmed et al. [35] demonstrated in their study, among 83 indole derivatives that
were tested against A. tumefaciens, 4-chloroindole, 6-iodoindole, and 5-chloro-2-methyl
indole inhibited its growth at doses as high as 50 µg mL−1. Furthermore, they also affected
virulence factors such as swimming motility, the production of exopolysaccharide and
exoprotease, and cell surface hydrophobicity and biofilm formation.

Besides issues with various crops, the aquaculture sector also faces a serious problem
resulting from bacterial infections. In terms of money, losses resulting from vibriosis—a
disease caused by Vibrio campbelli—are quite substantial. This has inevitably led to the
development of novel and sustainable strategies required for managing problems in the
aquaculture industry. One of these is the evaluation of indole analogs’ activity against
V. campbellii, probably the main bacterial pathogens in aquaculture. Out of 44 tested com-
pounds, 17 halogenated indoles (including 6-bromoindole, 7-bromoindole, 4-fluoroindole,
5-iodoindole, and 7-iodoindole) have been shown to affect the virulence traits of V. camp-
bellii. Furthermore, they have been found to increase the survival of brine shrimp, used
as a valid in vivo system model, by over 80% at 10 mM, as well as to affect virulence
traits such as swimming motility and biofilm formation (at concentrations of 10 mM and
100 mM), whereas only mild inhibition was achieved with the tested concentrations re-
garding protease activity. The absence of hemolytic activity was observed using the tested
concentrations [36]. Similar antibacterial virulence-targeting activity was previously ob-
tained for Vibrio tasmaniensis LGP32 and Vibrio crassostreae J2-9, used as two model infections
of bivalves [36], which indicates that this strategy may be very useful in developing antivir-
ulence therapy. The control of Vibrio parahaemolyticus, a potential cause of gastroenteritis
brought on by the consummation of raw sea food, is also becoming increasingly impor-
tant, since a certain amount of healthcare expenses have been directed towards treating
this condition. In their study, Sathiyamoorthi et al. [37] demonstrated that halogenated
indole derivatives (4-chloroindole, 7-chloroindole, 4-iodoindole, and 7-iodoindole) strongly
influence some of the virulence factors of V. parahaemolyticus: for example, 4-chloroindole
inhibited biofilm formation by 80% at a MIC of 50 g/mL, whereas 100 g/mL terminated its
viability within the first 30 min of activity. As it turned out, the position of the halogenated
substituent in indole core determines its extraordinary activity.

Though these results did not highlight the potential of indole compounds to target bacterial
virulence factors, recent data published by Li et al. [38] showed that 5-methylindole instantly
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eradicated several bacterial strains, including S. aureus, E.faecalis, E. coli, P. aeruginosa, methicillin-
resistant S. aureus, K. pneumoniae, and Mycobacterium tuberculosis.

3. Azoles

Azole derivatives are heterocyclic compounds comprised of a nitrogen atom and at
least one other non-carbon atom (such as nitrogen, sulfur, or oxygen) as part of the ring.
They encompass a wide number of derivatives, such as thiadiazole, oxadiazole, triazole,
imidazole, isoxazole, and pyrazole. Mainly known as antifungal agents, azole derivatives
demonstrate many other biological properties, including antidiabetic, immunosuppressant,
antiinflammatory, and anticancer activities. Even though they were initially used for the
treatment of fungal infections, various azole-containing compounds have been shown
to inhibit the growth of bacteria as well, via a different mode of action. In fungi, azoles
mainly inhibit the production of ergosterol—an essential component of the fungal plasma
membrane—whereas in bacteria, their activity is based on the fact that the attachment of
azole to bacterial flavohemoglobin (protein) eventually leads to the increasing production
of ROS, which have fatal effects on bacterial viability [39].

Due to their versatility in chemical structure and biological activities, azoles have
been widely investigated in pharmacochemistry, but they still present surprises. According
to Srikanth et al. [28], azole compounds are highly efficient against A. Baumanii, which
is of great importance considering that this multi-drug-resistant pathogenic microorgan-
ism belongs to the infamous ESKAPE group. In particular, naphthalimide-containing
nitroimidazoles with decyl-piperazine exerted strong activity against A. baumannii (MIC
0.013 MmL−1) and, combined with norfloxacin, eradicated even the resistant strains. Addi-
tionaly, ammonium containing imidazoles also showed antimicrobial potential. The same
study demonstrated that the type of the modification as well as the substituent determines
the level of antimicrobial properties. Thus, the presence of 4-Br-phenol modification in-
creased activity against A. baumanii, whereas a hydrophobic n-butyl chain on the phenyl
ring decreased activity against the same pathogen. The absence of a halogen molecule is
generally reflected through a decrease in bioactivity.

Along with this growing trend of repurposing already available therapeutics, Olaifa
et al. [40] also investigated the ability of itraconazole and fluconazole (Figure 4) to target
specific virulence factors. The ability to disrupt biofilm formation in A. baumanii was
demonstrated in the abovementioned study, which clearly indicated that azole compounds
may very well be underinvestigated in terms of their antibacterial and virulence-targeting
potential. This was also previously demonstrated by Qiu et al. [41]—using Streptococcus
mutans clinical isolates as model organisms, clotrimazole and econazole (Figure 5) inhibited
its growth at 12.5 and 25 mgL−1, respectively. Furthermore, they were able to inhibit
biofilm production, which undoubtedly demonstrated that these antifungal medicines may
also target bacterial virulence factors.

