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Variability of leaf traits in natural
populations of Picea omorika
determines ignitability of fresh
foliage
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of Republic of Serbia, University of Belgrade, Belgrade, Serbia

Introduction: A variety of plant traits, from architectural to the cellular level, have

been connected to flammability, but intraspecific variability of plant traits (ITV)

and components of flammability is poorly studied. The lack of knowledge about

ITV of plant traits related to flammability appears to be a major shortcoming in

further interpreting species flammability and fire behavior and incorporating the

data into models.

Methods: Morpho-ecophysiological traits (width, length, thickness, weight, area,

volume, moisture content, flatness, specific leaf area, density of leaf tissue, ratio

of area to volume) and time-to-ignition of fresh foliage were measured in seven

populations of Picea omorika.

Results: All leaf traits are presented along with their correlations to the

flammability trait. The seven populations differed in terms of fresh leaves’ time-

to-ignition. Differences among populations in morpho-ecophysiological traits

were also significant but not consistent among populations. PCA classified 49

elements into three different groups, where three populations were clustered by

higher leaf area-related traits, other three populations were clustered by higher

leaf length, volume, thickness, time-to-ignition, density index, moisture content,

width, weight, and one population was classified between the two main groups.

The first two principal components accounted for 87% of the total variance:

variability in leaf area- and leaf weight-derived parameters (specific leaf area and

density index) and time-to-ignition primarily defined the formation of the first

axis, while variability in leaf flatness (based on leaf weight and thickness) primarily

contributed to the formation of the second axis.

Discussion: Results suggest high ITV in natural populations of P. omorika

regardless of site fire history.

KEYWORDS

leaf morphology, leaf moisture content, ignitability, trait variability, intraspecific
differences

Abbreviations: DI (g cm−3), density index; ITV, intraspecific variability of plant traits; (SA/V), lear area to
volume ratio; (LL, mm), leaf length; (LWi, µm), leaf width; (LT, µm), leaf thickness; LF, leaf flatness; (LWe,
g), leaf weight; (SA, cm2), leaf scanned area; (MC, %), leaf moisture content; (V, cm3), leaf volume; (SLA,
cm2 g−1), specific leaf area; (TTI, s), time-to-ignition.
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Introduction

Serbian spruce [Picea omorika (Pančić) Purk.] is an endangered
tertiary relict and endemic species with a restricted and
fragmented natural range in western Serbia and eastern Bosnia
and Herzegovina. Its current geographic distribution is between
43◦21′ and 44◦08′ North and 18◦37′ and 19◦45′ East, in the
middle and upper basin of the Drina River. The list of threatened
plants classifies the Serbian spruce as endangered due to its patchy
population structure, consisting of about 30 groups of several tens
to a few hundred trees (IUCN, 2023).1 Despite legal protection,
there is growing concern for these populations as they have
declined dramatically due to a variety of environmental causes,
including climate change, land use change, and fire (Dell’Oro
et al., 2020). Wildfires are considered one of the greatest threats to
Serbian spruce, and populations of this species have been destroyed
by fire several times throughout its long history (Wardle, 1956;
Horvat et al., 1974). However, regeneration and expansion of
populations occurred after these events, and the remarkable ability
of P. omorika seedlings to regenerate after fires has been confirmed
by several studies on the species’ ecology and reintroduction after
fires (Čolić, 1987; Dinić and Mišić, 1991). A paleoecological study
suggests that moderate fire disturbance may have been beneficial
to P. omorika, allowing rapid regeneration in the absence of more
competent, shade-tolerant species (Finsinger et al., 2017).

