

ECE 2023 C R E T E

European Congress of Entomology

XII European Congress of Entomology

16–20.10.2023 Cultural Conference Center of Heraklion Crete, Greece

www.ece2023.com

Organised by

HELLENIC REPUBLIC Ministry of Rural Development and Food

Welcome Letter

Dear Colleagues,

On behalf of the Organizing Committee of the ECE 2023 and the Hellenic Entomological Society, we are delighted to welcome entomologists from around the globe to the XII European Congress of Entomology (ECE 2023), in Heraklion, Crete, on 16-20 October 2023.

Forty-five years after the first European Congress of Entomology in 1978 at Reading University, UK and following a series of successful congresses around Europe, we now have the great honor to host this major European entomological meeting in our beautiful country and with it the opportunity to share knowledge, expertise and perspectives.

The world of entomology faces many problems with the increasing threat of climate change, damaging vector-borne diseases, biodiversity loss and the need to feed an expanding world population. Our goal is to gather scientists from around the globe and provide a unique opportunity to exchange information and to communicate research results on a wide range of topics. The ECE 2023 audience consists of researchers and academics from a diverse range of entomology related fields, as well as policy-makers, field agronomists, crop protection experts, medical practitioners, engineers, social scientists and artists.

The congress program includes invited lectures from international experts, symposia, oral and poster sessions, workshops and satellite seminars. In addition, the congress is undoubtedly the ideal meeting place to network and interact, establishing the starting point for future collaborations and breakthrough innovations in entomology.

The historic, as well as magnificent island of Crete sets the ideal scenery for ECE 2023. The congress is hosted in the Cultural and Conference Center of Heraklion, a contemporary venue of international standards, offering high level services in an inspiring environment.

We strongly believe that we will deliver a high-quality meeting which will turn out to be a memorable experience. The success of the congress depends on the contributions of the delegates and we thank you for being actively involved.

Welcome at ECE Congress in Heraklion in 2023!

On behalf of the Organizing Committee

Emmanouil Roditakis, Stefanos Andreadis ECE2023 Congress Chairs

ECE Praesidium

David Giron, France Mircea-Dan Mitroiu, Romania Ruth Müller, Belgium Archie K. Murchie, Northern Ireland Ralf Nauen, Germany Francesco Pennacchio, Italy Maria-Dolors Piulachs, Spain Emmanouil N. Roditakis, Greece Jenni Stockan, United Kingdom

Organizing Committee

Stefanos Andreadis, Greece Aristidis Economopoulos, Greece Dimitrios Koveos, Greece Panagiotis Milonas, Greece Archie Murchie, Northern Ireland Ralf Nauen, Germany Nikolaos Papadopoulos, Greece Francesco Penacchio, Italy Emmanouil Roditakis, Greece Alvin Simmons, USA Umut Toprak, Turkey Anastasia Tsagkarakou, Greece John Vontas, Greece

Scientific Committee

Stefanos Andreadis, Greece Christos Athanassiou, Greece Antonios Avgoustinos, Greece Dimitrios Avtzis, Greece Leo Beukeboom, The Netherlands Maria Bouga, Greece George Broufas, Greece Mary Cameron, United Kingdom Alexandra Chaskopoulou, Greece Anne-Marie Cortesero, France Dirk de Graaf, Belgium Mark de Meyer, Belgium Alessandra Della Torre, Italy Vassilis Douris, Greece Panagiotis Eliopoulos, Greece Laura Gasco, Italy David Giron, France Fani Hatjina, Greece Kostas latrou, Greece Emmanuelle Jacquin-Joly, France Filitsa Karamaouna, Greece Nickolas Kavallieratos, Greece Apostolos Kapranas, Greece Maria Konstantopoulou, Greece Nikos Kouloussis, Greece Lars Krogman, Germany Claudio Lazzari, France Anna Szyniszewska, United Kingdom John Margaritopoulos, Greece Kostas Mathiopoulos, Greece Gerben Messelink, The Netherlands Antonios Michaelakis, Greece Denis Michez, Belgium Panagiotis Milonas, Greece Laurence Mouton, France Ralf Nauen, Germany **Dimitrios Papachristos, Greece** Nikolaos Papadopoulos, Greece Philippos Papathanos, Israel Maria Pappas, Greece Eleni Patsoula, Greece Francesco Pennacchio, Italy Dionysis Perdikis, Greece Theodora Petanidou, Greece Marylène Poirié, France Emmanouil Roditakis, Greece Alain Roques, France Vera Ros, The Netherlands Lene Sigsgaard, Denmark Efthimios Skoulakis, Greece Alexey Solodovnikov, Denmark Smaro Sotiraki, Greece Menelaos Stavrinides, Cyprus Luc Swevers, Greece Gianluca Tettamanti, Italy Umut Toprak, Turkey Apostolos Trichas, Greece Anastasia Tsagkarakou, Greece Alberto Urbaneja, Spain Thomas Van Leeuwen, Belgium John Vontas, Greece Lucia Zappalà, Italy

