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Abstract: The ABCG2 transporter protein, as part of several known mechanisms involved in mul-
tidrug resistance, has the ability to transport a broad spectrum of substrates out of the cell and is,
therefore, considered as a potential target to improve cancer therapies or as an approach to combat
drug resistance in cancer. We have previously reported carborane-functionalized quinazoline deriva-
tives as potent inhibitors of human ABCG2 which effectively reversed breast cancer resistance protein
(BCRP)-mediated mitoxantrone resistance. In this work, we present the evaluation of our most
promising carboranyl BCRP inhibitors regarding their toxicity towards ABCG2-expressing cancer cell
lines (MCF-7, doxorubicin-resistant MCF-7 or MCF-7 Doxo, HT29, and SW480) and, consequently,
with the co-administration of an inhibitor and therapeutic agent, their ability to increase the efficacy
of therapeutics with the successful inhibition of ABCG2. The results obtained revealed synergistic
effects of several inhibitors in combination with doxorubicin or cisplatin. Compounds DMQCa,
DMQCc, and DMQCd showed a decrease in IC50 value in ABCB1- and ABCG2-expressing SW480
cells, suggesting a possible targeting of both transporters. In an HT29 cell line, with the highest
expression of ABCG2 among the tested cell lines, using co-treatment of doxorubicin and DMQCd, the
effective inhibitory concentration of the antineoplastic agent could be reduced by half. Interestingly,
co-treatment of compound QCe with cisplatin, which is not an ABCG2 substrate, showed synergistic
effects in MCF-7 Doxo and HT29 cells (IC50 values halved or reduced by 20%, respectively). However,
a literature-known upregulation of cisplatin-effluxing ABC transporters and their effective inhibition
by the carborane derivatives emerges as a possible reason.

Keywords: breast cancer resistance protein; multidrug resistance; ABCG2; carborane

1. Introduction

The term cancer is used for a large group of disorders characterized by the estab-
lishment of abnormal cell phenotypes leading to their uncontrolled growth and ability to
infiltrate surrounding tissues and compromise their function. Many internal disorders
together with external factors can result in genetic/epigenetic changes responsible for
malignant alteration [1]. The comprehensive understanding of cancer as a disease and
all factors that contribute to its progression resulted in the drafting of novel strategies in
treatments, as well as the design of numerous small molecule therapeutics, from a non-
selective to a targeted mode of action. Despite notable achievements in early detection
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and advanced treatment protocols, statistical data showcase that survival of patients with
metastatic cancer is still low [2]. Multidrug resistance (MDR) is a condition in which cells
become unresponsive to anticancer drugs, resulting in the failure of cancer therapy [3].
Various mechanisms contribute to chemotherapy resistance, such as genetic mutations [4,5],
dysregulation of cell survival and death signaling pathways [6–8], increased drug efflux
due to the overexpression of drug transporters [9], abnormality of cell repair systems [10],
cancer stem cells enrichment [11–13], and epigenetic alterations [14].

MDR is commonly defined by the overexpression of ATP-binding cassette (ABC)
transporters [15]. The ABC transporter superfamily consists of seven subfamilies from ABC
A to ABC G [16], with the proteins being engaged in the absorption and secretion of endo-
and exogenous substances [17]. Among the proteins known to induce MDR, the breast
cancer resistance protein (BCRP) belongs to the ABC subfamily G, isoform 2, referred to
as ABCG2. In healthy tissue, BCRP holds different roles such as protecting the fetus from
endo- and exotoxins, protecting the fetal and postnatal brain from harmful compounds in
the blood–brain barrier [18], or regulating the homeostasis of nutrients and their absorption
in the gastrointestinal tract [19]. In cancer tissue, ABCG2 is responsible for the elimination
of a variety of cytotoxic agents out of the cell, and the upregulated expression of this
protein is associated with poor or failing response to chemotherapy [20–23]. ABCG2
transports a structurally diverse array of chemotherapeutic drugs, such as tyrosine kinase
inhibitors [24], flavopiridol, camptothecins (like topotecan or irinotecan) [25], mitoxantrone,
and anthracyclines (doxorubicin, daunorubicin) [26]. Considering the diversity of ABCG2
substrates, the list of inhibitors expands steadily. One of the most frequently used inhibitors
is Ko143, an analog of fumitremorgin C, isolated from Aspergillus fumigates [27]. Further
inhibitors are known, like elacridar and tariquidar, which are strong inhibitors of BCRP,
but are not selective and also inhibit other ABC transporters [28]. However, none of
the inhibitors targeting transporter proteins has been successfully evaluated in a clinical
trial [29].