Fire events appear to have played an important role in the
evolution and ecology of Serbian spruce and likely led to habitat
fragmentation and population differentiation (Kuittinen et al.,
1991; Gajić et al., 1994; Ballian et al., 2006; Aleksić and Geburek,
2014), which contributed to the development of population-specific
traits that may be crucial for the response to fire disturbance.
Evidence suggests that a variety of diverse traits enhance fitness
after fires (either improving fire survival or promoting recruitment
in the post-fire environment), and these adaptive traits vary
depending on the fire regime (Keeley and Pausas, 2022). However,
many plant traits that are beneficial for fire survival are also useful
for adaptation to other selective pressures such as competition,
stress and herbivory (Mason et al., 2016; Pausas et al., 2017). A lot of
attention has been directed to characterizing tree species based on
their flammability and evaluating the relevance of morphological,
chemical and ecophysiological traits to flammability (reviewed
in Popović et al., 2021). However, there are very few studies of
intraspecific variation in plant flammability that either focus on
the influence of the fire regime (Pausas et al., 2012; Battersby et al.,
2017; Kane et al., 2022) or provide evidence that plant flammability
in local populations is an incidental property not selected primarily
by fire, at least in environments that have not experienced frequent
fire historically (Mason et al., 2016; Cui et al., 2022).

The trait-based approach has been extensively studied in
both genetic and environmental contexts, contributing to the
development of knowledge in evolutionary and population biology,
as well as community and comparative ecology. Intraspecific
variability of plant traits (ITV) has become a hot topic in ecology
simultaneously with the development of ecological modeling, as the
shortcomings of many modeling approaches have become apparent
due to a lack of data on ITV (Moran et al., 2016). Studies suggest

1 www.iucnredlist.org

that selecting relevant traits, describing intraspecific trait variation,
and incorporating this variation into models should provide for
scaling trait data to community and ecosystem level processes
(Violle et al., 2014; Aubin et al., 2016; Funk et al., 2017; Bricca et al.,
2022). Morphological, physiological, and phenological traits and
their variations have been widely used to explain plant strategies
(Reich et al., 2003) and the mechanisms underlying ecosystem
responses to environmental change and disturbance (Eviner, 2004).
It has been suggested that a deeper understanding of ITV, which
accounts for more than 25% of the total variation in leaf functional
traits (Albert et al., 2010), could improve understanding of both
species’ responses to environmental gradients and community
functioning (Martin et al., 2017).

There is a large body of knowledge related to the linkage
between plant traits and flammability, and the most commonly
examined plant trait has been leaf moisture content, followed by
a range of morphological traits (reviewed in Popović et al., 2021).
In these studies, a number of species have been tested to establish
relationships between traits and flammability, with a tendency
to increase the basic knowledge of species fire ecology, but also
to provide valuable information for restoration and conservation
ecology (Mola et al., 2014; Kane et al., 2019; Krix et al., 2019; Molina
et al., 2019). However, more data, including trait intraspecific
variability, are needed for our understanding of the relevance
of plant traits to flammability, consistency of functional trait
covariation from the individual to the ecosystem level and species
responses under current and future climate scenarios (Pausas et al.,
2017; Alam et al., 2020).

Intraspecies variability of flammability-related traits exists
in populations from fire-prone environments with different fire
histories, implying that such traits play an adaptive role (Pausas
et al., 2012; Battersby et al., 2017; Kane et al., 2022). However,
research from forests where no fires were observed over a
longer period suggest that intraspecies variability in traits related
to flammability may be due to adaptive responses to other
environmental disturbances (Mason et al., 2016; Cui et al., 2022).
Given that natural populations of P. omorika can be viewed from
both perspectives (fire events had an impact on current population
differentiation and geographic location is not pronouncedly fire-
prone), we hypothesized that ITV in natural populations may have
an impact on intraspecies variability of flammability-related traits.
The natural populations of P. omorika were selected based on
their fire history and overall biogeographic conditions. The goal
of our study was to (i) determine intraspecific variability of plant
traits related to flammability and (ii) establish relationship between
morpho-ecophysiological traits and ignitability.

