22nd Symposium on Application of Plasma Processes and IIth EU-Japan Joint Symposium on Plasma Processing

Book of Contributed Papers

Štrbské Pleso, Slovakia 18-24 January, 2019

Edited by V. Medvecká, J. Országh, P. Papp, Š. Matejčík

Book of Contributed Papers: 22nd Symposium on Application of Plasma Processes and 11th EU-Japan Joint Symposium on Plasma Processing, Štrbské Pleso, Slovakia, 18-24 January 2019.

Symposium organised by Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava and Society for Plasma Research and Applications in hotel SOREA TRIGAN***, Štrbské Pleso, Slovakia, 18-24 January 2019.

Editors:	V. Medvecká. J. Országh, P. Papp, Š. Matejčík
Publisher:	Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava; Society for Plasma Research and Applications in cooperation with Library and Publishing Centre CU, Bratislava, Slovakia
Issued:	January 2019, Bratislava, first issue
Number of pages:	386
URL:	http://neon.dpp.fmph.uniba.sk/sapp/

Department of Experimental Physics

Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava Mlynská dolina F2 842 48 Bratislava, Slovakia URL: <u>http://www.fmph.uniba.sk/</u> Tel.: +421 2 602 95 686 Fax: +421 2 654 29 980

Society for plasma research and applications

Faculty of Mathematics, Physics and Informatics Comenius University Bratislava Mlynská dolina F2 842 48 Bratislava, Slovakia URL: <u>https://spvap.eu/</u> E-mail: <u>spvap@neon.dpp.fmph.uniba.sk</u> Tel.: +421 2 602 95 686

Local Organizing Committee

Štefan Matejčík (chair) František Krčma Peter Papp Juraj Országh Veronika Medvecká Ladislav Moravský

22nd Symposium on Application of Plasma Processes

Prof. J. Benedikt	Christian-Albrechts-University, Kiel, Germany
Dr. R. Brandenburg	INP, Greifswald, Germany
Dr. Z. Donkó	Hungarian Academy of Sciences, Budapest, Hungary
Dr. T. Field	Queen's University, Belfast, United Kingdom
Prof. S. Hamaguchi	Osaka University, Japan
Prof. F. Krčma	Brno University of Technology, Brno, Czech Republic
Prof. N. Mason	University of Kent, United Kingdom
Prof. Š. Matejčík	Comenius University in Bratislava, Slovakia
Prof. J. Pawlat	University of Technology, Lublin, Poland
Prof. M. Radmilović-Radjenović	Institute of Physics, Belgrade, Serbia
Prof. P. Scheier	Leopold-Franzens University, Innsbruck, Austria

11th EU-Japan Joint Symposium on Plasma Processing

Prof. S. Hamaguchi	Osaka University, Japan
Prof. N. Mason	University of Kent, United Kingdom
Prof. Z. Petrović	Institute of Physics, Belgrade, Serbia

Reading Committee

Prof. Š. Matejčík Prof. F. Krčma Prof. N. Mason Dr. P. Papp Dr. J. Országh Dr. V. Medvecká Comenius University in Bratislava, Slovakia Brno University of Technology, Brno, Czech Republic University of Kent, United Kingdom Comenius University in Bratislava, Slovakia Comenius University in Bratislava, Slovakia

Conference Topics

- 1. Electrical discharges and other plasma sources
- 2. Elementary processes and plasma chemical reactions
- **3.** Plasma-surface interactions
- 4. Plasma treatment of polymer and biological materials
- **5.** Nanometer-scaled plasma technology
- **6.** Ion mobility spectrometry