Numerous data dealing with the antibacterial potential of antifungal drugs have been
presented in the last two years. Even though these drugs do not target virulence factors, the
results are noteworthy, favoring the repurposing of antifungal drugs as novel antibacterials.
For example, Nasr et al. [42] demonstrated that a pyrazole derivative (der. 30) proved to
be more effective against Pneumocystis vulgaris and K. pneumoniae than sulfisoxazole and
gentamycin. Among 4-(4-formyl-3-phenyl-1H-pyrazol-1-yl)benzoic acid derivatives, some
of the identified compounds showed antibacterial activity against A. baumanii with an MIC
of 4 µg/mL [28]. Furthermore, according to Gomes et al. [43], of twenty-one freshly synthe-
sized 1,4-naphthoquinones linked to 1,2,3-1H-triazoles, four (9e, 9h, 9i and 9j) proved to
possess antibacterial activity against S. mutans from oral cavities with IZs of 18.66–29.00 mm.
The results also showed no toxic effects for these compounds, which possibly increases their
potential for application in practice. 1,2,4-triazolidine-3-thiones (Figure 6) exerted antibacte-
rial activity against the ESKAPE list of pathogenic bacteria. Furthermore, binaphthyl-1,2,3-
triazole peptidomimetics were efficient against A. baumannii with an MIC of 4 g/mL. Along
with this, cationic biaryl 1,2,3-triazolyl peptidomimetic derivatives moderately inhibited
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the growth of A. baumannii [28]. Antibacterial but not virulence-targeting activity was
also demonstrated in a study by Sapijanskaite-Banevic et al. [44]. In order to create substi-
tuted 1-phenyl-5-oxopyrrolidine (Figure 6) derivatives with benzimidazole, oxadiazole,
triazole, dihydrazone, and dithiosemicarbazide moieties in the structure, p-aminobenzoic
acid (Figure 6) was employed. Using different assays, the antimicrobial activity of each
drug was assessed in vitro against S. aureus, Bacillus cereus, L. monocytogenes, Salmonella
enteritidis, E. coli, and P. aeruginosa. This work demonstrated the potent bactericidal effects
of benzimidazoles and derivatives of amino acids, with some of the compounds exceeding
the activity of ampicillin. In the field of medicinal chemistry, combining two or more
pharmacological groups into a single molecule is a new approach to drug discovery [45].
As demostrated by Dawoud et al. [46], a novel group of heterocyclic compounds merged
using a indazolylthiazole moiety was evaluated for their antimicrobial potential. The
obtained results showed that four of the compounds exhibited antibacterial effects, with
the strongest activity observed against Streptococcus mutans and P. aeruginosa. Furthermore,
these novel compounds showed virulence-targeting activity, with high antibiofilm poten-
tial. Srikanth et al. [28] also suggested that aminothiazolyl berberine (Figure 6) affects the
activity of the DNA gyrase of MDR A. baumannii strains, exerting remarkable activitiy at an
MIC of 2 nmol/mL. Among oxazole/benzisoxazole-based compounds, N-(2-(1H-imidazol-
4-yl)ethyl)-2-(2,3-dihydroxyphenyl)-N-hydroxy-5-methyloxazole-4-carboxamide showed
antibacterial activity against A. Baumannii, with an MIC of 2 µg/mL (strains UNT190 and
UNT197) [28].
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4. Thiophenes

Thiophenes and related derivatives are rather versatile heterocyclic compounds with
various applications in medicine and drug discovery. With a wide range of bioactive
properties, they have been shown to possess remarkable anti-inflammatory, antianxiety,
antimicrobial, antioxidant, and other activities. Furthermore, they have long been present
on the market as commercial therapeutics, for example, tipeptidine, dorzolamide, and
citizolam. However, only data relating to the scope of this review (i.e., antibacterial activity)
are presented here. According to Rando et al. [47], 5,5′-dinitro-2-(2,3-diaza-4-(2′-tienyl)buta-
1,3-dienyl)thiophene (Figure 7) possesses promising antituberculosis activity, as it inhibited
the growth of pathogenic Mycobacterium avium and M. kansasei. This compound showed
notable levels of mutagenicity as well, which limits its potential for application in clinical
practice. Moreover, antimicrobial activity against S. aureus was observed by Scotti et al. [48],
achieved by targeting RNA polymerase.
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According to Ramalingam et al. [49], 2-amino-3-carbethoxy-6-N methyl piperidino
thiophene (Figure 7) was used as a starting point for the synthesis of novel compounds
to be tested for their antibacterial potential using the Kirby–Baurer method. Among the
tested compounds, twelve were found to be potent against B. subtilis and E. coli.

The most recent research of Metwally et al. [50] indicated that thiophene-2-carboxamide
(Figure 7) derivatives showed antibacterial properties, with S. aureus, B. subtilis, E. coli, and
P. aeruginosa being the most susceptible to the activity of the tested compounds. While
the results showed no indication of targeting virulence factors, the very fact that the novel
synthesized compounds possessed microbicidal activity with no targeted virulence factors
whatsoever suggests that there is still hope for old-fashioned drugs as antimicrobials.

The types of activity against pathogenic bacteria presented by indoles, azoles, and
thiophenes are presented in Table 1.