Materials and methods

Study site

The Tara National Park is a globally significant area of natural
values that has largely preserved the character of an autochthonous
natural environment. It covers most of the Tara Mountain in the
west of Serbia (43◦ 57′ N, 19◦ 28′ E). The average altitude is
1,000 to 1,200 m. The climate of Tara Mt. is characterized by
fresh to cool summers and quite cold winters. The average annual
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temperature is 7.9◦C and the annual temperature fluctuations
are small: January −4.5◦C, August 16.7◦C. The average annual
precipitation is 977 mm, and the average annual humidity is very
high (83.4%). Almost all species of boreal dendroflora of Europe
and their communities can be found in the extensive area of Tara
Mt. between 900 and 1,200 m. Depending on the aspect and slope,
all communities that include mixed (deciduous-coniferous) forests
and coniferous forests are spread out like a mosaic, which is the
basic ecological and biogeographical feature of Tara Mt. Locations
inhabited by P. omorika are declared as strict nature reserves or
nature monuments (smaller groups or individual trees). P. omorika
inhabits steep limestone cliffs or fire pits at elevations ranging from
700 to 1,600 m. The species is found in a variety of communities,
usually with spruce, fir, beech, white and black pine and other
deciduous species. Seven populations assessed in this study differed
by fire history (Kanjon Brusnice was completely destroyed by fire
and naturally reestablished to the climax forest community), the
presence of water courses (Zmajevački potok and Vranjak are near
water courses; Studenac, Bilo, and Trenice do not have surface
or underground watercourses), and overall vitality of individuals
(drying of trees is observed in Crvene stene). The geographic
locations, site and vegetation characteristics of these populations
are listed in Table 1. Plant material was collected following the
protocol given by Cornelissen et al. (2003).

Leaf traits measurements

From each population, seven well-grown trees free of pathogen
or herbivore damage were selected. Five branches from the outer
part of the crown from each tree were sampled (approx. height
4 m) with a telescopic forestry scissors and three twigs with 2-year
needles from the same branch were used as a sampling material for
(i) leaf trait measurements, (ii) moisture content measurements,
and (iii) flammability testing. Leaf trait measurements were
conducted on the fresh material (in accordance with testing the
fresh-leaf ignitability) and five measurements (from five sampled
branches) per tree for needle traits were averaged and used in
further analyses. To avoid water loss during transportation from the
field to the laboratory, the material from each plant was enclosed in
a hermetic plastic bag and stored in an ice box.

The cross-sectional shape of the central part of the needle of
P. omorika is generally rhomboidal and can be determined by
two diameters: major (needle width) and minor (needle thickness)
(Nikolić et al., 2015). These two diameters are noticeable even if the
cross-sectional shape is more elliptical (Radovanović et al., 2014).
Leaf length (LL, mm) was measured to the nearest millimeter with a
standard ruler. Leaf width (LWi, µm) and thickness (LT, µm) were
measured in the central part of the needle with a digital micrometer
(Käfer Messuhrenfabrik GmbH & Co., Germany). Leaf flatness (LF)
was calculated as the ratio between width and thickness (Sellin,
2001). Leaf weight (LWe, g) was measured using a laboratory
analytical balance (0.1 mg precision) (Kern, Germany). The needles
were scanned and area of an image (scanned area, SA, cm2) was
determined in ImageJ program. Specific leaf area (SLA, cm2 g−1)
was calculated by dividing the scanned leaf area by its dry weight.
The density of leaf tissue was characterized by the density index, DI
(g cm−3), which is the ratio between leaf weight and scanned area
multiplied by thickness (Sprugel et al., 1996).

The needle volume was measured according to the water
displacement principle (Brand, 1987; Chen et al., 1997). The
twig containing 30–40 needles was submerged in water and the
increase in volume was recorded using a balance (V1). The twig
was removed from the water and allowed to drain. The needles
were carefully removed and the water displacement procedure was
repeated with the bare twig (V2). The difference between V1 and V2
is considered the volume of needles (n = 30–40), and the volume of
one needle (V, cm3) was obtained as a V/n.