Table of Content

		INVITED LECTURES	10
IL-01	Chris Mayhew	SOFT CHEMICAL IONISATION AND THE HUMAN VOLATILOME: APPLICATIONS TO MEDICAL SCIENCE AND HUMAN DETECTION	11
IL-02	Douyan Wang	BIOLOGICAL APPLICATIONS USING PULSED ELECTRIC FIELD AND PLASMAS	21
IL-03	Milan Simek	NANOSECOND DISCHARGE IN LIQUID WATER AT IPP: OVERVIEW OF RECENT RESULTS	23
IL-04	Mario Janda	CHEMICAL KINETIC MODEL OF TRANSIENT SPARK: SPARK PHASE AND NOX FORMATION	25
IL-05	Ana Sobota	ATMOSPHERIC PRESSURE PLASMAS IN CONTACT WITH TARGETS: ELECTRIC FIELDS AND ELECTRON PROPERTIES	35
IL-06	Timo Gans	TAILORING REACTIVE SPECIES PRODUCTION IN COLD ATMOSPHERIC PRESSURE PLASMAS FOR ENVIRONMENTAL AND HEALTHCARE TECHNOLOGIES	36
IL-07	Sander Nijdam	PHYSICS OF TRANSIENT PLASMAS	38
IL-08	Patrik Španěl	MASS SPECTROMETRY FOR REAL TIME MEASUREMENT OF TRACE CONCENTRATIONS OF VOLATILE COMPOUNDS IN AIR AND BREATH	39
IL-09	Mahmoud Tabrizchi	DEVELOPMENT OF SEVERAL NON-RADIOACTIVE IONIZATION SOURCES FOR ION MOBILITY SPECTROMETRY	45
IL-10	Yuzuru Ikehara	A PRINCIPLE OF BLOOD COAGULATION INDUCED BY LOW- TEMPERATURE PLASMA TREATMENT	46
IL-11	Masaaki Matsukuma	PLASMA PROCESSES FOR MANUFACTURING SEMICONDUCTOR DEVICES AND SIMULATIONS	49
IL-12	Sasa Dujko	NON-EQUILIBRIUM TRANSPORT OF ELECTRONS IN GASES AND LIQUIDS AND ITS APPLICATIONS IN MODELING OF PARTICLE DETECTORS	57
IL-13	Naoki Shirai	PLASMA LIQUID INTERACTION INDUCED BY ATMOSPHERIC PRESSURE DC GLOW DISCHARGE	63
IL-14	Uros Cvelbar	HOW TO DESIGN NANOCATALYSTS WITH PLASMA?	67
IL-15	Nevena Puač	DIAGNOSTICS OF ATMOSPHERIC PRESSURE PLASMAS AND THEIR APPLICATION IN AGRICULTURE	68
IL-16	Peter Awakowicz	REDUCTION OF VOLATILE ORGANIC COMPOUNDS WITH THE CONCEPT OF A SURFACE DIELECTRIC BARRIER DISCHARGE	70
IL-17	Petr Synek	UNRAVELING THE COMPLEXITY OF BARRIER DISCHARGES: ROTATIONAL NON-EQUILIBRIA AND MICRO-AMPERE CURRENTS	71
IL-18	Johannes Berndt	SOME GENERAL ASPECTS CONCERNING THE PLASMA BASED DEPOSITION OF THIN FILMS	76
		TOPICAL LECTURES	77
TL-01	Zoltan Donkó	PARTICLE SIMULATION OF ATMOSPHERIC PRESSURE TRANSIENT DISCHARGES INCLUDING VUV PHOTON TRANSPORT	78
TL-02	Lenka Zajíčková	GLIDING ARC WITH SIDE GAS INLET: PLASMA DIAGNOSTICS AND APPLICATION IN POLYMER TREATMENT	83
TL-03	Viktor Schneider	MICROPARTICLES TRAPPED BY OPTICAL TWEEZERS - MEASUREMENTS WITH AND WITHOUT A PLASMA	89
TL-04	Matej Klas	DISCHARGE BREAKDOWN STUDIED UNDER HIGH PRESSURE IN ARGON	90

