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Abstract: Landmark-based geometric morphometrics (GM) was used to examine, for the first time,
spontaneous hybridization between Alnus incana (L.) Moench and Alnus rohlenae Vít, Douda and
Mandák, and to assess inter- and intrapopulation variability in leaf shape, leaf size and venation
in natural populations in Serbia (Western Balkans). Two geographically distant (30 km) and two
close (1.2 km) populations were selected to examine hybridization. The variability in leaf shapes was
assessed by canonical variate analysis and linear discriminant analysis performed on the symmetric
component of variation. Covariation between the symmetric component of shape variation and
the number of pairs of secondary leaf veins was investigated with partial least squares analysis.
Static allometry was examined for the first time in the genus Alnus Mill. A higher proportion of A.
incana leaves was classified as A. rohlenae in geographically close populations, which is in accordance
with the hypothesis about spontaneous hybridization. No single leaf of A. rohlenae was classified as
A. incana, indicating that putative hybrids can only be found in grey alder populations. This study
demonstrates that GM is a powerful tool for species delimitation and hybrid detection in the genus
Alnus and it can be used for preliminary screening in hybrid zones.

Keywords: Alnus incana; Alnus rohlenae; geometric morphometrics; hybridization; leaf allometry;
leaf morphology

1. Introduction

Studying the occurrence of gene flow between closely related species is of fundamental
importance for inferring the patterns and mechanisms of speciation and hybridization [1–3].
Hybridization is very important for biodiversity as it greatly contributes to the overall
genetic variability in these species [4,5]. However, it makes species delimitation more chal-
lenging. Spontaneous hybrids naturally occur in sympatric populations of the genus Alnus
Mill., but only between very closely related species, namely, Alnus glutinosa × A. incana,
A. serrulata × A. rugosa, A. sinuate × A. crispa and A. glutinosa × A. rubra [6]. Among these,
natural hybrids between A. glutinosa (L.) Gaertn. and A. incana (L.) Moench have been
reported to exhibit superior growth rates due to a heterosis effect, characterized by bigger
leaf size, increased protein production, improved mechanical properties of wood, better
drought resistance and better resistance to Pythium rot [6,7].

Alnus glutinosa, A. incana and A. rohlenae Vít, Douda and Mandák belong to the sub-
genus Alnus, distinguished by stalked shoot buds and pistillate catkins closed over winter
and are pollinated in late winter or early spring [8]. Species of Alnus are monecious. Inflo-
rescences (both staminate and pistillate) are formed in autumn, and flowering occurs early
in spring, before leaf formation [9,10]. Grey alder (A. incana) belongs to the circumpolar
boreal floristic element and has a wide distribution in the Northern Hemisphere. It grows
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at higher altitudes than black alder (A. glutinosa), ranging from 500 to 1300 m a.s.l., and
up to 2000 m a.s.l. in the Alps. In Serbia, grey alder is mostly found near rivers and
streams in mountain spruce forests, within the region of beech, fir and spruce. It is less
hygrophilous than black alder, tolerating drier terrains and avoiding stagnant water [10,11].
Alnus rohlenae is an endemic species to the Western Balkan Peninsula and closely related to
A. glutinosa. It was distinguished from black alder based on ploidy level and morphological
characteristics by [12]. Alnus glutinosa s. str. and A. rohlenae grow on soils that are regularly
flooded or moist from springs or groundwater. In Serbia, black alder mainly grows in
oak regions on plains and hilly sites, up to 700 m a.s.l. [10,11], while the distribution of
A. rohlenae is associated with mountain valleys and deep canyons of the Dinaric Alps [13].

The leaf lamina of A. incana is ovate with a cuneate base and an acuminate apex. It
measures 3–7 cm in width and 4–10 cm in length. The margin of the lamina is double-
toothed. Leaves are glabrous and dark green on the adaxial side and pubescent and pale
green on the abaxial side. The petiole is 1–3 cm long. Its venation is pinnate, with 9–15 pairs
of lateral veins [9,14].