Leaf moisture content (MC, %) was determined based on the
weight of fresh needles (FW) and dry needles (48 h oven-dried at
70◦C) (DW), according to calculation (Pellizzaro et al., 2007): MC
(%) = (FW−DW)/DW× 100.

Flammability testing

The time-to-ignition (TTI, s) of fresh foliage was measured by
500 W epiradiator with 10 cm radiant disk and nominal surface
temperature of 420◦C (model 534Rc2, Saint-Gobain Corporation,
France). The epiradiator was positioned horizontally, with a pilot
flame mounted 4 cm above the center of the disk, which allowed
more regular ignition but did not contribute to sample decay
(Bianchi and Defossé, 2015). The samples were placed directly on
the radiant disk after the device reached the steady-state and the
material formed a uniform layer on the epiradiator surface. A total
of 245 samples were analyzed consecutively, and each sample
contained 3.0 ± 0.1 grams of plant material (Kauf et al., 2015).
A digital timer was used to record the time elapsed between placing
a sample on the epiradiator surface and the appearance of a flame
(TTI). All experiments were conducted in a closed environment.

Statistical analyses

Seven populations of P. omorika were compared on the basis
of twelve measured variables: leaf traits (SA/V, SLA, leaf scanned
area, weight, thickness, length, width, volume, flatness, density
index), moisture content (MC) and time-to-ignition (TTI). The
assumption of normality was assessed using the Shapiro–Wilk test;
p > 0.05 indicated normal distribution. The differences between
populations were tested with ANOVA when the variables appeared
to follow normal distribution, or with the non-parametric Kruskal–
Wallis test when the assumption of normality was violated.
Benjamini and Yekutieli (BY) p-adjustment method was used to
control the type I error rate in hypothesis testing. Non-parametric
Spearman’s rho correlations were used for the analyses related
to plant trait-flammability relationships. Principal component
analysis (PCA) was carried out to visualize the data structure.
Statistical analyses were performed using R statistical software,
version 4.2.1 (R Core Team, 2022).

Results

The seven populations differed in terms of fresh-leaves time-
to-ignition (Figure 1). Population IV had the longest TTI, followed
by populations I and VII, after which populations II and III, and
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TABLE 1 Geographical locations, site and vegetation characteristics of seven Picea omorika populations.

Population Coordinates Altitude
(m)

Exposition Slope
(%)

Geological
data

No of
P. omorika
trees

Forest community

Bilo 43◦ 55′ 19′′

19◦ 20′ 8′′
1,050–1,250 N, NW 50–55

limestone black soil

4,192

Mixed forest of omorika, spruce, fir, beech, pine, and
other species (Picea omorika−Abietetum)

Crvene stene 43◦ 55′ 7′′

19◦ 21′ 56′′
900–1,100 N, NW 30–60 3,000

Studenac 43◦ 53′ 25′′

19◦ 19′ 38′′
1,225–1,350 NW 35–60 763

Vranjak 43◦ 51′ 45′′

19◦ 24′ 21′′
850 N, NW 30–60 442

Kanjon Brusnice 43◦ 55′ 44′′

19◦ 17′ 01′′
950 NW 30–40 89 Omorika forest with winter heath (Erico

carneae−Piceetum omorikae)

Zmajevački
potok

43◦ 51′ 36′′

19◦ 25′ 33′′
800–850 N, NE 30–35 Serpentinite brown

soil
797 Mixed forest of omorika, spruce, fir, black and white

pine (Piceetum omorikae−Abietis serpentinicum)

Trenice 43◦ 51′ 18′′

19◦ 24′ 50′′
900 N, NE 50–55 Serpentinite 610 Mixed forest of black and white pine with omorika and

spruce (Piceetum omorikae−Abietis serpentinicum)

finally populations V and VI had the shortest TTI. Inter-population
differences in morpho-ecophysiological parameters were also
significant, but not consistent among populations (Figure 1). The
most distinct inter-population differences were found for leaf
density index (where all seven populations significantly differed
from each other), SLA, SA/V and leaf width (where only two
of seven populations did not show a significant difference), and
scanned area (with three populations sharing similar values).
The smaller inter-population differences were found for MC,
leaf thickness, length, weight and volume (four significantly
different values were found among seven populations), and leaf
flatness (three significantly distinct values were found among seven
populations).