There are three major strategies for handling ABC transporter-induced resistance:
(1) pharmacological inhibition of ABCG2 activity, (2) inhibition of ABCG2 expression,
and (3) circumventing the ABCG2-mediated resistance by using agents that are poor
substrates [29]. In our previous work [30–32] we have followed the strategy of synthesizing
novel compounds able to inhibit the human ABCG2 protein. With the incorporation of a
meta-carborane (closo-dicarbadodecaborane, C2B10H12) moiety as a pharmacophore into
a (poly(methoxylated)) 2-phenylquinazolin-4-amine scaffold (Figure 1), potent, non-toxic
inhibitors of BCRP were obtained; furthermore, a strong reversion of ABCG2-mediated
mitoxantrone resistance in MDCKII-hABCG2 cells was achieved [32,33].
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Carboranes, three-dimensional clusters, have become increasingly appealing in re-
cent decades due to their unique and advantageous properties. By virtue of their high
hydrophobicity, carboranes are attractive as pharmacophores for increasing membrane
permeability [34]. Moreover, their inorganic nature provides an advantage of enhanced
metabolic stability compared to organic analogues [35]. In particular, the use of carboranes
as phenyl mimetics was previously shown to be beneficial for ABCG2 inhibition [30]. The
meta isomer (closo-1,7-dicarbadodecaborane) is more stable than the ortho isomer (closo-
1,2-dicarbadodecaborane) and was therefore chosen. Furthermore, it is far less expensive
than the para-carborane (1,12-isomer), which is the most stable of the three isomers. There-
fore, this work aims to elevate our previous findings by employing the strong carboranyl
quinazoline inhibitors that were shown to reverse MDR in human ABCG2-overexpressing
Madin-Darby canine kidney cells (MDCKII-hABCG2) [32,33], in co-administration with
the BCRP substrate and chemotherapeutic agent doxorubicin on ABCG2-overexpressing
cancer cell lines.

2. Results

Prior to the elucidation of the compounds’ influence on the cell viability, we have
determined the levels of ABCB1 and ABCG2 expression in different cancer cell lines
(Supplementary Materials Figure S1). The expression analysis was performed on the
human melanoma cell line A375, three human colon carcinoma cell lines HT29, SW480, and
SW620, as well as on two breast cancer cell lines MCF-7 and doxorubicin-resistant MCF-7
(MCF-7 Doxo). For further biological investigations, we have used cancer cell lines with
different amounts of ABCB1 and ABCG2 expression levels. Therefore, HT29 (high expres-
sion of ABCG2 compared to ABCB1), SW480 (approximately the same level of expression
of both transporters), and MCF-7 and MCF-7 Doxo (increased ABCG2 expression when
resistance to doxorubicin is induced) cell lines were selected, while the cell lines A375 and
SW620 were disregarded due to significantly higher levels of ABCB1 compared to ABCG2.