Table 1. Selected compounds and their type of activity against pathogenic bacteria.

Group of Compounds Compound Bacteria Type of Activity Reference

Indole
5-halo-1H-indole-2-

carboxylic
acids

Listeria monocytogenes Inhibits the growth of bacteria [25]

Indole indol-2-one with
morpholinosulfonyl Staphylococcusaureus Inhibitor of DNA gyrase [26]

Indole thiazolo-indolin-2-one
S. aureus (ATCC 29213)

P. aeruginosa (ATCC
9027)

Inhibits biofilm formation [27]

Indole d-pyrimido[4,5-b] indole Acinetobacter baumanii Inhibits the growth of bacteria [28]

Indole 3-amino indoles Multi-drug resistant
A. baumanii Inhibits the growth of bacteria [28]

Indole
4-hydroxy-2-pyridone
derivatives containing

indolyl

Multi-drug resistant
A. baumanii Inhibits the growth of bacteria [28]

Indole 2-hydrazino2-imidazoline Multi-drug resistant
A. baumanii Inhibits the growth of bacteria [28]

Indole bis-indolyl methane Multi-drug resistant
A. baumanii Inhibits the growth of bacteria [28]
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Table 1. Cont.

Group of Compounds Compound Bacteria Type of Activity Reference

Indole 5-iodoindole A. baumanii, Escherichia
coli, S. aureus

Inhibits the growth of bacteria,
decreases motility, disrupts

biofilm formation
[29]

Indole 3,3′-diindolylmethane Cutibacterium acnes
S. aureus Inhibits the growth of bacteria [30]

Indole indole terpenoid
compound rhodethrin Enterococcus faecalis Inhibits biofilm formation [31]

Indole

indole extract from the
supernatant of the

rhizobacterium Enterobacter
sp. Zch127

Proteus mirabilis Inhibits biofilm formation [32]

Indole
4-chloroindole,
5-chloroindole,

5-chloro 2-methyl indole
E. coli Decreases bacterial motility,

disrupts biofilm formation [33]

Indole
4-chloroindole,
6-iodoindole,

5-chloro-2-methyl indole

Agrobacterium
tumefaciens

Decreases swimming motility,
the production of

exopolysaccharide and
exoprotease, and cell surface

hydrophobicity and
biofilm formation

[35]

Indole indole V. tasmaniensis LGP32
and V. crassostreae J2-9

Decreases swimming motility,
inhibits biofilm formation [36]

Indole

4-chloroindole,
7-chloroindole,

4-iodoindole, and
7-iodoindole

V. parahaemolyticus Inhibits biofilm formation [37]

Azole naphthalimide-containing
nitroimidazoles A. baumannii Inhibits the growth of bacteria [28]

Azole itraconazole and
fluconazole A. baumannii Inhibits biofilm formation [40]

Azole clotrimazole, econazole Streptococcus mutans Inhibits biofilm formation [41]

Azole pyrazole 30 Pneumocystis vulgaris
Klebsiella pneumoniae Inhibits the growth of bacteria [42]

Azole

1,4-naphthoquinones
linked to 1,2,3-1H-

triazoles—compounds (9e,
9h, 9i, and 9j)

S. mutans Inhibits the growth of bacteria [43]

Azole binaphthyl-1,2,3-triazole
peptidomimetics A. baumannii Inhibits the growth of bacteria [28]

Azole

heterocycle compounds
with indazolylthiazole

moiety
(compounds 2, 3, 7, and 8)

S. mutans, P.aeruginosa Inhibits biofilm production [46]

Azole

N-(2-(1H-imidazol-4-
yl)ethyl)-2-(2,3-

dihydroxyphenyl)-N-
hydroxy-5-methyloxazole-

4-carboxamide

A. baumannii Inhibits the growth of bacteria [28]
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Table 1. Cont.

Group of Compounds Compound Bacteria Type of Activity Reference

Thiophene
5,5′-dinitro-2-(2,3-diaza-4-

(2′-tienyl)buta-1,3-
dienyl)thiophene

Mycobacterium avium
M. kansasei Inhibits the growth of bacteria [47]

Thiophene
2 -amino-3-carbethoxy-6-N

methyl piperidino
thiophene

B. subtilis
E. coli Inhibits the growth of bacteria [49]

Thiophene thiophene-2-carboxamide S. aureus, B. subtilis,
E. coli, P. aeruginosa Inhibits the growth of bacteria [50]

5. Pleuromutilin Derivatives

Pleuromutilin (Figure 8), a diterpenoid secondary metabolite with a tricyclic structure,
was initially discovered in Pleurotus passeckerianus and P. mutilis mushrooms in 1951 [51].
This compound and its derivatives demonstrated strong antibacterial efficacy against
Gram-positive bacteria, mycoplasma, and chlamydia [52] by interacting with the peptidyl
transferase core (PTC) of bacterial ribosomes and blocking protein synthesis [53,54].
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Pleuromutilins bind to the PTC and compete for binding with the 16-atom macrolide
and peptidyltransferase inhibitor carbomycin (but not with the 14-atom macrolide ery-
thromycin) [55], inhibiting the formation of peptide bonds [56]. The X-ray crystallography
of ribosome-drug complexes was used to identify the precise nature of pleuromutilin
binding to the ribosome [57].