Time-to-ignition (TTI) was negatively influenced by leaf area-
related measures SA/V (ρ = −0.81, p < 0.0001), scanned area
(ρ = −0.75, p < 0.0001), and SLA (ρ = −0.87, p < 0.0001), with
larger leaves having a shorter time-to-ignition (Figure 2). TTI
was positively influenced by the following measures, in order of
strength of correlation: density index (ρ = +0.92, p < 0.0001), leaf
width (ρ = +0.88, p < 0.0001), MC (ρ = +0.79, p < 0.0001), leaf
length (ρ = +0.78, p < 0.0001), thickness (ρ = +0.74, p < 0.0001),
volume (ρ = +0.74, p < 0.0001), weight (ρ = +0.59, p < 0.0001),
flatness (ρ = +0.52, p < 0.001).

Principal component analysis (PCA) classified 49 elements into
three distinct groups (Figure 3). The results show that the first
two principal components explain 87% of the data variability (74%
and 13%, respectively). Based on the sum of squared correlations
between the variables and the factors (0.63 < sum of r2 < 0.99), all
variables were well represented in the plane of PC1 and PC2. The
variability of density index, SLA, leaf width, SA/V, leaf thickness,
volume and time-to-ignition (TTI) primarily defined the formation
of the first axis, whereas the variability of leaf flatness primarily
contributed to the formation of the second axis. The clustering of
individuals into several groups is visible in Figure 3. Populations
II, V, and VI (higher SA/V and SLA) formed the right-side cluster,
while populations I, IV, and VII (higher leaf length, volume,
thickness, TTI, density index, width, weight) formed the left-side
cluster. Population III was placed in the center, forming a distinct

cluster that was closer to populations I, IV, and VII by the majority
of parameters. The trait coordination revealed a close relationship
between leaf thickness and volume, with both exhibiting similar
contribution to the PC1-2 plane. Strong correlations were found
between TTI and density index (with DI contributing more to
the formation of PC 1-2 plane) and between leaf width and MC
(with LWi contributing more to the formation of PC 1-2 plane)
(Figure 3). Leaf volume was strongly positively correlated with leaf
thickness, and both measures were strongly negatively correlated
with SA/V (Figure 3).

Discussion

The results presented in this study correspond to previous
findings on plant trait-flammability relationships. All measured
parameters were significantly correlated with TTI. Leaf density
index and TTI had the strongest positive correlation (+0.92).
Studies suggest that leaf density index is related to flammability
(Burton et al., 2021), and it is also a component of litterbed
packing density (a function of tissue density and packing ratio)
that strongly influences differences among species and flammability
of mixtures (Zhao et al., 2016). TTI and leaf width showed a
strong positive correlation (+0.88). Flammability of fresh leaves was
found to be significantly correlated with leaf width, with wider and
broader leaves having significantly faster ignition times (Murray
et al., 2013; Krix and Murray, 2018). Strong negative correlations
were found between TTI and both SA/V and SLA (−0.81 and
−0.87, respectively). The ratio of leaf area to volume (SA/V), which
describes the particle geometry and relative dimensions of the
elements of the fuel complex and has a significant influence on
the components of flammability (Anderson, 1970), was found to
be the most important factor in delaying ignition. Higher values
correspond to higher energy and mass transfer rates, resulting
in shorter ignition delays and faster fire spread (Anderson, 1970;
Dimitrakopoulos and Panov, 2001; Weise et al., 2005; Saura-
Mas et al., 2010; Engber and Varner, 2012; Simeoni et al., 2012).
Leaf area and SLA were found to be significant predictors of
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FIGURE 1