The inhibitors (Figure 1) were screened on the selected cell lines using the MTT (3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and CV (crystal violet) assays.
Compounds QCc, DMQCa, DMQCb, DMQCc, and DMQCd exhibited no significant
effect on the cell viability when applied in concentrations up to 50 µM (Figure S2, Sup-
plementary Materials), while compound QCe showed high potency in MCF-7 and MCF-7
Doxo cell lines, with IC50 values of 30.7± 3.85 µM (MTT) and 24.85± 8.69 µM (CV) in MCF-
7 cells, and 38.15 ± 2.75 µM (MTT) and 18.2 ± 4.52 µM (CV) in the doxorubicin-resistant
cell line MCF-7 Doxo. The deviation of MTT and CV assay values suggests that compound
QCe impedes mitochondrial respiration. As MTT and CV assays confirmed a cytotoxic
effect of QCe on cancer cells, we lowered the applied concentration to reduce the toxic effect
(viability > 80%) and thus observe solely the effect of the inhibition of the ABC transporter.
As shown in the cytotoxicity experiments, the unsubstituted amide derivative QCe seems
to be the most toxic compound in ABCG2-expressing cell lines, HT29, MCF-7, and MCF-7
Doxo (Figure S2), in comparison to QCc and polymethoxylated derivatives DMQCc and
DMQCd. All investigated compounds exhibit an ABCG2 inhibition proven in MDCKII
cells with a stable expression of human ABCG2 [32,33]. It may be assumed that a lability of
the amide functionality as well as divergent metabolic modification on an unsubstituted
aromatic ring system (hydroxylation, etc.) over time on QCe may cause deviant toxicity,
despite the structural similarity to the other tested compounds. Therapeutic treatment
with ABCG2 inhibitors primarily aims to increase the sensitivity of cancer cells to cytostatic
drugs or to reverse transporter-mediated drug resistance. Doxorubicin, a topoisomerase
inhibitor, as a therapeutic agent was chosen to further establish a doxorubicin-resistant cell
line. In addition, cisplatin, a DNA-binding agent widely used in the therapy of solid tumors
without being a substrate of ABCG2, was used as a second cytostatic drug. Doxorubicin
and cisplatin were thus used in mono- and combinational therapy. We co-administered
the cytostatic drugs with ABCG2 inhibitors QCc, QCe, DMQCa, DMQCb, DMQCc, and
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DMQCd and used the isobologram analysis to visualize the response of the two-drug
treatment (Figure 2). The summary of the drug–drug interactions is given in Table 1.
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Compound QCe showed synergistic effects with doxorubicin and cisplatin in MCF-7
Doxo and cisplatin in HT29 cells. Compounds DMQCa, DMQCc, and DMQCd syner-
gized with doxorubicin in the SW480 cell line. In addition, compound DMQCc exhibited
synergism with cisplatin in MCF-7 Doxo cells. It is evident that the levels of synergy
are cell line-specific and dependent on the drug combination. The calculated IC50 val-
ues of the individually administered therapeutics and in combination with the ABCG2
inhibitors are given in Table 2. In all synergistic combinations, we detected a decrease in
the effective inhibitory concentration of the chemotherapeutic. Strikingly, a reduction of
50% was observed with the cisplatin–QCe co-treatment in MCF-7 Doxo, as well as the
doxorubicin–DMQCd combination in SW480 and HT29 cell lines.
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Table 1. Overview of the synergistic (Syn) or antagonistic (Ant) interactions of the co-treatment
of ABCG2 inhibitors QCc, QCe, DMQCa, DMQCb, DMQCc, and DMQCd with doxorubicin or
cisplatin. Doxo = doxorubicin; CisPt = cisplatin.

Compound MCF-7 MCF-7 Doxo SW480 HT29

Doxo CisPt Doxo CisPt Doxo CisPt Doxo CisPt

QCc Ant Ant Ant Ant Ant Ant Ant Ant

QCe Ant Ant Syn Syn Ant Ant Ant Syn

DMQCa Ant Ant Ant Ant Syn Ant Ant Ant

DMQCb Ant Ant Ant Ant Ant Ant Ant Ant

DMQCc Ant Ant Ant Syn Syn Ant Ant Ant

DMQCd Ant Ant Ant Ant Syn Ant Syn Ant

Table 2. IC50 values of chemotherapeutics doxorubicin and cisplatin with and without co-
administration of ABCG2 inhibitors.

Cell Line Therapeutic Inhibitor IC50 (Therapeutic)
[µM]

IC50 (Therapeutic +
Inhibitor) [µM]

MCF-7 Doxo Doxorubicin QCe 1.15 ± 0.20 0.80 ± 0.23
Cisplatin QCe 25.10 ± 0.06 12.05 ± 1.30
Cisplatin DMQCc 26.65 ± 0.43 19.65 ± 0.03

SW480 Doxorubicin DMQCa 1.25 ± 0.20 0.95 ± 0.14
Doxorubicin DMQCc 0.60 ± 0.00 0.45 ± 0.03
Doxorubicin DMQCd 0.90 ± 0.10 0.45 ± 0.08

HT29 Cisplatin QCe 25.05 ± 2.05 19.50 ± 1.16
Doxorubicin DMQCd 1.00 ± 0.05 0.45 ± 0.08

Finally, ABCG2 inhibitors used in two-drug treatments were assessed for their ability
to inhibit ABCG2 depending on the applied concentrations. Compounds QCe, DMQCa,
DMQCc, and DMQCd were tested in cell lines in which a synergistic effect was observed.
After 48 h incubation with the inhibitors, the cells were stained with ABCG2 marker dye
JC-1 (tetraethylbenzimidazolylcarbocyanine iodide) and analyzed with flow cytometry
(Figure 3). In particular, increased fluorescence in the treated samples, in comparison to
the control, indicated dye retention and thus, the inhibition of ABCG2. Accordingly, we
can conclude that the lower IC50 value of the chemotherapeutic agent in the combined
treatment is a result of an effective ABCG2 inhibition.

