Приказ основних података о документу

dc.creatorAbramović, Biljana F.
dc.creatorUzelac, Maria M.
dc.creatorArmaković, Sanja J.
dc.creatorGašić, Uroš
dc.creatorČetojević-Simin, Dragana D.
dc.creatorArmaković, Stevan
dc.date.accessioned2021-04-27T08:49:00Z
dc.date.available2900-01-01
dc.date.issued2021
dc.identifier.issn0048-9697
dc.identifier.urihttps://radar.ibiss.bg.ac.rs/handle/123456789/4205
dc.description.abstractIn this work, we have experimentally and computationally investigated the process of hydrolysis and photolysis of cephalosporin antibiotics with ceftriaxone (CEF) as a model compound. The CEF hydrolysis was investigated in ultrapure and natural water, at 25 ± 1 °C and 4 ± 1 °C in the dark. It was found that CEF after 100 and 900 days at 25 ± 1°C and 4 ± 1 °C, respectively practically completely removed from ultrapure water. The CEF hydrolysis in natural water was five and three times slower at 25 ± 1 °C and 4 ± 1 °C, respectively than in ultrapure water. Further, the efficiency of direct photolysis (solar/UVA-B) and solar/H2O2 treatment of CEF was investigated. Under UVA-B radiation 95.6% of CEF was removed after 60 min, while for the same time of solar radiation degradation was practically not observed (only 3.2%). Also, the effects of different concentrations of H2O2 (0–150 mM) in the presence/absence of solar radiation were studied. The most efficient solar/H2O2 treatment was in the presence of 90 mM H2O2, whereby 66.8% of CEF was removed after 60 min (41.8% by indirect photolysis, 21.8% by H2O2-oxidation, and 3.2% by direct photolysis). Radial distribution functions (RDF) provided information about the distribution of water around the CEF molecule. Aside from the RDF, investigation of intramolecular noncovalent interactions and calculations of bond dissociation energies for hydrogen abstraction enabled understanding of degradation mechanism of CEF. In order to investigate sensitivity of CEF towards the radical attacks, the concept of Fukui functions was used. The structures of intermediates and degradation pathways were suggested by UHPLC-LTQ OrbiTrap MS and density functional theory calculations. Toxicity assessments showed that intermediates formed during hydrolysis exerted only mild cell growth effects in selected cell lines.
dc.publisherElsevier B.V.
dc.relationinfo:eu-repo/grantAgreement/MESTD/inst-2020/200007/RS//
dc.relationinfo:eu-repo/grantAgreement/MESTD/inst-2020/200125/RS//
dc.rightsrestrictedAccess
dc.sourceScience of the Total Environment
dc.subjectCeftriaxone
dc.subjectComputational analysis
dc.subjectDegradation pathways
dc.subjectHydrolysis
dc.subjectSolar/H2O2 treatment
dc.subjectToxicity
dc.titleExperimental and computational study of hydrolysis and photolysis of antibiotic ceftriaxone: Degradation kinetics, pathways, and toxicity
dc.typearticleen
dc.rights.licenseARR
dcterms.abstractЧетојевић-Симин, Драгана Д.; Гашић, Урош; Aбрамовић, Биљана Ф.; Узелац, Мариа М.; Aрмаковић, Сања Ј.; Aрмаковић, Стеван;
dc.rights.holder© 2021 Elsevier B.V.
dc.citation.volume768
dc.identifier.doi10.1016/j.scitotenv.2021.144991
dc.identifier.pmid33736306
dc.identifier.scopus2-s2.0-85099473121
dc.identifier.wos000625384700122
dc.citation.apaAbramović, B. F., Uzelac, M. M., Armaković, S. J., Gašić, U., Četojević-Simin, D. D., & Armaković, S. (2021). Experimental and computational study of hydrolysis and photolysis of antibiotic ceftriaxone: Degradation kinetics, pathways, and toxicity. Science of the Total Environment, 768, 144991.
dc.citation.vancouverAbramović BF, Uzelac MM, Armaković SJ, Gašić U, Četojević-Simin DD, Armaković S. Experimental and computational study of hydrolysis and photolysis of antibiotic ceftriaxone: Degradation kinetics, pathways, and toxicity. Sci Total Environ. 2021;768:144991.
dc.citation.spage144991
dc.type.versionpublishedVersion
dc.citation.rankaM21


Документи

Thumbnail

Овај документ се појављује у следећим колекцијама

Приказ основних података о документу