Inter-population differences in morpho-ecophysiological and flammability properties of seven Picea omorika populations based on ANOVA and
Kruskal–Wallis test (I, Studenac; II, Vranjak; III, Trenice; IV, Zmajevački potok; V, Crvene stene; VI, Bilo; VII, Kanjon Brusnice).

flammability, with larger and wider leaves having a lower time-to-
ignition (Murray et al., 2013; Ganteaume, 2018). Leaf thickness, on
the other hand, had a negative effect on flammability (increased

time-to-ignition) (Grootemaat et al., 2017; Ganteaume, 2018;
Romero et al., 2019). Leaf moisture content, the most studied
parameter related to flammability and shown to be negatively
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FIGURE 2

Bivariate relationships between the morpho-ecophysiological traits and time-to-ignition of fresh foliage of Picea omorika. *** Denotes statistically
significant correlation, p < 0.001.

correlated with TTI (Chuvieco et al., 2004), also had a negative
effect on TTI of fresh P. omorika leaves, but with a lower correlation
coefficient compared with some morphological measures (e.g.,
SLA, density index, leaf width).

The leaf moisture content is a primary factor in the canopy
ignition process, but being a physiologically based plant character,

it can show variations on diurnal and seasonal basis, with leaf age
and stand structure (Keyes, 2006). Leaf morphology is the result
of a species’ resource-use strategy (Wright et al., 2004) which also
influences leaf flammability (Dimitrakopoulos and Papaioannou,
2001; Weise et al., 2005; Engber and Varner, 2012). Leaf thickness,
leaf surface area-to-volume ratio, and tissue density, which are all
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FIGURE 3

Principal component analysis (PCA) of twelve variables measured from 49 trees of seven Picea omorika populations. Population labels are given in
Figure 1.

closely related to ignitibility (Grootemaat et al., 2017; Ganteaume,
2018; Romero et al., 2019), also provide information on the strategy
of resource utilization in the spectrum of leaf economy (Wright
et al., 2004). Thicker and denser leaves, which are less flammable,
may be less able to recover from tissue loss during fire, which also
occurs following herbivory damage (Michelaki et al., 2020).

Picea omorika populations were generally well separated in
the plane of the first two axes (except for the Crvene stene and
Bilo populations, where there was a slight overlap). The Studenac
and Kanjon Brusnice populations differed from the others by
higher values for leaf length, leaf volume, and leaf thickness
and lower values for SA/V compared to the other populations.
Zmajevački potok population differed from the others by higher
values for TTI, density index, leaf weight, MC and leaf width.
The populations Crvene stene and Bilo differ from the others by
higher values for SLA, SA/V and scanned area, and lower values
for leaf length, thickness, volume and density index. The most
frequently reported plant trait in plant flammability studies is
leaf moisture content, which correlates positively with a longer
ignition time and negatively with ignition frequency (reviewed in
Popović et al., 2021). Our findings confirmed its impact on TTI,
trait coordination between MC and leaf width, and its significant
contribution to differentiation of Zmajevački potok population
(also distinguished from other populations by higher values of
TTI). The high intraspecific variability in almost all examined plant
traits supports the usefulness of using the plant trait approach to
characterize plant response to disturbance, and more empirical
data should be provided for advanced statistical methods with an
expanded set of spatial and temporal data (Sturtevant and Fortin,
2021).