The leaf lamina of A. rohlenae is circular to circular–obovate, with a cuneate base and
a rounded apex, which can be emarginated. It measures 4–8 cm in width and 5–9 cm in
length. The lamina’s margin is single- or double-toothed, except at the base. The petiole
is 1.5–3 cm long. Mature leaves are glabrous or pubescent, with tufts of hairs located in
the vein angles on the abaxial side. The venation is pinnate, with 7–10 pairs of lateral
veins. Morphologically, the leaves of A. rohlenae are very similar to A. glutinosa but can be
distinguished by the presence of light hair floccules in lateral vein axils on the abaxial side.
Alnus rohlenae is tetraploid (2n = 56 chromosomes), whereas both A. glutinosa and A. incana
are diploids (2n = 28 chromosomes) [12].

In the zone of continuous distribution of A. glutinosa and A. incana, hybrids (A. × pubescens
Tausch.) occur only sporadically, mainly due to non-overlapping flowering stages—grey
alder flowers one to two weeks earlier than black alder. An increased frequency of hy-
bridization is observed at the northern boundary of their range, as well as in years with
prolonged winters and cold early springs, when the flowering periods of the two species
overlap [14]. This frequency reaches 17.5% in autochthonous populations in Lithuania [15].
On the southern border of the hybrid complex range, [16] reported about 10% of hybrid in-
dividuals in the sympatric populations of A. glutinosa and A. incana. Previous studies [13,17]
considered the presence of hybrids in contact zones between A. rohlenae and A. glutinosa s.
str. in mixed-ploidy populations in Serbia. However, to the best of the authors’ knowledge,
hybridization between A. incana and A. rohlenae has not been investigated.

Various markers have been employed to distinguish and describe hybrids between
black and grey alder, including morphological [14,16,18–20], molecular [15,21] and chemical
markers [22,23]. For detection in hybrid zones, [24] suggested a combined morphological
and genetic approach. Although molecular markers, namely DNA barcoding, are widely
used in plant taxa identification, they provide limited discriminatory power in taxonom-
ically complex groups characterized by polyploidization and hybridization [25–27]. In
these cases, researchers primarily depend on morphological markers that capture phe-
notypic dimensions of diversity. In recent decades, an advancement was made with the
emergence of geometric morphometrics, a quantitative analysis of biological shape and
size variations [28]. These analyses are a very powerful tool and particularly well-suited
for studying complexes of hybridizing taxa, such as Quercus spp. [29–33], Acer spp. [34],
Sorbus spp. [35] and Crataegus spp. [36]. A study on the detection of putative hybrids
between autochthonous populations of A. glutinosa and planted A. incana was conducted
using geometric morphometrics in the northern part of Belgium [20]. In this paper, we
proposed a landmark-based method of geometric morphometrics to examine spontaneous
hybridization between A. incana and A. rohlenae in natural populations in Serbia (Western
Balkans). We hypothesized that hybrids could be found in geographically close (1.2 km)
populations of A. incana and A. rohleane, namely in the populations Sastavci (SA) and
Rimski most (RM). Two geographically distant (30 km) populations, Golijska reka (GR)
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and Prilički kiseljak (PK), were selected as control populations. Additionally, the inter- and
intrapopulation variability in leaf shape, size and venation were assessed.

2. Results
2.1. Leaf Shape Variations

The canonical variate analysis (CVA) of the symmetric component revealed a distinct
separation of species along CV1, accounting for 93.69% of the variation (Figure 1). Leaves
of A. rohlenae, characterized by their circular–obovate shape, long petiole, narrow cuneate
base and retuse apex, were distributed along the negative part of the CV1 axis. Leaves
of A. incana, characterized by their ovate shape, short petiole, wide-cuneate base and
acuminate apex, were distributed mainly along the positive part of the CV1 axis. However,
some leaves collected from A. incana trees appeared in the negative part of CV1, resembling
the shape of A. rohlenae. Intermediate leaf shapes were predominantly recorded in the
population SA.
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Figure 1. Canonical variate analysis of the symmetric component from 1315 Procrustes-aligned
15landmark configurations of leaves. Population abbreviations: PK—Prilički kiseljak, RM—Rimski
most, GR—Golijska reka, SA—Sastavci.

