Book of Abstracts INTERM 2024

Disclaimer

This book contains abstracts approved by the Congress Review Committee. Authors are responsible for the content and accuracy.

Opinions expressed may not necessarily reflect the position of the international scientific council of INTERM 2024.

Editorial Board Ahmet Yavuz Oral Zehra Banu Bahşi Onur Alp Aksan Vala Can Aşkan Bahar Şölen Akdemir Yılmaz Fatmanur Kocaman Kabil

11th INTERNATIONAL CONGRESS ON MICROSCOPY & SPECTROSCOPY (INTERM 2024)

Oludeniz, Turkey APRIL 18-24, 2024

11th International Congress on Microscopy & Spectroscopy

Invited Speakers

Antony Ali Assaf	Nantes Université, France
Anuradha Pallipurath	University of Leeds, UK
Boyan Tatarov	University of Hertfordshire, UK
Cristina Pachiu	National Institute for Research and
	Development in Microtechnologies (IMT-
	Bucharest), Romania
Filipe Mergulhão	University of Porto – FEUP, Portugal
Hiromitsu Nakajima	Saitama University, Japan
Holger Klein	CNRS, France
Junais Habeeb Mokkath	Abdullah Al Salem University (AASU),
	Kuwait
Liang Wang	Guangdong Provincial People's
	Hospital (Guangdong Academy of
	Medical Sciences), Southern
	Medical University, China
Lucian Baia	Babes-Bolyai University, Romania
Monica Baia	Babes-Bolyai University, Romania
Oleksandr Kryshtal	AGH University of Krakow, Poland
Sergey Katsyuba	Arbuzov Institute of Organic and Physical
	Chemistry, Russian Federation
Urška Gradišar Centa	University of Ljubljana, Slovenia
Wolfgang Werner	TU Wien, Austria
Xiping Guo	Northwestern Polytechnical
	University, China

Chair

A. Yavuz Oral

Gebze Technical University, Turkiye

Organizing Committee

A. Yavuz Oral Ersin Kayahan M. Alper Sahiner Gebze Technical University, Turkiye Kocaeli University, Turkiye Seton Hall University, USA

Scientific Committee

Ali Assaf	University of Nantes, France
Anuradha Pallipurath	University of Leeds, UK
Balázs ILLÉS	Budapest University of Technology and
	Economics, Hungary
Banu Bahsi	Gebze Technical University, Turkey
Boyan Tatarov	University of Hertfordshire, UK
Dana Alina Magdas	National Institute for Research and
	Development of Isotopic and Molecular
	Technologies, Romania
Günther Rupprechter	TU Wien, Austria
M. Alper Sahiner	Seton Hall University, USA
Manho Lim	Pusan National university, South Korea
Mario Marchetti	Institut Jean Lamour, France
Nan Xu	University of Leeds, UK
Nan Xu	University of Leeds, UK
Oleksandr Kryshtal	AGH University, Poland
Shakil Ahmed Awan	University of Plymouth, UK
Urška Gradišar Centa	University of Ljubljana, Slovenia

POSTER PRESENTATION Id-739

How Does The Health-Promoting Apple Phenolic Phloretin Affect The Cell Ultrastructure in Arabidopsis Shoots?

D. SMAILAGIĆ^{1*}, J. DRAGIŠIĆ MAKSIMOVIĆ², M. MARIN³, N. BANJAC¹, S. NINKOVIĆ¹, S. STUPAR¹, M. STANIŠIĆ¹

¹Institute for Biological Research 'Siniša Stanković' - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, Belgrade, Serbia, tel: +381112078393

> ²University of Belgrade, Institute for Multidisciplinary Research, Belgrade, Serbia ³University of Belgrade, Faculty of Biology, Belgrade, Serbia Corresponding Author: dijana.smailagic@ibiss.bg.ac.rs

Abstract: Phloretin is a phenolic compound from the apple that belongs to the group of dihydrochalcones. The genus *Malus* is a uniquely rich source of dihydrochalcones, accounting for about 97% of the total phenolic compounds in apple leaves and 10-20% of the dry weight of the leaf tissue. Due to its typical dihydrochalcone structure, phloretin is a highly reactive molecule that interacts efficiently with many biological macromolecules. Its reactivity leads to remarkable antioxidant and medicinal properties that have been extensively studied in mammals and humans. However, knowledge about the effects of phloretin on plant organisms is rather scarce. The phytotoxicity of phloretin in plants was first documented by our research group when phloretin was recognised as a potent allelochemical of the apple tree with deleterious effects in plant species outside the genus Malus. Research on the model plant Arabidopsis [Arabidopsis thaliana (L.) Heynh] named the disruption of auxin homeostasis in the roots as the main mechanism of the phytotoxic effect of phloretin. The present study complements previous research with new insights into the ultrastructural changes in leaf mesophyll cells that underlie the growth arrest and decay of the aerial parts of Arabidopsis seedlings exposed to phloretin. The effects of phloretin are closely linked to the ultrastructural damage in the leaf mesophyll cells and range from mild effects with short-term treatment to severe effects with long-term treatment. Transmission electron microscopy revealed changes in the morphology of the cell wall, changes in thylakoid organisation, swelling and displacement of chloroplasts after short-term treatment. A significant decrease in the number of starch granules and chlorophyll content in the leaves reflected impaired chloroplast function leading to depletion of starch reserves, starvation of cells and recruitment of micro- and macroautophagic processes for self-maintenance leading to programmed cell death after long-term treatment with phloretin. These results confirm that the sites of action of phloretin in plant and animal cells do not coincide, confirming the safety of its potential application as a new bioherbicidal agent for humans and animals.

Keywords: bioherbicides, phloretin, autophagy, programmed cell death