

31 May - 02 June **Belgrade Youth Center** Belgrade

Congréšs Serbian Neuroscience Society

Book of Abstracts

8th CONGRESS OF SERBIAN NEUROSCIENCE SOCIETY with international participation

31 May – 2 June 2023. Belgrade, Serbia - BOOK OF ABSTRACTS

Published by:

Serbian Neuroscience Society Bulevar despota Stefana 142, 11060 Belgrade, Serbia

Editors

Selma Kanazir and Danijela Savić

Assistant editors:

Anica Živković Željko Pavković

Technical editor:

Anđela Vukojević

Graphic design:

Olga Dubljević, Irina Veselinović

Copyright @ 2023 by Serbian Neuroscience Society and associates. All rights reserved. No part of this publication may be reproduced in any form without written permission from the publisher.

ISBN: 978-86-917255-4-9

CONGRESS ORGANIZERS

Serbian Neuroscience Society

University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia

CONGRESS CO-ORGANIZERS

University of Belgrade, Faculty of Medicine

University of Belgrade, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia

University of Belgrade, Faculty of Biology

SPONSORED BY

Labena

Promedia

Zeiss

SCIENTIFIC COMITTEE Chair: Selma Kanazir

Members:

Aleksandra Isaković Carmen Sandi Cláudia Nunes Dos Santos Danijela Savić Dragomir Milovanović Elka Stefanova Frank Jessen Ivanka Marković Jelena Radulović Milena Stevanović Miroslav Adžić Nadežda Nedeljković Nataša Lončarević Nina Vardjan Panayiota Poirazi

ORGANIZING COMITTEE

Chair: Ivana Bjelobaba

Members:

Danijela Savić Milena Jović Jelena Ćirić Smilja Todorović

Evading multidrug resistance in glioblastoma with natural compound sclareol and its novel derivatives

Ema Lupšić¹, Ana Kostić¹, Pavle Stojković², Nataša Terzić-Jovanović³, Miroslav Novaković³, Paraskev Nedialkov⁴, Antoaneta Trendafilova⁵, Igor M. Opsenica², and Milica Pešić¹

¹Institute for Biological Research "Siniša Stanković" – National Institute of the Republic of Serbia, University of Belgrade, Department of Neurobiology, Belgrade, Serbia

² University of Belgrade – Faculty of Chemistry, Belgrade, Serbia

³ University of Belgrade - Institute of Chemistry, Technology, and Metallurgy, National Institute of the Republic of Serbia, Belgrade, Serbia

⁴ Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria ⁵ Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria

Background: Glioblastoma is a highly aggressive and resistant brain tumor. P-glycoprotein (P-gp) constitutes the blood-brain barrier and is expressed on the cell membrane of multidrugresistant (MDR) glioblastoma cells. Our objective was to investigate the anti-glioblastoma effects of sclareol (SCL), a natural diterpene alcohol, and its two derivatives (11c and 12l). Methods: Our cellular model included human glioblastoma U87 cell line without P-gp expression, its MDR counterpart U87-TxR with P-gp expression, and normal lung fibroblasts MRC-5. Cytotoxic effects were examined by MTT. P-gp function, cell cycle disturbance, time-dependent cell death induction, the level of reactive oxygen and nitrogen species, and changes in the mitochondrial membrane potential were studied by flow cytometry. Results: SCL and its derivatives evaded the MDR in glioblastoma cells, showing lower IC50 values in U87-TxR than in U87, referred to as collateral sensitivity. Both derivatives were more potent than SCL, while 12l was active in the nanomolar range. 11c and 12l displayed greater selectivity towards glioblastoma cells compared to SCL. All compounds significantly disturbed the cell cycle and induced cell death: SCL - late apoptosis and necrosis, 11c - only early apoptosis, and 121 - early and late apoptosis. SCL and its derivatives acted as antioxidants, while 11c and 12l decreased mitochondrial membrane potential. Conclusion: SCL derivatives were more potent than SCL. The observed collateral sensitivity in glioblastoma cells can be explained by oxidative stress modulation because although resistant due to P-gp expression, U87-TxR cells are more susceptible to changes in oxidative status than U87 cells.