Canonical variate 2, accounting for 3.77% of the variation, partially distinguished
populations within species (Figure 1). The shape changes along CV2 were associated with
leaf elongation and reflected integrated changes in the leaf’s major and minor axes [37].
The populations RM and SA were associated with longer and narrower leaves, whereas
the populations PK and GR were characterized by leaves that were shorter and wider.
Additionally, on the CVA plot, the geographically distant populations PK and GR appeared
to be more separated than the populations RM and SA, where the presence of hybrids
is assumed.

Pairwise comparisons showed that the differences between all populations were highly
significant (Table 1). Based on the sum of interpopulation distances, population PK was the
most divergent, while population RM was the least divergent.



Plants 2024, 13, 993 4 of 15

Table 1. Mahalanobis and Procrustes distances calculated from canonical variate analysis of the
symmetric component of 1315 Procrustes-aligned 15-landmark configurations of leaves.

PK RM GR SA

Mahalanobis distances
PK <0.0001 <0.0001 <0.0001
RM 1.3806 <0.0001 <0.0001
GR 5.3880 5.1616 <0.0001
SA 5.4879 5.1940 1.3680

ΣM 12.26 11.74 11.92 12.05

Procrustes distances
PK <0.0001 <0.0001 <0.0001
RM 0.0378 <0.0001 <0.0001
GR 0.1476 0.1329 <0.0001
SA 0.1485 0.1308 0.0275

ΣP 0.33 0.30 0.31 0.31
p-values were obtained from permutation tests with 10,000 replications. Distances are shown below, and p-values
above, table diagonals. Population abbreviations: PK—Prilički kiseljak, RM—Rimski most, GR—Golijska reka,
SA—Sastavci. ΣM—sum of Mahalanobis distances; ΣP—sum of Procrustes distances.

The linear discriminant analysis revealed that, in the geographically distant popu-
lations PK and GR, only 1.3% of leaves from four different individuals of A. incana were
misclassified as A. rohlenae (Figure 2A). For the geographically close populations RM and
SA, approximately 4% (i.e., 4.4% after cross-validation) of A. incana leaves were misclassi-
fied as A. rohlenae (Figure 2B, Supplementary Materials). This 4% of leaves came from nine
different individuals. In addition, not a single leaf of A. rohlenae was classified as A. incana.
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Figure 2. Linear discriminant analysis of leaf shape: histograms of linear discriminant values of
leaves from geographically distant populations PK and GR (A) and geographically close populations
RM and SA (B). Population abbreviations: PK—Prilički kiseljak, RM—Rimski most, GR—Golijska
reka, SA—Sastavci.
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2.2. Secondary Leaf Vein Variations

In the studied populations, the number of pairs of secondary leaf veins (NV) ranged
from 7 to 15 for A. incana, aligning with previously reported values within the natural
range of species distribution (Table 2). For A. rohlenae, a wider range and a lower limit
were recorded compared to [12]. The assumption that hybrids could be differentiated from
parent species by an intermediate number of NV was also tested here. Leaves of A. incana
that were misclassified as A. rohlenae by the linear discriminant analysis (LDA) based on
shape were indeed characterized by intermediate NV, further indicating their hybrid origin
(Table 3). Furthermore, significant differences in NV were recorded between species and
among populations of A. incana (Table 3).

Table 2. Literature data for number of pairs of secondary leaf veins (NV) within the natural range of
species distribution.

Reference Country/Region Sample
Size

Alnus glutinosa Alnus incana A. × pubescens Alnus rohlenae

Range Mean Range Mean Range Mean Range Mean

Present
study

Southwestern
Serbia 1315 – – 7–15 10.7 – – 4–10 6.9

[7] Central Poland ≈1000 – 6.4 – 11.16 – 8.77 – –

[12] Europa ≈350 6–9 7.5 8–14 11 – – 7–10 8.2

[14]
West Siberia

Russia
Czech Republic

7500–
10,000 6–8 6.5 9–15 12 9–10 9.7

[15] Lithuania 960–
1920 5–9 7.21 8–12 10.04 6–10 8.17 – –

[16] Bosnia and
Herzegovina 275 6–9 7.3 9–13 11.1 6–10 8.9 – –

[18] Ireland ≈1700 4–7 6 10–15 ≈10 – ≈10 – –

[19] Northern
Croatia 2000 – 6.61 – 11.08 – 8.68 – –

[38]