Four semi-synthetic derivatives of pleuromutilin have so far received approval for use
in the treatment of infectious disorders, including lefamulin (Figure 8) for the treatment
of adult community-acquired bacterial pneumonia (CABP) [58], tiamulin and valnemulin
for use in veterinary medicine, and retapamulin for use as an antibiotic in the treatment
of human skin infections [59,60]. Lefamulin is the only pleuromutilin derivative that has
been demonstrated to inhibit the S. aureus cfr (chloramphenicol–florfenicol resistance gene)
strain [61].

Chemists have worked very hard to create pleuromutilin derivatives due to its unique
mechanism of action and promising antibacterial properties [62].

The gene cluster for pleuromutilin has been described and functionally characterized
with regard to its production [63]. The creation of new pleuromutilin-based antibiotics will
be aided by the identification of new pleuromutilin derivatives [64].
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Lefamulin interferes with the peptidyl transferase center of the 50S ribosome by
specifically binding at the A- and P-sites, blocking the formation of peptide bonds. This
interferes with the production of bacterial proteins [54].

Lefamulin uses a special induced fit mechanism to close the binding pocket within
the ribosome, ensuring the tight binding of the drug to the target site, even though this
mechanism of action is similar to that of the oxazolidinones and can actually compete
with the phenicols for the same binding site [54]. This is a unique strategy for preventing
bacterial peptide chain elongation, especially with the creation of the first peptide bond;
however, lefamulin is ineffective once elongation has begun [65]. With the exception of
M. pneumoniae, lefamulin presents bacteriostatic characteristics against the majority of
species [66]. Lefamulin has exhibited action against all aerobic Gram-positive organisms,
except E. faecalis [54].

Likewise, methicillin-resistant S. aureus (MRSA), heterogeneous VISA (hVISA), vancomycin-
resistant S. aureus (VRSA), penicillin-resistant S. pneumoniae (PRSP), MDR S. pneumoniae, and
vancomycin-resistant E. faecalis (VRE) are among the resistant Gram-positive organisms against
which lefamulin is effective [54,67,68].

Tiamulin and valnemulin (Figure 9) attach to the bacterial 50S ribosomal subunit to
prevent protein synthesis. It has been shown that these medications interact with 23S
RNA’s domain V and are potent inhibitors of peptidyl transferase, leaving distinct chemical
traces at the nucleotides A2058-9, U2506, and U2584-5. All of these nucleotides are at or
near the PTC and have been linked to the binding of several antibiotics. The majority of
them are well conserved both phylogenetically and functionally [69].
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These two compounds can bind alongside the macrolide erythromycin but compete
with the macrolide carbomycin, which is a peptidyl transferase inhibitor, according to
competitive footprinting. In order to impede the proper placement of the CCA ends of
tRNAs for peptide transfer, these two chemicals interact with the rRNA in the peptidyl
transferase slot on the ribosomes. Although ribosomal protein uL3 is located adjacent
to the tiamulin binding site without coming into contact with the medication, tiamulin
only interacts with rRNA residues [70]. Accordingly, tiamulin binds to the 50s subunit’s A
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site, and the acetic acid tail extends to the P site, interfering with the formation of peptide
bonds [70].

Retapamulin (Figure 9) is a pleuromutilin antibiotic that blocks the formation of the
50S ribosomal unit in bacteria, hence inhibiting the production of proteins [71]. It is effective
against Gram-positive pathogens, and since 2007, a topical preparation has been licensed
in the US for treating skin and soft tissue infections in adults and children older than
9 months [72].

Retapamulin has demonstrated remarkable in vitro and in vivo action against MRSA
and MSSA strains of S. aureus in prior studies [73] and has also shown good outcomes
against mupirocin-resistant MRSA [72].

6. Albocyclin and General Lactone Derivatives

A class of substances known as lactones is commonly present in nature [74]. Chemi-
cally, they can be categorized as variously sized intramolecular esters of hydroxycarboxylic
acids. The most prevalent are the lactones with five- and six-membered rings due to the
stability of the ring structure [75]. However, alternative ring sizes of lactones can also be
extracted from natural sources or produced chemically [76].

Lactones are a very fascinating group that demonstrates various significant biological
characteristics as a result of its diversity [77].

The main structure of the lactones group has recently been modified to create new
analogs with stronger or different responses. These new analogs can exhibit a toxic effect on
the cells of pathogenic bacteria and serve as an alternative to the widely used antibiotics [78].

It is known that bacteriostatic properties are exhibited by substances in which the
lactone moiety is present in a small ring, e.g., xanthatin [79], a bicyclic lactone isolated from
Xanthium pensylvanicum and X. strumarium, which is active against S. aureus, including
MRSA-resistant methicillin strains [80].

Several strains of Streptomyces produce albocycline—a 14-membered macrolactone
(Figure 10) [81]. This compound has shown in vitro antimicrobial activity against MRSA
and VRSA equipotent to vancomycin [82,83]. Despite this, albocycline may represent a
solution for the treatment of infections caused by S. aureus species.
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A structural motif in the macrolide family of antibiotics, the 14-membered macro-
lactone of albocycline indicates that it targets the bacterial ribosome and thereby inhibits
translation [84].