Table of Contents

PLENARY SESSIONS	13
ORAL COMMUNICATIONS	
Session 1	
Morphology and Systematics	17
Advances in Hemipterology	18
Advances in Diptera & Hymenoptera	24
Advances in Coleoptera and other Arthropods	29
Session 2	
Genetics and evolutionary biology	35
Sex Determination	36
Evolutionary Genomics	42
Session 3	
Physiology and Biochemistry	51
Recent Insights into Peptide Research in Insects	52
Unique Physiological Adaptations in Insect Development and Survival	57
From Digestion Towards Metabolism & Immunity	62
Session 4	
Ecology and Behavior	67
Sensory Biology	68
Evolutionary Ecology and Behavior	71
Chemical communication/engineering	81
Biotic - Abiotic Factors	85
Session 5 Maltitude his later a time has a Missel it has taken to	00
Multitrophic Interactions Insect, Microbial, Host plants	96
Multitrophic Interactions in a Changing World	9/
Multitrophic Interactions: from Symbiosis to Antibiosis	102
Multitrophic Interactions: Ecology and Evolution	107
Session 6	
Insect Biotechnology	113
Improved Methods for Rnai-Mediated Pest Control	114
Discovery and Engineering of Viruses and Micro-Organisms for Improved Pest Control	119
Genome Editing of Insect Pests and Vectors of Disease to understand Physiological Processes and Resistance Mechanisms	123
Consisten 7	129
Session /	107
Deproductive Manipulation and Mercy Symbient Mediated Heat Alterations	12/
Nutritional Symbiosis and Insect Poaring	120
Takes More Than Two to Tango: Multinla Insect Hest Symbiosis Interactions	133
and Insights to Insect Virome	138

Session 8

Urban and Forest Entomology	143
Insects in Urban Landscapes - Pests, Friends and Allies	144
Forest Insects in a Changing Environment - Challenges and New Approaches	150
Ecology and Evolution of Bark Beetles	155

Session 9

Medical and Veterinary Entomology	160
Paradigms of "One Health" Approach in Combating Vector Borne Diseases (VBDs)	161
Next Generation Vector Surveillance: Emerging Technologies and the Role of Society	166
Innovative Vector Control Strategies: Adapting to the Future	171
Changing Patterns on VBDs Transmission Risk	176
One Health	181

Session 10

Invasion biology and climate change	186
Invasion and Climate Change I	187
Invasion and climate Change II	192
Invasion of Popillia Japonica in Europe and Management Approaches	198
Fruit Fly Invasion	203
Invasive Arthropods Affecting Human and Animal Health	208

Session 11

Biodiversity and Conservation	213
Identification and Monitoring Tools	214
Biodiversity in Agro-Ecosystems	220
Ecology, Climate and Diversity	225
Conservation and Restoration	230
Threats and Awareness	235

Session 12

Social Insects and Apidology	240
Bee Threats in a Changing Environment I	241
Sociality in Insects	246
Bee Threats in a Changing Environment	250
Wild Bees Ecology, Biogeography and Pollination	258

Session 13

Toxicology and Pesticide Resistance	262
Toxicology and Pesticide Resistance I	_263
Toxicology and Pesticide Resistance II	_268
Toxicology and Pesticide Resistance III	_272

Session 14

Biological Control and Biopesticides	277
New Developments in Greenhouse	278
Biological Control of Orchard and Vineyard Pests	283
Entomopathogens as Biopesticide	293
Conservation Biological Control	298
Greenhouses and Other Topics	303

Session 15

Integrated Pest Management	308
Plant Defenses, Elicitors and Antagonists	309
Pest Bio-Ecology, Monitoring and Control I	314
Pest Bio-Ecology, Monitoring and Control II	320
Pest Bio-Ecology, Monitoring and Control III	325
Pest bio-ecology, monitoring and control	331
Novel Technological Tools in IPM	337

