Приказ основних података о документу

dc.creatorKumar, Amit
dc.creatorŠkoro, Nikola
dc.creatorGernjak, Wolfgang
dc.creatorJovanović, Olivera
dc.creatorPetrović, Anđelija
dc.creatorŽivković, Suzana
dc.creatorLumbaque, Elisabeth Cuervo
dc.creatorFarré, Maria José
dc.creatorPuač, Nevena
dc.date.accessioned2023-01-10T12:41:25Z
dc.date.available2023-01-10T12:41:25Z
dc.date.issued2023
dc.identifier.issn0048-9697
dc.identifier.urihttps://linkinghub.elsevier.com/retrieve/pii/S0048969722082985
dc.identifier.urihttp://radar.ibiss.bg.ac.rs/handle/123456789/5355
dc.description.abstractIn this study, cold atmospheric plasma (CAP) was explored as a novel advanced oxidation process (AOP) for water decontamination. Samples with high concentration aqueous solutions of Diclofenac sodium (DCF) and 4-Chlorobenzoic acid (pCBA) were treated by plasma systems. Atmospheric pressure plasma jets (APPJs) with a 1 pin-electrode and multi-needle electrodes (3 pins) configurations were used. The plasma generated using argon as working gas was touching a stationary liquid surface in the case of pin electrode-APPJ while for multi-needle electrodes-APPJ the liquid sample was flowing during treatment. In both configurations, a commercial RF power supply was used for plasma ignition. Measurement of electrical signals enabled precise determination of power delivered from the plasma to the sample. The optical emission spectroscopy (OES) of plasma confirmed the appearance of excited reactive species in the plasma, such as hydroxyl radicals and atomic oxygen which are considered to be key reactive species in AOPs for the degradation of organic pollutants. Treatments were conducted with two different volumes (5 mL and 250 mL) of contaminated water samples. The data acquired allowed calculation of degradation efficiency and energy yield for both plasma sources. When treated with pin-APPJ, almost complete degradation of 5 mL DCF occurred in 1 min with the initial concentration of 25 mg/L and 50 mg/L, whereas 5 mL pCBA almost degraded in 10 min at the initial concentration of 25 mg/L and 40 mg/L. The treatment results with multi-needle electrodes system confirmed that DCF almost completely degraded in 30 min and pCBA degraded about 24 % in 50 min. The maximum calculated energy yield for 50 % removal was 6465 mg/kWh after treatment of 250 mL of DCF aqueous solution utilizing the plasma recirculation technique. The measurements also provided an insight to the kinetics of DCF and pCBA degradation. Degradation products and pathways for DCF were determined using LC-MS measurements.
dc.publisherElsevier B.V.
dc.relationinfo:eu-repo/grantAgreement/MESTD/inst-2020/200024/RS//
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/812880/EU//
dc.rightsopenAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.sourceScience of The Total Environment
dc.subjectCold atmospheric plasma
dc.subjectDegradation of pharmaceutical and industrial chemi
dc.subjectPlasma characterization
dc.titleDegradation of diclofenac and 4-chlorobenzoic acid in aqueous solution by cold atmospheric plasma source
dc.typearticleen
dc.rights.licenseBY-NC
dc.rights.holder© 2022 The Authors
dc.citation.volume864
dc.identifier.doi10.1016/j.scitotenv.2022.161194
dc.identifier.pmid36581289
dc.identifier.scopus2-s2.0-85144819324
dc.identifier.wos000917477100001
dc.citation.apaKumar, A., Škoro, N., Gernjak, W., Jovanović, O., Petrović, A., Živković, S., et al. (2023). Degradation of diclofenac and 4-chlorobenzoic acid in aqueous solution by cold atmospheric plasma source. Science of The Total Environment, 864, 161194.
dc.citation.vancouverKumar A, Škoro N, Gernjak W, Jovanović O, Petrović A, Živković S, Lumbaque EC, Farré MJ, Puač N. Degradation of diclofenac and 4-chlorobenzoic acid in aqueous solution by cold atmospheric plasma source. Sci Total Environ. 2023;864:161194.
dc.citation.spage161194
dc.type.versionpublishedVersion
dc.identifier.fulltexthttps://radar.ibiss.bg.ac.rs/bitstream/id/11993/1-s2.0-S0048969722082985-main.pdf
dc.citation.rankaM21~


Документи

Thumbnail

Овај документ се појављује у следећим колекцијама

Приказ основних података о документу