Albocycline, however, blocks the incorporation of radiolabeled N-acetylglucosamine
([3H]GlcNAc) into the peptidoglycan (PG), the protective polymer surrounding bacterial
cells, according to research by Tomoda et al. The first component of bacterial PG pro-
duction, N-acetylglucosamine (UDP-GlcNAc), accumulates as a result of albocycline’s
inhibition [82,85].
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Due to albocycline’s non-toxicity in mice and humans, in vivo investigations have
suggested increased interest in the drug for potential therapeutic uses. Using human
HepG2 hepatocellular liver cancer cells, the authors of [85] showed that albocycline was
not harmful to human cells at a final concentration of less than 64 g/mL [83].

7. Glycopeptides

A class of non-ribosomal cyclic or polycyclic peptides known as glycopeptide an-
tibiotics prevents the formation of Gram-positive bacterial cell walls. These substances
function as substrate binders (of cell-wall precursors) as opposed to active-site enzyme
inhibitors, unlike other antimicrobial classes [86–88].

By attacking lipid II (which represents a peptidoglycan-repeat unit that is related
to the lipid transporter), glycopeptide antibiotics prevent Gram-positive bacteria from
synthesizing PG. As a result, the lipid transporter shared by peptidoglycan and wall
teichoic acid (WTA) biosynthesis, bactoprenol phosphate, cannot be recycled [89]. With each
contributing almost 50% of the dry cell-wall weight, PG and WTA are two important parts
of the cell wall. Through host attachment, colonization, infection, biofilm development,
and the recruitment of penicillin-binding proteins (PBPs) to the septum during cell division,
WTA plays a significant role in the pathogenicity of microbes [90]. Consequently, it serves
as a desirable target for the creation of new antibiotics [89].

The oldest member of the class is vancomycin (Figure 11), while the more recent lipogly-
copeptide derivatives oritavancin, teicoplanin, telavancin, and dalbavancin (Figures 12–15)
were developed specifically to boost antibacterial activity, sometimes via secondary modes
of action.
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The transglycosylation stage of PG production, which is necessary to replenish the
lipid transporter, is prevented by glycopeptide antibiotic binding to lipid II. Therefore,
for instance, when vancomycin is added to S. aureus during growth, Park’s nucleotide, a
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cytoplasmic PG-precursor, accumulates [91]. Vancomycin binding to lipid II is an efficient
way to suppress both PG and wall teichoic acid biosynthesis in S. aureus [89], since C55
is present in a surprisingly low number of copies per bacterium [92] and is a shared
transporter needed in these processes [93].

Vancomycin is used to treat acute infections caused by Gram-positive organisms.
By attaching to the D-Ala-D-Ala terminus of lipid II, a PG precursor tethered to the cell
membrane by the lipid transporter bactoprenol-phosphate, vancomycin suppresses the
formation of PG (C55-P). To stop C55-P regeneration, vancomycin-bound lipid II is se-
questered from the PG biosynthesis transglycosylation step. Vancomycin’s sequestration
of lipid II causes the cytoplasmic buildup of Park’s nucleotide [91], a cytoplasmic PG
precursor, because C55 is present in bacteria in low concentrations [94]. When the dipeptide
is swapped out for a depsipeptide D-Ala-D-Lac, vancomycin is unable to attach to the
D-Ala-D-Ala terminus of lipid II in VRE [95].

As a result of investigating the structure–activity relationship of chloroeremomycin
to combat vancomycin resistance, oritavancin was discovered [96], a semi-synthetic lipo-
glycopeptide that has potent antimicrobial effects against vancomycin-resistant organisms
such as VRE and S. aureus resistant to vancomycin (VRSA) [97].

Oritavancin is currently a top therapeutic option for treating serious infections brought
on by Gram-positive organisms that are multi-drug-resistant, such MRSA [89]. Orita-
vancin’s chemical composition differs from vancomycin’s due to the inclusion of a N-
alkylated chlorobiphenyl side chain in the drug sugar’s epivancosamine. In general,
adding a hydrophobic side chain to the glycopeptide disaccharide greatly increases the
medications’ overall effectiveness and revives their activity against vancomycin-resistant
bacteria. By using solid-state NMR to structurally characterize the binding site of these
disaccharide-modified glycopeptides in S. aureus [98] and E. faecium [99] intact whole cells,
it was discovered that the drug’s hydrophobic side chain creates a secondary binding
site. The lipoglycopeptides can target the cross-linked PG-bridge structure using this
secondary binding site to aid in binding [100]. Oritavancin’s binding to the developing PG
prevents transpeptidase from effectively recognizing the PG template, which is necessary
for effective PG cross-linking during cell-wall synthesis [101].

Teicoplanin is used to treat multidrug-resistant Gram-positive bacteria, such as MRSA
and Enterococci, that are responsible for life-threatening infectious illnesses [102]. This
glycopeptide antibiotic was initially isolated from Actinoplanes teichomyceticus, which was
identified in 1978 from an Indian soil sample [103].

Teicoplanin shares structural similarities with vancomycin but differs in that it does
not contain a lipid. Both antibiotics work by forming hydrogen bonds with the D-Ala-D-Ala
C-terminus of the pentapeptide substrate to prevent the formation of the peptidoglycan
chains that make up bacterial cell walls [104]. The hydrophobic lipid chain of this pen-
tapeptide substrate is also known to interact with teicoplanin, placing the antibiotic next to
the peptidoglycan [102,105].