Session 16

Stored Product Protection	342
Urban Entomology and Stored Product Protection: Integrated Protection of Stored Product Pests	343
Urban Entomology and Stored Product Protection: Artifact Pests and Wood Borers in the Urban Environment	347
Urban Entomology and Insects for Food, Feed and Waste Management	351
Urban Entomology and Stored Product Protection: Integrated Protection of Stored Product Pests- Post Harvest Insect Biology and Control	355

POSTERS

Session 1	
Morphology and Systematics	361
Session 2	
Genetics and evolutionary biology	368
Session 3	
Physiology and Biochemistry	384
Session 4	
Ecology and Behavior	399
Sensory biology	400
Evolutionary Ecology and Behavior	402
Chemical communication/engineering	405
Other	409
Session 5	

426
_

Session 6	
Insect Biotechnology	443
Improved Methods for RNAi-Mediated Pest Control	444
Genome Editing of Insect Pests and Vectors of Disease to understand Physiological Processes and Resistance Mechanisms	447
Discovery and engineering of viruses and micro-organisms for improved pest control	449
Session 7	
Symbiosis and Insect Pathology	451
Session 8	
Urban and Forest Entomology	458
Insects in urban landscapes - pests, friends and allies	459
Forest Insects in a Changing Environment - Challenges and New Approaches	461
Ecology and Evolution of Bark Beetles	465
Session 9	
Medical and Veterinary Entomology	467
Paradigms of "One Health" Approach in Combating Vector Borne Diseases (VBDs)	468
Next Generation Vector Surveillance: Emerging Technologies and the Role of Society	470
Innovative Vector Control Strategies: Adapting to the Future	472
Changing Patterns on VBDs Transmission Risk	477
Session 10	
Invasion biology and Climate Change	480
Invasion biology and Climate Change	481
Invasion Biology and Climate Change - Popillia	488
Session 11	
Biodiversity and Conservation	492
Session 12	
Social Insects and Apidology	512
Wild bees ecology and biogeography	513
Bees and pollination	515
	516
Session 13	
Toxicology and Pesticide Resistance	521
Session 14 Distancial Control Biomenticial	
Biological Control and Biopesticides	536
New Developments in Greenhouse	537
Biological Control of Urchard and Vineyard Pests	544
Entomopathogens as Biopesticide	549
Other	554

Session 15

Integrated Pest Management	565
Pest bio-ecology, monitoring and control	566
Plant defenses, elicitors and antagonists	595
DNovel technological tools in IPM	600

Session 16

Stored Product Protection	608
Urban Entomology and Stored Product Protection: Integrated Protection of Stored Product Pests	609
Urban Entomology and Stored Product Protection: Artifact Pests and Wood Borers in the Urban Environment	618
Urban entomology and insects for food, feed and waste management	620
Bioprotection Symposium	632

P001. Characterization of a new island radiation on endemic *Convolvulus floridus* (Convolvulaceae) in the Canary Islands

<u>S. Bastin</u>^{*1}, F. Siverio¹, E. Hernández-Suárez¹, D. Percy² ¹Department of Plant Protection, Instituto Canario de Investigaciones Agrarias, Spain ²Botany Department and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada

*Corresponding author: <u>bastin.saskia@hotmail.be</u>

The Canary Islands are considered a biodiversity hotspot and have been the subject of numerous evolutionary studies of endemic arthropod taxa. Here, we investigate the newly discovered island radiation of the endemic genus *Percyella* (Psylloidea: Triozidae) in the Canary Islands, using haplotype analyses and Bayesian dating of mitochondrial cytochrome oxidase I. The genus *Percyella* includes four species, all of which are single-island endemics feeding on the same host species *Convolvulus floridus: Percyella canari* on Gran Canaria, *P. guanche* on Tenerife, *P. benahorita* on La Palma and *P. gomerita* on La Gomera. Although modest in species diversity, this radiation is atypical in diversification on a single host plant species, but typical in the primary influence of allopatry in driving the diversification process. Our analyses support monophyly of *Percyella* and hence a single colonization event in the archipelago. The age calibrated Bayesian analysis show that the two taxa on Tenerife and La Palma are older than the taxa on La Gomera and Gran Canaria, and the colonizer of La Gomera most likely originated from La Palma and that of Gran Canaria from Tenerife. Our data also suggests that the structure and extent of diversification within each species is less a product of maximum island age, but more likely influenced by recent periods of volcanism and the topology of individual islands.