TL-05	Hans Höft	CONTROLLING DISCHARGE REGIMES IN PULSED, SINGLE-FILAMENT DIELECTRIC BARRIER DISCHARGES	93
TI 06	Satoshi		100
TL-06	Hamaguchi	SURFACE REACTIONS OF ATOMIC LAYER ETCHING PROCESSES	
TL-07	Miroslav Michlíček	MASS SPECTROMETRY OF CAPACITIVELY COUPLED PLASMA IGNITED IN CYCLOPROPYLAMINE/ARGON MIXTURE	104
TL-08	Zoran Petrović	THE EFFECT OF ATTACHMENT ON RF BREAKDOWN	110
TL-09	Michal Ďurian	CONSTRUCTION OF A FOURIER TRANSFORM SPECTROMETER FOR THE	114
		UV-VIS REGION	440
TL-10	Samuel Omasta	DETERMINATION OF ELECTRIC FIELD IN HUMID AIR PLASMA FROM NITROGEN FNS AND SPS BANDS RATIO	118
TL-11	Abdulrahman Basher	THE FIRST PRINCIPLE CALCULATIONS OF THE INTERACTION BETWEEN HEXAFLUOROACETYLACETONE (HFAC) WITH NI AND NIO SURFACES FOR ATOMIC LAYER ETCHING (ALE) APPLICATIONS	122
TL-12	Stanislav Chudják	FORMATION OF LIFE PRECURSOR MOLECULES IN TITAN RELATED ATMOSPHERE AT RELEVANT TEMPERATURE AND PRESSURE	126
TL-13	Ladislav Moravský	ION MOBILITY SPECTROMETRY MONITORING OF DECOMPOSITION OF DIMETHYL PHTHALATE BY POSITIVE CORONA DISCHARGE	131
TL-14	Jarosław Puton	ELECTRON CAPTURE IN IMS DETECTORS – A COMPARISON OF ECD, DT IMS AND DMS	135
TL-15	Kristian Wende	SMALL MOLECULE ANALYTICS TO ELUCIDATE PLASMA – LIQUID INTERACTIONS	139
TL-16	Ju Young Park	INACTIVATION OF INDOOR AIRBORNE BACTERIA BY DBD	145
TL-17	Kinga Kutasi	TUNNING THE PAW COMPOSITION BY A SURFACE-WAVE MICROWAVE DISCHARGE	147
TL-18	Jan Benedikt	ATMOSPHERIC PLASMAS FOR GENERATION OF NANOSTRUCTURED MATERIALS	152
TL-19	Tom Field	PLASMA FORMATION IN CONDUCTING LIQUIDS: GROWTH AND NATURE OF THE VAPOUR LAYER	155
TL-20	Antonina Malinina	EMISION CHARACTERISTICS OF GAS-DISCHARGE PLASMA OF ATMOSPHERIC PRESSURE DIELECTRIC BARRIER DISCHARGE ON ZINC DIODIDE VAPOR WITH NEON AND XENON MIXTURES	156
TL-21	Ilija Stefanovic	NEW AND VERSATILE MINATURE MICROWAVE PLASMA SOURCE	165
TL-22	Mikhail Yablokov	HYDROPHILICITY OF PLASMA-TREATED POLYMERS AS A RESULT OF SURFACE CHARGING	169
TL-23	Zbyněk Voráč	INCREASING THE EFFICIENCY OF PLASMA JET TREATMENT BY THE PRECURSOR ADDITION	174
TL-24	Bilel Rais	µPLASMAPRINT: DIGITAL ON-DEMAND SURFACE ENGINEERING	177
TL-25	Jozef Ráheľ	MANIPULATION OF POWDERY MATERIALS BY A SEQUENTIALLY PULSED COPLANAR BARRIER DISCHARGE	181
TL-26	Zdenko Machala	GASEOUS AND AQUEOUS REACTIVE OXYGEN AND NITROGEN SPECIES OF AIR PLASMAS WITH WATER	186
		POSTER PRESENTATIONS	191
P-01	Arian Fateh Borkhari	DC VACUUM BREAKDOWN AT MICRO-METER SEPARATIONS	192
P-02	Richard Cimerman	DISCHARGE FORMATION INSIDE THE HONEYCOMB STRUCTURES ASSISTED BY SURFACE BARRIER DISCHARGE	196
P-03	Aranka Derzsi	HEAVY-PARTICLE INDUCED SURFACE PROCESSES IN CAPACITIVE RADIO FREQUENCY DISCHARGES DRIVEN BY TAILORED VOLTAGE WAVEFORMS	200