Balkan
Alpine
Giant

Mountains
East and West
Carpathians

Central
European
Lowlands
Northern

Scandinavia

7200 – – 5–18 11.15 – – – –

Table 3. Number of pairs of secondary leaf veins (NV) and leaf centroid size (CS) in studied
populations (A. rohlenae: PK—Prilički kiseljak, RM—Rimski most; A. incana: GR—Golijska reka,
SA—Sastavci; PH—putative hybrids in GR and SA populations).

Total Number of Sampled Leaves Range Mean NV Mean CS

PK 367 4–9 6.926 d 134.705 a

RM 321 5–10 6.874 d 131.559 a

GR 306 7–14 10.464 b 135.156 a

SA 303 8–15 11.032 a 124.786 b

PH 18 8–11 9.487 c 117.684 b

a–d homogenous groups obtained by Tukey and Bonferroni pairwise comparisons with 95% confidence level.
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The partial least squares (PLS) analyses were carried out to examine the relationship
between leaf shape and NV for each species. The overall strength of association between
blocks was significant for both species. For A. rohlenae, the correlation strength between leaf
shape and NV (PLS1) was moderate (R2 = 0.48, p < 0.05), and for A. incana, it was somewhat
stronger (R2 = 0.65, p < 0.001). Shape changes related to PLS1 are illustrated in Figure 3.
For A. rohlenae (Figure 3A), a smaller NV was associated with a wider lamina in the lower
part, a narrower lamina in the upper part, a longer petiole, and a retuse apex, whereas a
larger NV was associated with a narrower lamina in the lower part, a wider lamina in the
upper part, a shorter petiole, and a rounded apex. For A. incana (Figure 3B), shape changes
along PLS1 coincided greatly with changes along CV2 (Figure 1): leaves with a smaller NV
tended to have shorter and wider lamina, a longer petiole, and a slightly acuminate apex,
while leaves with a larger NV were more elongated and narrower, with a shorter petiole
and more pronounced acuminate apex.
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2.3. Leaf Size Variations and Allometry

Alnus species did not differ in leaf centroid size (CS) (F = 1.34, p = 0.25), but the
population SA had a significantly smaller CS compared to the other populations (Table 3).

Multivariate regression of the symmetric component on CS showed that shape changes
were significantly correlated with changes in size in all the studied populations (p < 0.0001).
Nevertheless, allometry accounted for only a small percentage of shape changes within
each population (PK—4.490%, RM—3.014%, GR—6.606%, SA—6.017%).

The homogeneity of slopes test revealed that the studied populations exhibited differ-
ent patterns of allometry (Z = 3.877, p < 0.01): the allometric slope for the population SA
was steeper compared to those of the other populations (Figure 4). There was no significant
difference in slopes between the populations PK, RM and GR, indicating that the trend of
shape change with size was very similar in these populations. In all populations, with an
increase in size, the leaves become shorter and wider with a shorter petiole (Figure 5). Major
displacements of landmarks were associated with the beginning of the petiole (landmark 1),
the widest part of the leaf blade (landmark pairs 4–6 and 8–12), and for the population SA,
also with the blade apex (landmark 5) (see Figure 7 for the landmark definition).



Plants 2024, 13, 993 7 of 15

Plants 2024, 13, 993 7 of 16 
 

 

2.3. Leaf Size Variations and Allometry 
Alnus species did not differ in leaf centroid size (CS) (F = 1.34, p = 0.25), but the pop-

ulation SA had a significantly smaller CS compared to the other populations (Table 3). 
Multivariate regression of the symmetric component on CS showed that shape 

changes were significantly correlated with changes in size in all the studied populations 
(p < 0.0001). Nevertheless, allometry accounted for only a small percentage of shape 
changes within each population (PK—4.490%, RM—3.014%, GR—6.606%, SA—6.017%). 