Keywords: Canary Islands, molecular dating, Percyella, Convolvulus floridus, radiation

P002. Experimentally induced host-shift changes morphology and fluctuating asymmetry in sex-specific manner in a seed beetle: an experimental evolution approach

<u>S. Budečević</u>^{*1}, A. Rončević¹, M. Đorđević¹, L. Vlajnić², B. Stojković², S. Pešić³, F. Vukajlović³, D. Predojević³, A. Mitrovski Bogdanović³, O. Stojković⁴, U. Savković¹

¹Department of evolutionary biology, Institute for Biological Research "Siniša Stanković" – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia ²Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia ³Faculty of Science, University of Kragujevac, Kragujevac, Serbia

⁴Faculty of Medicine, University of Belgrade, Belgrade, Serbia

*Corresponding author: sanja.radovic@ibiss.bg.ac.rs

Host-shift induced stress in phytophagous insects could have effect on developmental destabilization. Indicator of developmental instability is fluctuating asymmetry (FA)- small random deviations between right and left side of bilateral symmetrical traits. In theory, symmetry is subject to sexual selection in insects, since FA is considered as an indicator of male quality. Response to environmental variation is commonly sex-specific and can affect patterns of sexual dimorphism. We performed reciprocal transplant experiment in eight replicated seed beetle (*Acanthoscelides obtectus*) populations adapted to bean and chickpea. Within the framework of experimental evolution and using the method of geometric morphometrics we: 1. observed the effects of long and short term host-shift on patterns of shape variation of beetles of both sexes and 2. tested hypothesis that both sexes will have a higher level of FA after long or short term change from optimal to suboptimal host. We found that long term host-shift process affected shape in a way that bean adapted beetles had wider and shorter abdomen compared to chickpea adapted ones. Short-term effects are more notable in bean selected beetles, especially in the abdominal region. Bean adapted males had the most canalized development, i.e. the lowest level of FA, compared to chickpea beetles. In chickpea adapted females, difference in level of FA significantly decreased after the short term host-shift. Our work indicates that host-shift process can change morphological aspects of beetles in a sex-specific manner and consequently influence their developmental trajectories.

Keywords: host-shift, *Acanthoscelides obtectus*, geometric morphometrics, fluctuating asymmetry, developmental instability

P003. A new species, a new invader, or an old neighbour? The curious tale of the aphid *Longicaudinus corydalisicola* (Tao, 1963)

<u>A. Casiraghi</u>^{*1}, J.R. Vázquez Mora², R. Gil³, D. Saiz³, V. Moreno-Gozález⁴, N. Pérez Hidalgo¹ ¹Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Carretera CV-315, Km 10'7, 43113, Moncada, Valencia, Spain ²IES Almenara, Departamento de Biología y Geología, Carrer de l'Institut, 4, 12590 Almenara, ³Evolutionary Systems Biology of Symbionts, Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, C/ Catedrático Agustin Escardino, 9. 46980 Paterna, Spain ⁴Departamento de Biodiversidad y Gestión Ambiental, área de Zoología, Universidad de León, 24071 León

Spain

*Corresponding author: <u>casiraghi_alia@gva.es</u>

Determining the geographical origin of species is usually a difficult matter. Talking about aphids, there are many cases in which species have been described when found outside their original distribution areas. At present, citizen science helps finding and monitoring them, while molecular analysis aid with their identification. However, this kind of studies still has a long way to go. In this work, we present a clear example of these difficulties. Thanks to citizen science, an aphid species, which initially could not be identified based on its morphological characteristics, has been located on species of *Fumaria* in the Iberian Peninsula. Subsequently, it has been found in native spontaneous cover crops in citrus orchards in Valencia and in other natural areas of Spain. The analysis of the molecular sequence of the cytochrome oxidase I gene (COI) highlighted a high coincidence with a species native to Southeast Asia, *Longicaudinus corydalisicola* (Tao, 1962), but sometimes the COI is not enough. We try to confirm the molecular identification with morphological analyses. At the moment we have found this species in several localities of the Iberian Peninsula (León in the Northwest, Valencia in the East, and Cadiz in the South) on species of *Fumaria* (*F. agraria, F. capreolata, F. officinalis*). We made a complete description of the species and illustrated it conveniently. Its status, its possible origin and its presence in Europe, an area apparently very far from its known distribution area to date (South Korea, Taiwan, China and Japan), are discussed.