P-04	Ján Ďurian	ACCELERATING MONTE CARLO PARTICLE-IN-CELL (MCC-PIC) SIMULATIONS OF DISCHARGES	205
P-05	Tom Field	PLASMA FORMATION IN CONDUCTING LIQUIDS: TIME TO BREAKDOWN	211
P-06	Milan Simek	NANOSECOND DISCHARGE IN LIQUID WATER AT IPP: OVERVIEW OF RECENT RESULTS	23
P-07	Ján Blaško	ELECTRON INDUCED FRAGMENTATION OF 2,6 - DICHLOROANISOLE	212
P-08	Beáta Feilhauerová	DISSOCIATION OF DIMETHYL PHTHALATE MOLECULE INDUCED BY LOW- ENERGY ELECTRON IMPACT	217
P-09	Michal Lacko	INFLUENCE OF ELECTRIC FIELD ON ION CHEMISTRY OF GLYOXAL	221
P-10	Dušan Mészáros	LOW ENERGY ELECTRON ATTACHMENT TO OCTAFLUOROCYCLOBUTANE MOLECULES AND CLUSTERS	226
P-11	Juraj Országh	EXCITATION OF WATER INDUCED BY ELECTRON IMPACT	230
P-12	Peter Papp	THE PROTON AFFINITIES OF DIMETHYL PHTALATE ISOMERS	234
P-13	Barbora Stachová	ELECTRON IMPACT EXCITATION OF HELIUM	238
P-14	Veronika Medvecká	LOW-TEMPRATURE PLASMA TREATMENT OF SELECTED CEREALS	244
P-15	Barbora Pijáková	BIOLOGICAL ACTIVITY OF PLASMA MODIFIED PROTECTIVE LAYERS ON FAÇADE USING RF SLIT NOZZLE	249
P-16	Ľubomír Staňo	SURFACE MODIFICATION OF POLYPROPYLENE MEMBRANES BY PLASMA-INDUCED GRAFTING FOR THEIR APPLICATION AS SEPARATORS IN ALKALINE ELECTROLYSIS CELL	254
P-17	Vlasta Štěpánová	ROLL-TO-ROLL ATMOSPHERIC PRESSURE PLASMA TREATMENT OF POLYAMIDE FOILS	259
P-18	Juliána Tomeková	LOW TEMPERATURE AIR PLASMA AND ITS EFFECT ON GERMINATION OF SOYA BEANS	264
P-19	Zlata Tučeková	STRUCTURING OF POLYMETHYLMETHACRYLATE SUBSTRATES BY REDUCING PLASMA	269
P-20	Anna Zahoranová	EFFECT OF COLD ATMOSPHERIC PRESSURE PLASMA TREATMENT ON SEED GERMINATION AND THE POTENTIAL GENOTOXIC IMPACT	273
P-21	Martina Ilčíková	AGEING EFFECT OF PLASMA TREATED Al ₂ O ₃ AND ZrO ₂ CERAMIC POWDERS WITH RESPECT TO ELECTROPHORETIC DEPOSITION	278
P-22	Jana Hrdá	DETECTION OF PHTHALATES BY ATMOSPHERIC PRESSURE CHEMICAL IONISATION ION MOBILITY SPECTROMETRY	282
P-23	Bartosz Michalczuk	ION MOBILITY SPECTROMETRY FOR RAPID QUANTATIVE ANALYSIS OF WHISKY LACTONE IN OAK WOOD	287
P-24	Matúš Sámel	IONIZATION AT ATMOSPHERIC PRESSURE USING KEV ELECTRON SOURCE	290
P-25	Maria Pintea	VELOCITY MAP IMAGING TECHNIQUE AND THE DISSOCIATION PROCESSES IN W(CO)6 AND Fe(CO)5 NEGATIVE IONS	292
P-26	Jun Choi	STUDY ON ATMOSPHERIC MICROPLASMA WITH TRANSMISSION LINE RESONATORS DRIVEN BY MICROWAVE	293
P-27	Faro Hechenberger	NOZZLE-TYPE PLASMA ION SOURCE WITH HIGH ION FLUX FOR ION SURFACE INVESTIGATIONS	295
P-28	Vladimír Held	COMBUSTION EXHAUST CLEANING USING TRANSITION ELECTRIC DISCHARGE	298
P-29	Petr Hoffer	INTERFEROMETRIC ANALYSIS OF PRESSURE FIELDS AROUND NANOSECOND DISCHARGES IN WATER	302
P-30	Benedek Horváth	ELECTRON-INDUCED SECONDARY ELECTRONS IN LOW-PRESSURE CAPACITIVELY COUPLED RADIO-FREQUENCY PLASMAS	306

