

8th CONGRESS OF SERBIAN NEUROSCIENCE SOCIETY with international participation

31 May – 2 June 2023. Belgrade, Serbia - BOOK OF ABSTRACTS

Published by:

Serbian Neuroscience Society Bulevar despota Stefana 142, 11060 Belgrade, Serbia

Editors

Selma Kanazir and Danijela Savić

Assistant editors:

Anica Živković Željko Pavković

Technical editor:

Anđela Vukojević

Graphic design:

Olga Dubljević, Irina Veselinović

Copyright © 2023 by Serbian Neuroscience Society and associates. All rights reserved. No part of this publication may be reproduced in any form without written permission from the publisher.

ISBN: 978-86-917255-4-9

CONGRESS ORGANIZERS

Serbian Neuroscience Society

University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia

CONGRESS CO-ORGANIZERS

University of Belgrade, Faculty of Medicine

University of Belgrade, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia

University of Belgrade, Faculty of Biology

SPONSORED BY

Labena

Promedia

Zeiss

Protein tyrosine phosphatase receptors N and N2 regulate gonadotropin-releasing hormone neuron function

S. Sokanovic¹, S. Constantin¹, A. Lamarca Dams¹, Y. Mochimaru¹, K. Smiljanic¹, I. Bjelobaba², R. Previde¹, S. Stojilkovic¹

Simultaneous knockout of the neuroendocrine marker genes *Ptprn* and *Ptprn2*, which encode the protein tyrosine phosphatase receptors N and N2, respectively, causes infertility of female mice while males are fertile. To clarify the mechanism of sexspecific roles of Ptprn and Ptprn2 in mice reproduction, we analyzed the effects of their double knockout (DKO) on the hypothalamic-pituitary-gonadal axis. In DKO females, a delay in puberty and lack of ovulation were observed, supplemented by changes in ovarian gene expression and steroidogenesis. In DKO males, the testicular gene expression, steroidogenesis, and development of reproductive organs were not affected. However, in both sexes, pituitary luteinizing hormone (LH) beta gene expression and LH levels were reduced, while the calcium-mobilizing and LH secretory actions of gonadotropin-releasing hormone (GnRH) receptors were preserved. The expression of hypothalamic *Gnrh1* and *Kiss1* genes were also reduced in DKO females and males. The density of immunoreactive GnRH fibers was decreased in the median eminence in DKO females and males. The density of immunoreactive kisspeptin fibers was also decreased in the rostral periventricular region of the third ventricle of females and in the arcuate nucleus of females and males. Therefore, infertility in DKO females cannot be explained only by sex-specific gonadotroph impairment. Instead, changes in hypothalamic gene expression, specifically Kiss1 in the rostral periventricular region of the third ventricle, might provide an alternative hypothesis due to its sexual dimorphism and involvement in puberty onset and ovulation.

¹Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.

²Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Serbia