The homogeneity of slopes test revealed that the studied populations exhibited dif-
ferent patterns of allometry (Z = 3.877, p < 0.01): the allometric slope for the population SA 
was steeper compared to those of the other populations (Figure 4). There was no signifi-
cant difference in slopes between the populations PK, RM and GR, indicating that the 
trend of shape change with size was very similar in these populations. In all populations, 
with an increase in size, the leaves become shorter and wider with a shorter petiole (Figure 
5). Major displacements of landmarks were associated with the beginning of the petiole 
(landmark 1), the widest part of the leaf blade (landmark pairs 4–6 and 8–12), and for the 
population SA, also with the blade apex (landmark 5) (see Figure 7 for the landmark def-
inition). 

For A. rohlenae, a weak positive correlation between NV and CS was determined in 
the population PK (R2 = 0.113, p < 0.05). In the case of A. incana, positive correlations be-
tween NV and CS were recorded in both populations: GR (R2 = 0.286, p < 0.001) and SA 
(R2 = 0.316, p < 0.001). 

 
Figure 4. Static allometry in studied populations (A. rohlenae: PK—Prilički kiseljak, RM—Rimski 
most; A. incana: GR—Golijska reka, SA—Sastavci). 
Figure 4. Static allometry in studied populations (A. rohlenae: PK—Prilički kiseljak, RM—Rimski
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For A. rohlenae, a weak positive correlation between NV and CS was determined in
the population PK (R2 = 0.113, p < 0.05). In the case of A. incana, positive correlations
between NV and CS were recorded in both populations: GR (R2 = 0.286, p < 0.001) and SA
(R2 = 0.316, p < 0.001).

3. Discussion
3.1. Hybrids in Studied Populations

Considering various leaf morphological traits, hybrids between black and grey alder
overlap with one or both parents or hold an intermediate position and appear to be
closer to A. incana [14,16,18]. Multivariate analysis of leaf morphological traits has shown
that hybrids have an intermediate position and are closer to A. incana [14,15,19,20]. It
was reported by [39] that the germination of a hybrid seed was only successful when
A. incana was the maternal parent. When A. glutinosa was the maternal parent, the seed
was sterile. Molecular marker analysis confirmed the predominance of A. incana alleles in
A. × pubescens [15,21], indicating that hybrids tend to backcross to A. incana. In the studied
populations in Serbia, A. incana was also identified as the mother species, because putative
hybrids were found only in A. incana populations. Multivariate analyses of leaf shape
supported our hypothesis regarding hybridization in geographically close populations:
approximately 4% of A. incana leaves in the population SA were misclassified as A. rohlenae.
This 4% of leaves belonged to nine different individuals. Given the small percentage of
misclassified leaves, we assume that hybrids are primarily characterized by intermediate
leaf shapes. However, a minor number of A. incana leaves (four to be exact) were also
misclassified as A. rohlenae in the distant, control population GR, indicating that multivariate
analyses of leaf shape cannot exclusively distinguish hybrids as well as some individuals
with certain forms of phenotypic plasticity. Nevertheless, this method can be used as a
preliminary screening tool for hybrids.

Previous studies featuring the determination of the ploidy level have not confirmed the
existence of hybrids between A. incana and A. rohlenae. In mixed-ploidy populations in Ser-
bia, [13] identified triploids and suggested that these are the result of a number of ongoing
processes [17]. They proposed that the triploid origin can be the outcome of hybridization
between diploid A. glutinosa s. str. and tetraploid A. rohlenae. However, they did not explore
the possibility of hybridization between diploid A. incana and tetraploid A. rohlenae.