P-31	David Olivenza Leon	PROTON TRANSFER REACTION – MASS SPECTROMETRY AND ITS APPLICATIONS TO HOMELAND SECURITY: DETECTION OF COCAINE AND ITS METABOLITES	311
P-32	Vaclav Prukner	SURFACE DBD BASED JET SYSTEM FOR IN-LINE PROCESSING OF SOLID AND LIQUID PARTICLES	316
P-33	Nail Asfandiarov	DISSOCIATIVE ELECTRON ATTACHMENT TO 4-BROMOBIPHENYL MOLECULE	318
P-34	Peter Čermák	STABILITY OF DISCHARGES THERMOMETRY BASED ON THE EMISSION OF 2PS, NOγ, AND HIR SYSTEMS	323
P-35	Kalev Erme	THE EFFECT OF CATALYST ON OZONE AND NITROUS OXIDE PRODUCTION IN DIELECTRIC BARRIER DISCHARGE	325
P-36	Mostafa Hassan	INVESTIGATION OF THE ELECTROSPRAYED WATER MICRODROPLETS USING OPTICAL IMAGING METHODS	330
P-37	František Krčma	INFLUENCE OF SOLUTION PROPERTIES AND GAS ADDITION ON HYDROGEN PEROXIDE PRODUCTION BY A NOVEL PLASMA SOURCE GENERATING DC NONPULSING DISCHARGE IN LIQUIDS	335
P-38	František Krčma	THE ROLE OF OXYGEN AND CARBON DIOXIDE ON DISCHARGE INITIATED CHEMISTRY IN TITAN RELATED ATMOSPHERE AT RELEVANT TEMPERATURES	338
P-39	Felix Duensing	INVESTIGATE SURFACE STRUCTURE OF MOLYBDENUM SPUTTERING TARGETS BY LOW ENERGY ION-SURFACE COLLISIONS	343
P-40	Gervais Blondel Ngiffo Yemeli	PLASMA ACTIVATED WATER GENERATED BY TRANSIENT SPARK AIR DISCHARGE: CHEMICAL PROPERTIES AND APPLICATION IN SEED GERMINATION AND PLANT GROWTH	345
P-41	Michal Hlína	TETRAFLUOROMETHANE (CF₄) DECOMPOSITION USING ARGON/WATER PLASMA TORCH	350
P-42	Zdenka Kolska	SURFACE MODIFICATIONS OF POLYMER FOR VARIABLE APPLICATIONS	354
P-43	Pavel Kříž	THE EFFECT OF LOW-TEMPERATURE PLASMA TREATMENT OF SEEDS OF SELECTED CROPS ON GERMINATION AND ITS BIOLOGICAL ACTIVITY IN EARLY GROWTH	357
P-44	Katarina Kučerová	EFFECT OF PLASMA ACTIVATED WATER ON LETTUCE	363
P-45	Alicia Marín Roldán	DIAGNOSTICS OF THIN LAYERS ON SI SUBSTRATE BY CF-LIBS USING VUV AND UV-NIR SPECTRAL RANGES	368
P-46	Robin Menthéour	ANTIBACTERIAL EFFECTS OF PLASMA ACTIVATED WATER COUPLED WITH ELECTROPORATION	371
P-47	Joanna Pawłat	NON THERMAL PLASMA APPLICATION IN ANTIMICROBIAL CONDITIONING OF MUNICIPAL WASTES	376
P-48	Václav Švorčík	ANTIBACTERIAL PROPERTIES OF SILVER COATED REGENERATED CELLULOSE	380
P-49	Barbora Tarabová	NON-THERMAL PASTEURIZATION OF FRESH APPLE JUICE BY COLD AIR PLASMAS	382

DIAGNOSTICS OF ATMOSPHERIC PRESSURE PLASMAS AND THEIR APPLICATION IN AGRICULTURE

N. Puač¹, N. Škoro¹, D. Maletić¹, S. Živković², N. Selaković¹, G. Malović¹ and Z.Lj. Petrović^{1,3}

¹Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia ²Institute for Biological Research "Siniša Stanković", University of Belgrade, Bul. despota Stefana 142, 11000 Belgrade, Serbia

³Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia E-mail: nevena@ipb.ac.rs