The ignitability of plant material is commonly used to compare
ignition probability between species and to evaluate the relevance
of various traits to ignition (Gill and Moore, 1996; Dimitrakopoulos
and Papaioannou, 2001; Pellizzaro et al., 2007; Murray et al., 2013;
Dahanayake and Chow, 2018). It is suggested that high variability
in ignitability among individuals should lead to variability in
the probability of burning and in the spread of fire within and
between plants (Pausas et al., 2016). Some general relationships
between plant traits and ignition delay have been established by
investigating a variety of deciduous and coniferous species (e.g.,
negative correlation between MC, leaf thickness, and TTI; positive
correlation between SA/V, SLA, density index, leaf length, leaf
width, leaf area, and TTI) (Shan et al., 2008; Grootemaat et al.,
2015; Bianchi et al., 2019; Michelaki et al., 2020). Previous studies
on flammability of Picea species found that P. engelmannii stands
affected by the spruce beetle had a decrease in MC, higher levels
of lignin and cellulose, and lower levels of carbohydrate-based
compounds, resulting in increased flammability (Page et al., 2014).

On the territory of Serbia, all sites of P. omorika are preserved
in situ. For the sites within the Tara National Park, rigid protection
measures (without active intervention) are proposed, resulting in
the development of untouched forests. Considering fire events in
the near and distant past, burned populations can be expected to
recover through passive restoration, i.e., natural rejuvenation and
succession. In addition, all post-fire biological legacies (structures,
organisms, patterns, and processes that constitute continuity
between pre- and post-disturbance ecosystems) (Franklin et al.,
2000) have been integrated into the recovering ecosystem. Evidence
suggests that naturally regenerating forest ecosystems exhibit
greater resilience and adaptive capacity compared to those that
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Popović et al. 10.3389/ffgc.2023.1196809

have been restored through intervention (Blumroeder et al., 2022).
The Kanjon Brusnice population, which was established after the
great fire in 1946, is the only one that has been restored with
autochthonous vegetation in the burned area within Tara National
Park. Heather indicates a progressive succession (common in areas
with frequent fires) from a polydominant forest type to the final
stage of a Piceetum omorikae mixtum forest type. There was no
evidence of a fire history in the other six populations in our data
set. Some sites are near watercourses (Zmajevački potok, Vranjak),
while others do not have surface or underground watercourses
(Studenac, Bilo, Trenice), and the drying of trees is observed in
Crvene stene location. However, regardless of the fire history of the
stand, significant differences in morpho-ecophysiological traits and
ignitibility were observed in the total dataset.

In studies of vegetation flammability, a trait-based approach is
considered useful for upscaling attributes of the fire regime, such
as spatial patterns of fire severity (Stevens et al., 2020). However,
the predictive potential of data based on species mean values is
limited at the community and ecosystem level unless interactions
among species, habitat resource availability, niche and trait overlap
among species, and intraspecific trait variation are accounted for
Violle et al. (2012), Fréjaville et al. (2018), and Michelaki et al.
(2020). According to studies from fire-prone communities, ITV is
greater than interspecific trait variability (Dantas et al., 2013), it is
the primary response to altered disturbance regimes (Mitchell et al.,
2021), and it should be taken into account to improve mechanistic
understanding of plant community structure rules (Cianciaruso
et al., 2012). ITV has also been shown to account for a significant
proportion of the variance in fire resistance traits in open and
closed forests in the sub-Mediterranean region, as well as in open
subalpine forests and moist montane forests (Fréjaville et al., 2018).

Intraspecific variability of plant traits (ITV) is thought to
be caused by genotypic variation (drift, developmental noise, or
random mutations) and phenotypic plasticity (variation in trait
expression within genotypes) (Scheiner, 1993). The majority of
studies within natural populations reveal ITV based on either
phenotypic plasticity or local genetic adaptation. However, the
main shortcoming in ITV studies of natural populations is
that only one approach is used, and both the extent of gene
flow and the degree of environmental heterogeneity should be
considered (Via and Lande, 1985). The differences in morpho-
ecophysiological parameters between populations of P. omorika
can be related to the findings on genetic diversity, which suggest
that populations only a few kilometers or less apart were poorly
connected and highly differentiated over the glacial and post-
glacial periods and characterized as independent gene pools at the
nuclear DNA level (Aleksić and Geburek, 2010). These findings
suggest that fragmentation, admixture, size reductions/expansions
and extinction contributed to a continuous increase in the genetic
distinctness of populations over the large time periods, decreased
gene flow, and almost completely excluded seed flow between
populations (Aleksić and Geburek, 2010). The results presented
herein suggest that the population differences are a source of ITV,
which can be a starting point toward identifying generalities and the
underlying mechanisms that shape ITV (Westerband et al., 2021).