3.2. Inter- and Intrapopulation Variability in Leaf Traits

Venation patterns and venation densities are variable traits influenced on an ontoge-
netic and evolutionary level by climatic and environmental parameters (e.g., temperature,
water conditions, illumination, wind speed, nutrient status) [40,41]. Vein plasticity is ex-
pressed within canopies and across environments for a given species, reflecting the gas and
water exchange characteristics between the leaves and the atmosphere [41,42]. Venation
density is strongly positively correlated with the hydraulic conductivity of leaves [43].
Leaves acclimated to higher irradiance, temperatures, nutrient supplies and lower water
supply exhibit vein traits associated with increased leaf hydraulic conductance and greater
drought tolerance [42]. The findings of [41] imply that, compared to other leaf traits, the
density of major veins (first- and second-order veins) is less sensitive to environment
changes. This suggests that, at least to some degree, it is genetically determined for Quercus
variabilis Blume. In Alnus species, NV displays less variability at the intrapopulation level
and more variability at the interpopulation level with respect to other traits (e.g., leaf length,
leaf width, leaf area, perimeter and petiole length) [19,38]. Given these observations and
the results from this study, NV appears to be a more conservative trait than leaf shape.
This, together with the intermediate NV observed in putative hybrids, suggests that it is
genetically determined to a great extent. Our findings further indicate that NV is not only
species-specific but also population-specific for A. incana. Venation density may (e.g., Acer
monspessulanum L.) or may not (e.g., Quercus petraea (Matt.) Liebl.) vary with leaf size [40],
depending on the plant species. In the studied populations of A. incana, NV increases with
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increasing CS. This could be explained by biomechanical and physiological considerations:
larger leaves typically require a relatively larger investment in the midrib and an extensive
vein network to transport resources [37,44].

Leaf size is considered one of the most variable traits for many plant species [45–47],
including Alnus spp. [19,38]. It is responsive to a range of biotic and abiotic factors. Ref. [7]
reported that the leaf surface of hybrids is larger than that of the parental trees due to a
heterosis effect. However, in our study, putative hybrids tended to have smaller leaves,
showing no evidence of heterosis. Smaller leaves were also recorded in one population
of A. incana (SA). Furthermore, the allometric slope for the population SA was steeper,
suggesting a higher rate of shape change relative to size in this population. Static allometries
arise in response to variations in genetic or environmental regulators of size [48]. In the
population SA, the narrower and longer leaf shapes with higher NV and smaller CS likely
represent a response to an increased evaporative demand in the stressful environment.
Many studies have linked smaller leaf sizes to lower annual precipitation and humidity
levels [49–51]. However, according to the hydro-thermal coefficient (Table 4), all the studied
populations grow in conditions with sufficient water supply, essential for the genus Alnus.
More likely, the cause of the leaf size reduction in the population SA is the prolonged
period of inundation in that area. The reduction in leaf transpiration surface enables
plants to maintain high photosynthetic activity under flood stress conditions, as shown
for Senna reticulata (Willd.) H.S. Irwin and Barneby [52], Populus angustifolia E. James and
P. × jackii Sarg. [53].

Table 4. Geographic location, sample size and basic climatic characteristics of the studied populations
(PK—Prilički kiseljak, RM—Rimski most, GR—Golijska reka, SA—Sastavci).

Species A. rohlenae A. incana

Locality name Prilički kiseljak Rimski most Golijska reka Sastavci
Population PK RM GR SA

Latitude (N) 43◦36′55′′ 43◦28′09′′ 43◦21′46′′ 43◦27′38′′

Longitude (E) 20◦08′04′′ 20◦14′05′′ 20◦15′26′′ 20◦13′22′′

Altitude (m) 565 655 1396 670
Nt 21 20 20 21
Nl 367 321 310 317

MAT a (◦C) 9.7 6.6 5.0 6.5
AP a (mm) 776.8 797.1 842.2 797.1

HTC a 1.43 1.73 1.94 1.73
Nt—total number of sampled trees; Nl—total number of sampled leaves; MAT—mean annual temperature;
AP—annual precipitation; HTC—hydro-thermal coefficient, calculated according to Vuković and Vujadinović
(2018) [54]: HTC = 10∗Psum/Tsum. where Psum is the sum of daily precipitation during months with a mean
temperature above 10 ◦C and Tsum is the sum of daily air temperatures for the same period. The following
categories of HTC are defined: very dry (<0.7), moderately dry (0.71–1), slightly wet (1.01–1.2), sufficiently wet
(1.21–1.8) and moist (1.81). a climate data for period 1950–2020 were obtained from Digital Climate Atlas of Serbia.
https://atlas-klime.eko.gov.rs/ (accessed on 8 October 2023).