Considering that the synergisms obtained are not consistent and comparable with
results and trends of previous studies [32,33], docking studies on the cryo-electron mi-
croscopy (EM) structure of ABCG2 (pdb ID 5NJ3) [36] were performed to investigate
possible differences between the binding behaviors and interactions of protein and sub-
strate. Recently, we demonstrated a possible competitive inhibition mechanism between
the carboranyl quinazoline BCRP inhibitors and the therapeutic drug mitoxantrone [32].
Accordingly, ‘blind’ dockings were conducted with a comparison of the inhibitors tested
here and the ABCG2 substrate doxorubicin. The putative binding poses obtained exhibited
an affinity of doxorubicin in the lateral binding pocket S2 of the inner cavity (see Figure S3,
Supplementary Materials). The inhibitors, as previously reported, showed strong binding
in the central slit-like binding pocket S1. Further details and representations are given in
the Supplementary Materials.
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representative experiment out of three is shown.

3. Discussion

Chemotherapy is still one of the major components of cancer treatment. Nowadays,
the combination of drugs gives rise to new approaches towards targeting more specific ther-
apies, and with that, for example, opens the possibility to overcome the resistance to given
treatments. The main goal when designing a combined treatment is to achieve synergy
by increasing the efficacy and reducing the toxicity of individual drugs. In this work, we
evaluated the influence of co-administration of ABCG2 inhibitors and antineoplastic agents
in ABCG2-expressing cell lines. Successful inhibition of the transporter yields an intracellu-
lar increase in therapeutic drug concentration and, thus, increased efficacy or reversal of
efflux protein-induced resistance to therapeutic drugs. Our previous data showed that the
introduction of a carborane moiety into a polymethoxylated 2-phenylquinazolin-4-amine
scaffold generated strong BCRP inhibitors that potently reversed ABCG2-mediated mitox-
antrone resistance [32–34,37–39]. In different studies, we similarly observed an enhanced
ABCG2 inhibition using carboranes as phenyl mimetics in baicalein derivatives [30]. As an
in vitro model of chemoresistance, we used colon and breast carcinoma cell lines, and the
MCF-7 Doxo cell line, in which the ABCG2 expression was proven to be upregulated, as
further reported by several independent studies [40–42].

Cell viability assays revealed a significant difference between QCe and the other
examined carborane derivatives. While QCe affected the viability of cancer cells in lower
micromolar concentrations, no to low toxicity in the tested ranges was observed for com-
pounds QCc, DMQCa, DMQCb, DMQCc, and DMQCd. These results are in agreement
with recently reported findings on MDCKII cells [33] and similarly suggest a reduced influ-
ence on cell viability in cancer cells of N-carboranyl quinazolines and a polymethoxylated
substitution pattern compared to the unsubstituted amide derivative QCe, validating the
general stability and decreased toxicity of carborane derivatives compared to their organic
analogues [33,43,44]. In general, the effect of chemoresistance reversal was observed in
several studies and different cancer types. For example, Yin et al. [44] demonstrated that
both pharmacological and siRNA inhibition of ABCG2 leads to the reversal of the chemore-



Pharmaceuticals 2023, 16, 1582 7 of 12

sistance of liver cancer stem cells. Shivhare and Das [43] reported the reduction of the
inhibitory concentration of doxorubicin and tamoxifen in an in vitro breast cancer study by
combining the chemotherapeutics with a pan-ABC transporter inhibitor. Furthermore, in a
study on small cell lung cancer, treatment with the ABC transporter inhibitors elacridar
and tariquidar restored the cells’ sensitivity to topoisomerase inhibitors [45].

As our previous studies ascertained, the inhibitors QCe, DMQCc, and DMQCd suc-
cessfully increased the sensitivity of MDCKII cells, overexpressing the human ABCG2,
to mitoxantrone [32]. Herein, we shifted the experimental setting to human cancer cell
lines and combined treatment of ABCG2 inhibitors and cytostatic drugs, displaying three
synergistic combinations in MCF-7 Doxo, three in SW480, and two in HT29 cell lines. In
consequence, we successfully lowered the effective concentration of the applied chemother-
apeutics via combination with the novel hybrid inorganic–organic carboranyl quinazoline-
based ABCG2 inhibitors QCe, DMQCc, and DMQCd. However, the results obtained are
not consistent with the co-administration of the inhibitors with mitoxantrone. Differences
in the transporter proteins may occur since a multitude of mutations of human ABCG2
are known [46]. In consideration of the molecular docking results, mitoxantrone and dox-
orubicin appear to bind in different cavities within the inner binding pocket of the human
ABCG2 transporter. Mitoxantrone exhibits a similar binding mode as detected for quinazo-
line derivatives, with π-π stacking between the opposing Phe439 amino acid residues and
a hydrogen bond towards Asn436 [47]. Therefore, in our previous results, a competitive
inhibition of the mitoxantrone by carborane-based derivatives was assumed [32,33]. An
inhibitor, located between Phe439-Phe439′ in the inward-facing state of ABCG2 is described
as the most common inhibition mechanism preventing the conformational change to the
outward-facing state. As speculated for lapatinib [48], a potential inhibition of the clamp
by DMQCc and DMQCd through π-π stacking can be suggested [32]. In contrast, doxoru-
bicin binds to a lateral pocket within the inner binding pocket. Thus, a conformational
change induced by the inhibitor is needed to prevent the doxorubicin efflux and reverse
chemotherapy resistance. The binding of an inhibitor to Asn436 is known to stabilized
the inward-facing state of ABCG2 which inhibits the transport of hydrophilic ABCG2
substrates [48]. Even if the docking of our carborane-based compounds predicted a hy-
drogen bond towards Asn436, it seems not to influence the conformational change of the
protein. Therefore, no synergistic effect with doxorubicin was detectable. We thus further
hypothesized, by means of in silico studies and comparison of the putative docking poses
of the therapeutic drug and the inhibitors, a possible non-competitive mechanism. Based
on our previous results, competitive inhibition with mitoxantrone was revealed [32]. This
might indicate a substrate-specific resistance reversal; however, further investigation is
required.