Derivatives of teicoplanin have also been shown to form nanoscale aggregates in
aqueous solution [106], thereby achieving increased binding power [107].

The oral and topical routes of administration for teicoplanin may result in poor
permeability across the epithelial lining due to this concentration-dependent aggregation,
and the aggregated form may reduce effective concentrations on certain sites, necessitating
a higher dose and ultimately causing bacteria to develop resistance [108].

Another lipoglycopeptide derivative of vancomycin is telavancin (TD-6424). This
was developed as a cutting-edge treatment for MRSA and other resistant Gram-positive
bacterial infections [109]. The United States Food and Drug Administration (USFDA)
granted telavancin approval in 2009 for the treatment of difficult skin and skin structure in-
fections (cSSSIs) caused by Gram-positive bacteria, including MRSA, S. aureus, Streptococcus
agalactiae, S. pyogenes, the S. anginosus group, and E. faecalis [110,111].

Two modes of action for telavancin have been suggested. Telavancin achieves bacteri-
cidal activity by interacting with the C-terminal d-alanyl-d-alanine residue on bacterial cell-
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wall peptidoglycan precursors, just like vancomycin. This interaction significantly alters
the phases of cell-wall formation that include the polymerization of peptidoglycan (transg-
lycosylation) and subsequent cross-linking (transpeptidation) [112]. Telavancin is 10-times
more effective than vancomycin at inhibiting peptidoglycan production in intact MRSA
cells because it strongly inhibits peptidoglycan generation at the transglycosylase stage.

Furthermore, a second mechanism of action has been mentioned. The depolarization
of the bacterial cell membrane is involved, which affects how the cell membrane functions.
Given that so few other glycopeptides are thought to function in this way, this dual method
of action is of special importance [109]. The interaction of the lipophilic decylaminoethyl
moiety of telavancin with the lipid bilayer of the bacterial cell membrane is thought
to be the process by which telavancin disrupts cell membranes, albeit this is not fully
understood [113]. Telavancin’s affinity for lipid II, a molecule found in bacterial cell
membranes, is facilitated by this lipophilic substance.

By disrupting the bacterial cell-wall transglycosylation pathway rather than the bacte-
rial cell-wall transpeptidation mechanism, where vancomycin preferentially binds, tela-
vancin is able to enter the bacterial cell with ease [114].

According to reports, lipid II binding is necessary for telavancin to cause membrane
depolarization in S. aureus. This might not, however, accurately reflect the crucial phase of
bacterial membrane disruption [115]. The loss of potassium ions and cytoplasmic adenosine
triphosphate (ATP) may also be related to membrane depolarization. Telavancin’s faster
bactericidal impact compared to vancomycin may be caused by this alternative method of
action, which only affects bacterial cell membranes and not mammalian cells [112].

Dalbavancin is a semisynthetic derivative of teicoplanin. It is active against most
pathogenic Gram-positive organisms, including Streptococcus spp., E. faecalis, E. faecium,
MSSA, MRSA, and vancomycin-intermediate S. aureus. However, it has poor activity
against vancomycin-resistant S. aureus and VRE [116].

Similarly to vancomycin and other glycopeptides, dalbavancin inhibits cell-wall for-
mation by interacting with the D-alanyl-D-alanine terminus in the bacterial cell-wall pepti-
doglycan and blocking cross-linking.

In the USA and Europe, acute bacterial skin and skin structure infections (ABSSSIs)
are the only conditions for which dalbavancin is currently licensed [117].

8. Chalcones

Due to the hues of the majority of naturally occurring chalcones, the name “chalcone”
was derived from the Greek word “chalcos”, which means “bronze”. 1,3-diaryl-2-propen-1-
one (Figure 16), also referred to as chalconoid, is a chemical building block shared by all
chalcone molecules. The trans isomer is thermodynamically more stable than the cis isomer.
Through the use of plants and herbs for the treatment of many diseases, such as cancer,
inflammation, and diabetes, chalcones have been applied therapeutically for thousands of
years. Several chalcone-based substances have received clinical use authorization.
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Chalcones are a class of natural and synthetic compounds that have shown promis-
ing antivirulence properties against a variety of pathogenic bacteria. With the rise of
antibiotic-resistant strains, there is an urgent need to develop alternative therapies that
target virulence factors of bacteria, rather than traditional bactericidal approaches. In recent
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years, several studies have investigated the antivirulence potential of chalcones in resistant
bacterial strains.

Several studies have investigated the activity of chalcones against multidrug-resistant
Pseudomonas aeruginosa and found that they were able to inhibit the expression of virulence
genes involved in quorum sensing, motility, and biofilm formation [118,119].

Furthermore, a study on Acinetobacter baumannii, a notorious multi-drug resistant
pathogen, showed that chalcones exhibited significant antivirulence activity by modulating
gene expression, biofilm formation, and virulence traits [120].

These studies suggested that chalcones have potential as antivirulence agents against
resistant bacterial strains by targeting various virulence traits. However, further studies
are needed to evaluate the efficacy of chalcones in vivo and their potential as a therapeutic
option for antibiotic-resistant infections.

Overall, it can be concluded that, since virulence factors are essential for the infection
of the host, techniques employed to prevent this process from initiating and search for
novel bioactive compounds with these properties are rather appealing.

