

31 May - 02 June **Belgrade Youth Center** Belgrade

Congréšs Serbian Neuroscience Society

Book of Abstracts

8th CONGRESS OF SERBIAN NEUROSCIENCE SOCIETY with international participation

31 May – 2 June 2023. Belgrade, Serbia - BOOK OF ABSTRACTS

Published by:

Serbian Neuroscience Society Bulevar despota Stefana 142, 11060 Belgrade, Serbia

Editors

Selma Kanazir and Danijela Savić

Assistant editors:

Anica Živković Željko Pavković

Technical editor:

Anđela Vukojević

Graphic design:

Olga Dubljević, Irina Veselinović

Copyright @ 2023 by Serbian Neuroscience Society and associates. All rights reserved. No part of this publication may be reproduced in any form without written permission from the publisher.

ISBN: 978-86-917255-4-9

CONGRESS ORGANIZERS

Serbian Neuroscience Society

University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia

CONGRESS CO-ORGANIZERS

University of Belgrade, Faculty of Medicine

University of Belgrade, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia

University of Belgrade, Faculty of Biology

SPONSORED BY

Labena

Promedia

Zeiss

SCIENTIFIC COMITTEE Chair: Selma Kanazir

Members:

Aleksandra Isaković Carmen Sandi Cláudia Nunes Dos Santos Danijela Savić Dragomir Milovanović Elka Stefanova Frank Jessen Ivanka Marković Jelena Radulović Milena Stevanović Miroslav Adžić Nadežda Nedeljković Nataša Lončarević Nina Vardjan Panayiota Poirazi

ORGANIZING COMITTEE

Chair: Ivana Bjelobaba

Members:

Danijela Savić Milena Jović Jelena Ćirić Smilja Todorović

GnRHR signaling in neuronal cells: in vitro and in vivo data

Ana Milosevic¹, Katarina Milosevic¹, Ljiljana Nikolic¹, Jelena Bogdanovic Pristov², Iva Bozic¹, Anica Zivkovic¹, Irena Lavrnja¹, Danijela Savic¹, Marija Janjic¹, Ivana Bjelobaba¹

¹Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia

²Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia *ana.milosevic@ibiss.bg.ac.rs

Gonadotropin-releasing hormone (GnRH) is a hypothalamic decapeptide that controls mammalian reproduction by acting on its receptor (GnRHR) expressed on pituitary gonadotrope cells. While GnRHR signaling in gonadotropes is well described, knowledge of GnRHR activation-related events at extrapituitary sites including neurons is limited. It was proposed that GnRH analogs (GnRHa) induce distinct changes in hippocampal gene expression, emotional processes, and cognitive functions.

To explore neuronal GnRHR signaling we used the human neuroblastoma cell line SH-SY5Y. Further, we explored the regional expression of *Gnrhr* in rat brain and investigated the expression of several relevant genes in the hippocampus and preoptic area of peripubertal male rats treated with GnRHa.

GNRHR is expressed in SH-SY5Y cell line, but its expression does not change after adding GnRHa in the incubation media. Electrophysiological recordings confirmed that GnRHa induced membrane depolarization but could not evoke action potentials. In the rat brain, *Gnrhr* expression could be detected in the hippocampus, amygdala, and hypothalamus, including the preoptic area. Prolonged treatment of peripubertal rats with GnRHa had no effect on the expression of genes in the hippocampus previously shown to be affected in the sheep model of delayed puberty.

These results imply that neuronal GnRHR is either differently coupled (not coupled with $G_{q/11}$ protein), or that its membrane density is too low to induce transcriptional events. More investigation is needed to elucidate the role(s) of GnRH-GnRHR signaling in the brain.

Acknowledgement: Supported by Ministry of Science, Technological Development and Innovation, Republic of Serbia, Grants 451-03-47/2023-01/200007, 451-03-47/2023-01/200053