Disturbances are a natural and integral part of forest ecosystems
and are usually followed by forest succession (Dale et al., 2000).
Fires, which are among the key disturbances in forest ecosystems,
play an important role in fire-prone ecosystems, where various

species- and community-level adaptations, including flammability,
to fire regimes can be observed (Foster et al., 1998). The search for
similar patterns in forest ecosystems from areas without frequent
fire has suggested that other environmental filters have shaped
plants adaptive traits, and traits related to flammability may be
considered a secondary byproduct of selection for other traits
(Mason et al., 2016; Fréjaville et al., 2018; Cui et al., 2022). There
is open debate about the adaptive importance of plant traits related
to flammability in different areas where fire does or does not exert
strong selection pressure (Bradshaw et al., 2011; Keeley et al., 2011;
Bowman et al., 2014). However, given that projected climate change
may favor fire-promoting environments and alter fire regimes
(Moritz et al., 2014), there is strong interest in expanding global
knowledge of the relationship between fire and forest ecosystems
(FAO and UNEP, 2020).

While strategic forest management focuses on fire prevention
and suppression through the development of advanced detection
technologies (FAO, 2007), less emphasis is placed on plant trait
approaches, which should be widely used and supplemented
with more data on ITV (Harrison et al., 2021). This study
provides evidence for population-based intraspecific variability of
plant traits (morpho-ecophysiological traits and flammability) in
P. omorika, as well as relationships between traits that can be useful
in future modeling projects.

Conclusion

Although trait analyses have been recognized as useful for
evaluating the fire responses of a variety of species, the studies have
primarily focused on average species trait values and assumed that
intraspecific variation is small or negligible. However, the need for
evidence on ITV in plant trait-flammability studies has raised along
with the need for more empirical data in modeling. According to
this study, population differences are a source of ITV (morpho-
ecophysiological traits and ignitability). There is strong evidence
that the high genetic diversity of P. omorika natural populations
is due to fragmentation, admixture, size reductions/expansions,
and extinction, which all contribute to the genetic distinctness of
populations. Given that this study focused on ITV of flammability-
related traits, it can help to identify underlying mechanisms that
affect ITV in ecosystems that are not classified as fire-prone. It
may also contribute to the promotion of plant trait approaches that
should be widely used in future modeling projects.
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Popović et al. 10.3389/ffgc.2023.1196809

of the manuscript. All authors contributed to the article and
approved the submitted version.

Funding

This study was financed by the Rufford Fund for Nature
Conservation, small project granted to JJ (316924/2021-0) and the
Ministry of Science, Technological Development and Innovation,
Republic of Serbia (contract number 451-03-47/2023-01/200007).

Acknowledgments

We are thankful to the management and employees of National
Park Tara for their assistance in fieldwork. Also, helpful comments
by two reviewers referees are gratefully acknowledged.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Alam, M. A., Wyse, S. V., Buckley, H. L., Perry, G. L., Sullivan, J. J., Mason, N. W.,
et al. (2020). Shoot flammability is decoupled from leaf flammability, but controlled by
leaf functional traits. J. Ecol. 108, 641–653. doi: 10.1111/1365-2745.13289

Albert, C. H., Thuiller, W., Yoccoz, N. G., Soudant, A., Boucher, F., Saccone, P., et al.
(2010). Intraspecific functional variability: extent, structure and sources of variation.
J. Ecol. 98, 604–613. doi: 10.1111/j.1365-2745.2010.01651.x
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