4. Materials and Methods
4.1. Plant Material

The studied populations of Alnus spp. are located on Golija Mountain (Golija-Studenica
Biosphere Reserve, UNESCO). Plant material was collected in autumn 2017 from mature
trees of similar age according to [55]. Two populations of A. rohlenae were previously
classified as A. glutinosa s. str. [56], due to a lack of data on A. rohlenae’s exact distribu-
tion. Morphologically, the two species are very similar, making determination without
estimating ploidy level challenging. Following the publication on the exact distribution
of the tetraploid A. rohlenae [13] and the private consultation with Professor Dr. Dmitar
Lakušić from the University of Belgrade, these populations were correctly reclassified. The
sample size and geographic locations of the studied populations are described in Table 4
and Figure 6.

https://atlas-klime.eko.gov.rs/
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Voucher specimens have been deposited in the Herbarium of the Department of
Ecology at the Institute for Biological Research, University of Belgrade, Serbia.

4.2. Digitalization of Leaves

A total of 1315 leaves were sampled from the middle part of the branches. A priori
assumptions about a hybrid origin were not made in order to reduce subjectivity. Analyzing
several leaves from the same individual is considered the best method for establishing
hybridization, because it is known that a single branch can exhibit leaf shapes characteristic
of both species [14,19], as well as variable intermediate shapes [18,20,21]. Each leaf was
scanned with the abaxial surface facing up with an Epson Perfection V370 scanner at 600 dpi
resolution. The scanned images were used to obtain 2D landmark configurations. In our
previous study [56], we developed a landmark configuration to describe the leaf shape of
Alnus species (Figure 7). The digitalization of specimens was carried out in tpsUtil version
1.70 ([57], downloaded on 9 September 2016) and tpsDig version 2.26 ([58], downloaded on
9 September 2016).
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In addition, the number of pairs of secondary leaf veins (NV) was measured for each
leaf. Previous studies based on the traditional morphometric approach have identified
NV as the most distinctive feature of hybrids, noting that it varies within a very narrow,
intermediate range [7,14,18–20]. This trait was used to compare with the results obtained
from shape and size analysis.

4.3. Assessment of Measurement Error

Measurement error can be quantified using Procrustes ANOVA [59–61]. To estimate
the measurement error associated with digitalization, a pilot study was carried out with
400 specimens (5 trees per population, 10 leaves per tree and 2 replicates per leaf). A
full Procrustes fit and Procrustes ANOVA were performed for each population separately
in MorphoJ ([62], 2011, downloaded on 27 March 2017). The results showed that for
each population, the digitizing error was small relative to the smallest level of variation
(individual-by-side interaction) (Table 5). Therefore, for the original dataset of 1315 speci-
mens, replicate digitalization was not necessary.

Table 5. Procrustes ANOVA for shape and size in a pilot study of 50 leaves in studied populations
(PK—Prilički kiseljak, RM—Rimski most, GR—Golijska reka, SA—Sastavci).

Effect SS MS df F p Pillai’s
Trace p

PK

Shape

Tree 0.293755 0.005649 52 5.65 <0.0001
Leaf 0.584867 0.001000 585 2.13 <0.0001
Side 0.005854 0.000450 13 0.96 0.4893

Ind. × Side 0.298646 0.000469 637 9.34 <0.0001 10.26 <0.0001
Error 0.065281 0.000050 1300

Size
Tree 10928.22 2732.055 4 2.36 0.0676
Leaf 52120.68 1158.237 45 1891.58 <0.0001
Error 30.66 0.612 50

RM

Shape

Tree 0.066867 0.001286 52 1.29 0.0927
Leaf 0.585397 0.001001 585 2.38 <0.0001
Side 0.006036 0.000464 13 1.10 0.3537

Ind. × Side 0.268360 0.000421 637 14.54 <0.0001 10.32 <0.0001
Error 0.037669 0.000029 1300

Size
Tree 12009.60 3002.399 4 4.35 0.0047
Leaf 31092.41 690.9424 45 1781.44 <0.0001
Error 19.39 0.39 50
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Table 5. Cont.

