

 \equiv

ORGANIZATION

Scientific Committee

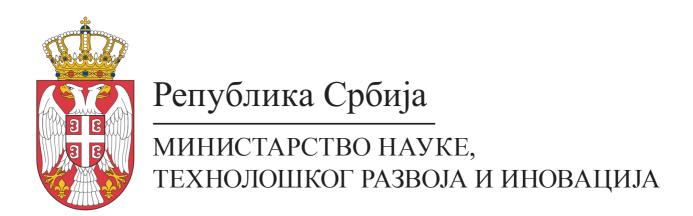
- Dr. Vladimir Trifonov (Russia)
- Dr. Cesar Martins (Brasil)
- Dr. Andreas Houben (Germany)
- Dr. Patrick Ferree (USA)
- Dr. Mladen Vujošević (Serbia)
- Dr. Jelena Blagojević (Serbia)

Local Organizing Committee

- Dr. Jelena Blagojević
- Dr. Mladen Vujošević
- Dr. Tanja Adnađević
- Dr. Marija Rajičić
- Dr. Ivana Budinski
- Dr. Milan Miljević
- Dr. Branka Bajić
- Aleksa Rončević

Official Conference Organizer

https://5thbcc.com/organization/


Institute for Biological Research "Siniša Stanković" University of Belgrade – Institute of national importance for Republic of Serbia

Conference Co-organizer

Serbian Genetic Society

Conference supported by

Ministry of Science, Technological Development and Innovation of Republic of Serbia

Conference Sponsors

Vivogen d.o.o.

Hedera Vita natural cosmetics

micro-dissected B chromosomes and flow-sorted B chromosome-containing micronuclei. To identify differentially expressed genes that might drive B chromosome elimination in *S. purpureosericeum* tissues, an extensive RNA-Seq analysis of embryonic tissues was performed. Comparative transcriptome analysis of embryos at various developmental stages was carried out together with RNA-Sew analysis of laser-microdissected (LM) embryonic regions supposed to actively undergo B chromosome elimination. Preliminary results show a significant group of upregulated genes in B+ samples and indicate a potential role of B chromosomes in gene expression regulation, mainly during early embryo development.

Acknowledgements

The work was supported by The Czech Science Foundation (grant no. 22-02108S) and by The Czech Academy of Sciences (project no. DAAD-22-02).

\$1-P2

Transcriptome atlas of the maize B chromosome

Lucie Hloušková^{1,2}, Zuzana Tulpová¹, Nicolas Blavet¹, Radim Svačina¹, Kateřina Holušová¹, Miroslava Karafiátová¹, Jan Bartoš¹

¹Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic; ²Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic

Correspondence: Lucie Hloušková (hlouskoval@ueb.cas.cz) BMC Proceedings 2023, 17(20):S1-P2

Maize (Zea mays L.) is one of the most important crops. It serves as a well established model for biological research and the maize B chromosome has been studied for many decades. However, the gene expression of the maize B chromosome across different plant tissues has not been thoroughly described. Here we present the first results of a comprehensive gene expression analysis of 15 maize tissues. We identified B-chromosome specific genes expressed in various developmental stages and plant organs. Roughly, one third of B-chromosome-localized genes are expressed in at least one of the tissues. Further, the effect of the B chromosome on the expression of A-chromosomal complement was investigated. This effect is most pronounced in reproductive organs. The transcriptome analysis of developing pollen indicated candidates for key B-chromosome accumulation mechanism, non-disjunction in the second pollen mitosis.

Acknowledgements

The work was supported by the Ministry of Education, Youth and Sports (award no. LTT19007) and Czech Science Foundation (award no. 23-04887S).

Session 2 - Dynamics of the B chromosomes in the population S2-PL1

B chromosomes in populations of Apodemus flavicollis – never ending story

Mladen Vujošević, Marija Rajičić, Ivana Budinski, Branka Bajić, Tanja Adnađević, Jelena Blagojević

Department of Genetic Research, Institute for Biological Research "Siniša Stanković" – National Institute of the Republic Serbia, University of Belgrade, Belgrade, Serbia

Correspondence: Mladen Vujošević (mladenvu@sbb.rs)

BMC Proceedings 2023, 17(20):S2-O1

B chromosomes (Bs) are uncommon in mammals, featuring less than 2% of species, but six out of 22 species possess them in the genus *Apodemus*. In Serbia, over 40 populations of yellow-necked mice (*Apodemus flavicollis*) with varying habitat quality were studied. The frequency of B carriers (range: 0.09 to 0.67) increased with elevation,

correlated with sub-zero days, and inversely with average temperature. B carrier frequency remained stable over eight years despite population density fluctuations, while seasonal variations linked to population size were observed. Overcrowding stress reduced B carriers among pre-reproductive individuals but enhanced survival in sub-optimal conditions.

Phenotypic traits and B frequency were correlated, influencing cranial morphometric development. B carriers showed distinct developmental pathways for cranial traits, suggesting environment-specific benefits. Bs' presence did not affect carrier fecundity or fertility and was evenly distributed across age groups. B chromosomes (up to five) displayed common structures across populations in Serbia and Eastern Europe, possibly originating from sex chromosome pericentromeric regions. B-specific chromatin spatially resembled pericentromeric sex chromosomes, suggesting a similar mechanism to bypass meiotic checkpoints.

Current data support a heterotic model in *A. flavicollis*. Bs likely contribute to species adaptability by increasing genetic variability, potentially expanding their distribution.

Acknowledgements

This research was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant No. 173003.

S2-01

Supernumerary chromosomes contribute to karyotypic diversity within cryptic species of the subgenus Stenocranius (Cricetidae, Rodentia)

Svetlana V Pavlova^{1,5}, Svetlana A Romanenko², Sergey N Matveevsky³, Aleksander N Kuksin⁴, Ivan A Dvoyashov⁵, Yulia M Kovalskaya¹, Tatyana V Petrova⁵

¹A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russia; ²Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia; ³Vavilov Institute of General Genetics, RAS, Moscow, Russia; ⁴Tuvinian Institute for Exploration of Natural Resources, SB RAS, Kyzyl, Russia; ⁵Zoological Institute, RAS, Saint-Petersburg, Russia

Correspondence: Svetlana V Pavlova (svetpavlova@yandex.ru) BMC Proceedings 2023, 17(20):S2-O2

Background

The subgenus Stenocranius includes two cryptic species, Lasiopodomys raddei, which occurs in South-Eastern Transbaikalia and widespread L. gregalis; the latter has three allopatric and genetically well-isolated lineages A, B and C having unclear taxonomic rank. Previous literature data published in the last century showed that most of the studied narrow-headed vole populations are characterised by a stable 2n=36, while in populations from Central Mongolia 2n has varied between 36 and 40 owing to the presence of one to four B chromosomes (Bs).

Materials and Methods

To identify speciation mechanisms within the subgenus *Stenocranius*, we analysed karyotypic variation of narrow-headed voles from previously unexplored regions of South Siberia, including the Altai-Sayan region and Transbaikal Region – the major centres of diversity within the subgenus. In total, 49 individuals from 15 new localities were karyotyped; a total sample of 121 individuals from 37 localities was analysed. To determine karyotypic differences we used both classic differential bandings as well as fluorescent *in situ* hybridisation with ribosomal and telomeric DNA probes. In addition, we examine the structure and meiotic silencing of Bs using immunocytochemical analysis of synaptonemal complexes (SCs) in *Stenocranius* pachytene spermatocytes.

Results

Two cryptic species differ in several chromosomal characteristics although initially they shared the same 2n=36. The Early Pleistocene