Along with the synthetic and hemi-synthetic compounds elaborated in this review
article, numerous naturally derived compounds have also demonstrated great potential
as efficient virulence-targeting compounds. Dehydroabietic acid showed considerable
potential against several pathogenic microorganisms, especially Pseudomonas syringae pv.
actinidiae, Xanthomonas oryzae pv. oryzae, and Xanthomonas axonopodis pv. citri [121]. Further-
more, for some natural compounds, a mode of action has even been proposed. For example,
the exposure of Serratia marcescens to hordenine (25, 50, and 100 g/mL) reduced the syn-
thesis of acyl-homoserine lactones and prevented the development of biofilms. It also
increased the susceptibility of preformed biofilms to commercial antibiotic ciprofloxacin
by lowering extracellular polysaccharide production and altering membrane permeability.
Additionally, the presence of hordenine downregulated expression and affected genes asso-
ciated with biofilm and QS [122], which may be explored in other matrices. Additionally,
even though some compounds do not exert anti-QS activities per se, they can sometimes
be easily modified into compounds that do exert various bioactivities, as was argued by
Du et al. [123]. This comprehensive review article offered new research solutions; proposed
novel strategies; and compared existing results, leading to new conclusions.

9. Future Perspectives

The use of novel synthetic and semisynthetic compounds that target virulence factors
as antibacterials presents a promising avenue for combating antibiotic resistance. However,
there are several challenges that need to be addressed in order to fully realize the potential
of this approach. One of the challenges is the identification of new compounds with
antibacterial potency that can target virulence factors. Despite recent progress in this area,
many of the compounds that have been investigated are not yet ready for clinical use. The
process of discovering, developing, and testing new compounds can be time-consuming
and expensive, and there is a need for new screening methods and assays to identify
potential candidates more efficiently. Another challenge is the optimization of the efficacy
and safety of existing compounds. Many of the compounds that have been identified have
shown promising results in vitro, but their efficacy in vivo and safety in humans need
to be further evaluated. In addition, the development of resistance to these compounds
is a potential concern, and efforts must be made to prevent or delay the emergence of
resistance. Furthermore, there is a need for an improved understanding of the mechanisms
of action of these compounds. Many of the compounds that target virulence factors have
complex modes of action that are not yet fully understood. A deeper understanding of
these mechanisms could lead to the development of more effective compounds, as well as
the identification of new targets for antibacterial therapy.

There are ongoing clinical trials on novel antivirulence drugs that are trying to take the
next steps forward within this area, evaluating the safety and efficacy of novel synthetic and
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semisynthetic compounds. These trials are being conducted by pharmaceutical companies,
academic institutions, and government agencies around the world.

Despite the many challenges, the potential benefits of targeting virulence factors as a
strategy to combat antibiotic resistance are significant. By reducing the severity of bacterial
infections without promoting the development of resistance, this approach could help to
extend the lifespan of existing antibiotics and reduce the need for new ones. In addition,
the use of antibacterials that target virulence factors could help to reduce the burden of
antibiotic-resistant infections, which are a major public health concern.

10. Conclusions

The development of novel antibacterials that target virulence factors is an area of active
research aimed at addressing the global challenge of antibiotic resistance. The potential
benefits of these compounds lie in their ability to attenuate bacterial pathogenesis without
necessarily killing the bacteria, thus reducing selective pressure for resistance development.
While the field is still in its early stages, the progress made so far is promising. The
use of synthetic and semisynthetic compounds has emerged as an important strategy to
combat antibiotic resistance. The compounds reviewed in this paper—chalcones, azoles,
indoles, thiophenes, terpenoids, glycopeptides, pleuromutilin derivatives, and lactone
derivatives—have shown potential as antibacterials mostly targeting virulence traits in
resistant strains. Clinical trials evaluating the safety and efficacy of these compounds are
ongoing, and their results will provide critical insights into the role of virulence-targeted
antibacterials in the management of bacterial infections. However, given the complexity
of bacterial pathogenesis and the evolution of resistance mechanisms, the development
of novel antibacterials remains a challenging task. Further research is required to identify
novel targets and to optimize the efficacy and safety of these compounds. Additionally,
efforts are needed to overcome the regulatory and economic hurdles that often hinder the
development and commercialization of novel antibacterial agents.

The development of novel antibacterials that target virulence factors offers a promising
avenue for combating antibiotic resistance. While there is still much work to be carried
out, the progress made so far suggests that these compounds have the potential to play an
important role in the management of bacterial infections in the future.
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107. Tollas, S.; Bereczki, I.; Sipos, A.; Rőth, E.; Batta, G.; Daróczi, L.; Kéki, S.; Ostorházi, E.; Rozgonyi, F.; Herczegh, P. Nano-sized
clusters of a teicoplanin ψ-aglycon-fullerene conjugate. Synthesis, antibacterial activity and aggregation studies. Eur. J. Med.
Chem. 2012, 54, 943–948. [CrossRef]

108. Corno, G.; Coci, M.; Giardina, M.; Plechuk, S.; Campanile, F.; Stefani, S. Antibiotics promote aggregation within aquatic bacterial
communities. Front. Microbiol. 2014, 5, 297. [CrossRef]

109. Higgins, D.L.; Chang, R.; Debabov, D.V.; Leung, J.; Wu, T.; Krause, K.M.; Sandvik, E.; Hubbard, J.M.; Kaniga, K.; Schmidt,
D.E., Jr.; et al. Telavancin, a multifunctional lipoglycopeptide, disrupts both cell wall synthesis and cell membrane integrity in
methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2005, 49, 1127–1134. [CrossRef]

110. Draghi, D.C.; Benton, B.M.; Krause, K.M.; Thornsberry, C.; Pillar, C.; Sahm, D.F. Comparative surveillance study of telavancin
activity against recently collected gram-positive clinical isolates from across the United States. Antimicrob. Agents Chemother. 2008,
52, 2383–2388. [CrossRef]

111. Food and Drug Administration. FDA Labelling Information. 2009. Available online: https://www.fda.gov/files/food/
published/Food-Labeling-Guide-%28PDF%29.pdf (accessed on 15 November 2010).