Effect SS MS df F p Pillai’s
Trace p

GR

Shape

Tree 0.061717 0.001187 52 1.36 0.0503
Leaf 0.508741 0.000870 585 2.32 <0.0001
Side 0.007718 0.000594 13 1.58 0.0849

Ind. × Side 0.238823 0.000375 637 10.23 <0.0001 10.63 <0.0001
Error 0.047628 0.000037 1300

Size
Tree 6393.46 1598.365 4 2.36 0.0675
Leaf 30476.39 677.253 45 657.89 <0.0001
Error 51.47 1.02 50

SA

Shape

Tree 0.085481 0.001644 52 2.07 <0.0001
Leaf 0.464716 0.000794 585 1.75 <0.0001
Side 0.004803 0.000369 13 0.81 0.6449

Ind. × Side 0.288919 0.000454 637 8.57 <0.0001 10.51 <0.0001
Error 0.068766 0.000053 1300

Size
Tree 10267.96 2566.990 4 7.63 <0.0001
Leaf 15133.74 336.305 45 1299.75 <0.0001
Error 12.94 0.259 50

Fluctuating asymmetry, estimated by the individual-by-side interaction, was signif-
icant in all the studied populations. Fluctuating asymmetry represents the difference of
each individual’s asymmetry from the average asymmetry in the whole population and
reflects the combined effects of phenotypic plasticity and developmental instability [63].
Given that this study’s subject is interspecific hybridization, we focused on the symmetric
component of variation, which reflects genetic variation and phenotypic plasticity.

4.4. Data Analysis

The full Procrustes fit of 1315 leaf configurations from pooled populations was per-
formed in MorphoJ [62], taking into account that leaves have object symmetry. The main
trends in shape variation were captured by the symmetric component of variation, which
accounted for 80.77%.

Inter- and intraspecific variability in leaf shapes were assessed by canonical variate
analysis (CVA) performed on the covariance matrix of the symmetric component. The
delimitation of the species was further assessed with linear discriminant analysis (LDA).

Differences between species and populations in NV and centroid size (CS) were as-
sessed with nested ANOVA in Minitab 17 statistical Software (2010, Minitab Inc., State
College, PA, USA). Individual trees were assigned as random factors and nested in popu-
lations (fixed factors). The Pearson product–moment correlation coefficient was used to
examine the relationship between NV and CS.

Partial least squares (PLS) analysis was used to investigate the covariation between
the symmetric component of shape variation as block 1 and NV as block 2. Prior to analysis,
data were averaged per tree and NV values were square root-transformed.

CVA, LDA and PLS analysis were carried out in MorphoJ.
Static allometry was examined with the multivariate regression of the symmetric

component of shape variation on CS for every population separately. The homogeneity of
allometric slopes between populations was tested using the R-package GEOMORPH (ver-
sion 3.0.5, [64]) in R statistical software (version 3.2.3., downloaded on 30 January 2016) with
the ‘procD.allometry’ function. Allometric slopes are displayed using a predicted shape
regression which calculates the predicted values of a regression of shape on size and plots
the first principal component scores of these predicted values as an allometric trend [65].
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5. Conclusions

This study, utilizing landmark-based geometric morphometrics, expands the knowl-
edge about the natural variation in leaf shape, leaf size and number of secondary leaf veins
in Alnus species and provides the first insight into A. incana and A. rohlenae hybridization.
The presented approach also uncovered subtle differences in leaf traits among populations
within species, which could be attributed to genetic and/or environmental factors. Pat-
terns of leaf allometry in Alnus populations seem to be good indicators of environmental
heterogeneity. The plasticity in allometry has been scarcely studied within plant taxa, and
further research is needed to clarify its role in the ecology of species.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants13070993/s1, Figure S1: Histograms of cross-validation
scores of leaves from geographically distant populations PK and GR (A), and geographically close
populations RM and SA (B). Population abbreviations: PK—Prilički kiseljak, RM—Rimski most,
GR—Golijska reka, SA—Sastavci. Figure S2: Variation of leaf forms of Alnus incana (A), putative
hybrids (B), and A. rohlenae (C).
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Akademija Nauka i Umetnosti: Belgrade, Serbia, 1970; pp. 102–105.
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