Atmospheric pressure plasmas (APPs) have been intensively studied in the last decade due to their high potential in the applications in medicine, biology and, lately, in agriculture [1, 2]. They are generated in plasma sources of various geometries and configurations and with different electrode material in order to make them efficient for large variety of applications. The types of sources used are mainly atmospheric pressure plasma jets (APPJs), but since some applications require large areas to be treated plan parallel dielectric barrier discharges [3-6] are also utilized. Typical configurations of APPJs consist of a tube for conducting the flow of the buffer gas and set of electrodes where powered one can be in the contact with the plasma or covered by dielectric. The power supplies that are most commonly used can be divided by the type of signal as continuous or pulsed and they can operate in the large range of frequencies (from several kHz to GHz). The choice of the geometry as well as the type of the power supply used is governed by the application of the APP. Regardless of the system choice and configuration, one needs to perform detailed diagnostics of the plasma system to obtain the data that could be linked to the processes significant for the particular treatment. Then, the efficiency of desired application can be assessed and, which is also important in many cases, there is an opportunity up to some extent to compare the achieved effects with the other systems used for the same application. At the same time, the detailed diagnostics allows the studies of fundamental questions of APP behaviour. For instance, in the case of APPJs an interesting feature of formation of pulsed atmospheric-pressure streamers (PAPS) was observed and investigated. The fast ICCD imaging of this phenomena revealed that PAPS have a speed of several kilometres per second and their formation and propagation still needs to be explained in more detail.

However, from the point of applications the most important feature of the APP is that they create chemically highly active media (both in gas and liquid) with the properties that can be generally tuned according to the application's demands. The active chemistry of the plasma's gas phase can directly modify the treated surface or activate specific mechanisms inside the treated target, e.g. plasma treatment of cells leading to the improved differentiation or cancer cell death [7, 8]. Also, since APP can operate in direct contact with a liquid, the chemically active environment produced in the gas phase above the liquid can modify the physical and chemical properties of the treated liquid [9-11]. Extensive research in this type of experimental configurations has led to the development of the applications of APP in the field of agriculture. Two examples of such applications are direct treatment of seeds and treatment induces higher germination percentage, less contamination of the seedlings, higher water uptake and faster plant development. These and other observed effects are the result of the interaction of plasma formed reactive oxygen and nitrogen species (RONS) with the seed and plant cells. RONS can trigger various biochemical mechanisms that can be observed also at molecular level through the activity of enzymes or hormones in the seeds and plants.

Here we will try to give the overview of the detailed characterization of the APP systems that were used for both medical applications and applications in agriculture. Results of time-resolved plasma imaging using fast ICCD camera will show the development of plasma structure within one period of the power signal and provide an insight in kinetic effects such as PAPS. Moreover, by using optical emission spectroscopy spectra of excited species in the gas phase will be obtained allowing the qualitative assessment of excited species above the treated liquid. The results of electrical measurements of APP sources, as another important diagnostics tool, will be presented. Comparison of the two different APP (in electrode geometry and applied voltage frequency) will be done by comparing both the results of plasma diagnostics and the response of the biological system treated by these plasma sources. Also, investigations of the applications of APP in the agriculture will be shown featuring the idea of plasma decontamination of water polluted by pesticides and its influence on germination of commercial plants.

Acknowledgments: This research has been supported by the Ministry of Education and Science Serbia, project III41011 and ON171037.

References

[1] Adamovich I. et al. J. Phys. D. Appl. Phys. 2017 50 323001.

[2] Puač N, Gherardi M and Shiratani M 2017 Plasma Process Polym. e1700174.

[3] Stoffels E, Flikweert A J, Stoffels W W and Kroesen G M W 2002 *Plasma Sources Sci. Technol.* **11** 383–8.

[4] Winter J, Brandenburg R and Weltmann K-D 2015 Plasma Sources Sci. Technol. 24 064001.

[5] Maletić D, Puač N, Selaković N, Lazović S, Malović G, Đorđević A and Petrović Z L 2015 *Plasma Sources Sci. Technol.* **24** 025006.

[6] Čech J, Brablec A, Černák M, Puač N, Selaković N and Petrović Z L 2017 *Eur. Phys. J. D* **71** 27.

[7] Miletić M, Mojsilović S, Okić Đorđević I, Maletić D, Puač N, Lazović S, Malović G, Milenković P, Petrović Z L and Bugarski D 2013 *J. Phys. D. Appl. Phys.* **46** 345401

[8] Hirst A M, Frame F M, Maitland N J and O'Connell D 2014 Biomed Res. Int. 2014 878319

[9] Bruggeman P J et al 2016 Plasma Sources Sci. Technol. 25 053002.

[10] Škoro N, Puač N, Živković S, Krstić-Milošević D, Cvelbar U, Malović G, Petrović Z. Lj. 2018 *Eur. Phys. J.* D 72 2.

[11] Puač N, Miletić M, Mojović M, Popović-Bijelić A, Vuković D, Miličić B, Maletić D, Lazović S, Malović G, Petrović Z. Lj. 2015 *Open Chemistry* **13**(1) 332.