112. Das, B.; Sarkar, C.; Das, D.; Gupta, A.; Kalra, A.; Sahni, S. Telavancin: A novel semisynthetic lipoglycopeptide agent to counter
the challenge of resistant Gram-positive pathogens. Ther. Adv. Infect. Dis. 2017, 2, 49–73. [CrossRef]

113. Breukink, E.J.; Humphrey, P.P.A.; Benton, B.M.; Visscher, I. Evidence for a multivalent interaction between telavancin and
membrane-bound lipid II. In Proceedings of the 46th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy,
San Francisco, CA, USA, 27–30 September 2006.

https://doi.org/10.1021/acs.jpcb.7b00324
https://www.ncbi.nlm.nih.gov/pubmed/28368603
https://doi.org/10.1146/annurev-micro-092412-155620
https://doi.org/10.1021/bi0202326
https://doi.org/10.1039/C7NP00012J
https://www.ncbi.nlm.nih.gov/pubmed/28675405
https://doi.org/10.1038/s41598-022-10735-6
https://doi.org/10.1111/j.1432-1033.1997.t01-1-00193.x
https://doi.org/10.1128/AAC.36.4.867
https://doi.org/10.1128/AAC.40.9.2194
https://www.ncbi.nlm.nih.gov/pubmed/8878606
https://doi.org/10.1093/jac/dkw451
https://www.ncbi.nlm.nih.gov/pubmed/27856721
https://doi.org/10.1021/bi400054p
https://www.ncbi.nlm.nih.gov/pubmed/23607653
https://doi.org/10.1016/j.jmb.2009.06.064
https://doi.org/10.1021/bi702232a
https://doi.org/10.1016/j.jmb.2008.01.031
https://doi.org/10.1038/s41598-023-28740-8
https://www.ncbi.nlm.nih.gov/pubmed/36737502
https://doi.org/10.7164/antibiotics.31.276
https://www.ncbi.nlm.nih.gov/pubmed/659325
https://doi.org/10.1007/BF01967563
https://doi.org/10.1038/s41429-018-0120-5
https://doi.org/10.1021/jm900950d
https://www.ncbi.nlm.nih.gov/pubmed/19791806
https://doi.org/10.1016/j.ejmech.2012.06.054
https://doi.org/10.3389/fmicb.2014.00297
https://doi.org/10.1128/AAC.49.3.1127-1134.2005
https://doi.org/10.1128/AAC.01641-07
https://www.fda.gov/files/food/published/Food-Labeling-Guide-%28PDF%29.pdf
https://www.fda.gov/files/food/published/Food-Labeling-Guide-%28PDF%29.pdf
https://doi.org/10.1177/2049936117690501


Antibiotics 2023, 12, 963 25 of 25

114. Benton, B.; Breukink, E.; Visscher, I.; Debabov, D.; Lunde, C.; Janc, J.; Humphrey, P. Telavancin inhibits peptidoglycan biosynthesis
through preferential targeting of transglycosylation: Evidence for a multivalent interaction between telavancin and lipid II. Int. J.
Antimicrob. Agents 2007, 29, 51–52. [CrossRef]

115. Lunde, C.S.; Hartouni, S.R.; Janc, J.W.; Mammen, M.; Humphrey, P.P.; Benton, B.M. Telavancin disrupts the functional integrity of
the bacterial membrane through targeted interaction with the cell wall precursor lipid II. Antimicrob. Agents Chemother. 2009, 53,
3375–3383. [CrossRef] [PubMed]

116. Dunne, M.W.; Puttagunta, S.; Sprenger, C.R.; Rubino, C.; Van Wart, S.; Baldassarre, J. Extended –duration dosing and distribution
of dalbavancin into bone and artic ular tissue. Antimicrob. Agents Chemother. 2015, 59, 1849–1855. [CrossRef]

117. Fazili, T.; Bansal, E.; Garner, D.; Gomez, M.; Stornelli, N. Dalbavancin as sequential therapy for infective endocarditis due to
Gram-positive organisms: A review. Int. J. Antimicrob. Agents 2023, 61, 106749. [CrossRef]

118. Zhang, Y.; Sass, A.; Van Acker, H.; Wille, J.; Verhasselt, B.; Van Nieuwerburgh, F.; Kaever, V.; Crabbé, A.; Coenye, T. Coumarin
Reduces Virulence and Biofilm Formation in Pseudomonas aeruginosa by Affecting Quorum Sensing, Type III Secretion and
C-di-GMP Levels. Front. Microbiol. 2018, 9, 1952. [CrossRef] [PubMed]
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