Surprisingly, strong synergy was observed with co-treatment of cisplatin with QCe
and DMQCc in MCF-7 Doxo cells. Cisplatin is known to be no substrate for ABCG2 and is
often used as a positive control in the literature, yet it is a substrate for ABCC2, ABCC5,
and ABCC6 [49]. Chen et al. [50] further reported the significant upregulation of ABCC2
and ABCC5 in doxorubicin-resistant MCF-7 cells, implying, based on the observed synergy,
a non-ABCG2-specific inhibition. Therefore, it is suspected that compounds QCe and
DMQCc are able to inhibit cisplatin-extruding ABC transporters, and thus increase the
sensitivity to cisplatin. Further biological studies on corresponding targets such as ABCC
transporters [50] are needed; however, they exceed the scope of this work. More impor-
tantly, these data strongly suggest that a multi-target chemotherapy regiment consisting of
doxorubicin and cisplatin will unlikely have a positive outcome, as doxorubicin treatment
induces the upregulation of transporters for both chemotherapeutics. There are several
clinical studies in which therapy failure can be explained by these findings [51–53]. In
general, major problems with the introduction of MDR inhibitors in cancer treatment as
chemo-sensitizing agents are connected with the high toxicity of nonselective molecules
and the lack of efficacy of highly selective forms as a consequence of substrate overlap-
ping. The data presented here appear useful for the modification of chemotherapeutic
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regimens or schedules. Based on our in vitro results, in particular the ability of non-toxic
carborane-based ABCG2 inhibitors to affect ABC transporter-associated doxorubicin and
cisplatin efflux, thus sensitizing the examined cancer cells for the applied therapeutics,
future in vivo studies are of interest.

4. Materials and Methods
4.1. Reagents and Cells

Fetal calf serum (FCS), RPMI-1640 medium, phosphate buffer saline (PBS), and dimethyl
sulfoxide (DMSO) were from Merck (Darmstadt, Germany). A375, HT29, SW480, SW620,
and MCF-7 cell lines were purchased from American Type Culture Collection (Rockville,
MD, USA). Cells were routinely maintained in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic
acid (HEPES)-buffered RPMI-1640 medium supplemented with 10% FCS with 2 mM L-
glutamine, 0.01% sodium pyruvate, 100 U/mL penicillin, and 100 µg/mL streptomycin.
All cell lines were cultured in a 5% CO2 and humid atmosphere.

4.2. Establishment of the Doxorubicin-Resistant MCF-7 (MCF-7 Doxo) Cell Line

The doxorubicin resistance was induced by persistent treatment of MCF-7 cells with
doxorubicin, in concentrations rising from 10 nM to 100 nM, as described by Marinello
et al. [54]. The cells were seeded in the T25 flask. When they were approximately 80%
confluent, doxorubicin was added in a final concentration of 10 nM. The medium was
changed every 2 to 3 days, adding fresh doxorubicin in a rising concentration. Non-treated
MCF-7 cells were grown as a control in the same cell passage as Doxo-treated cells.

After 6–8 weeks, the IC50 values for control and Doxo-treated cells were measured. In
every preparation, the IC50 of Doxo-treated cells was approximately 10 times higher than
in the control.

4.3. Gene Expression Analysis

RNA isolation, cDNA synthesis, and qRT-PCR were carried out as described by Vesel
et al. [55]. We have used the ABCB1 and ABCG2 gene-specific primers from the same
publication.

RNA was isolated using TRI Reagent (Sigma-Aldrich, St. Louis, MO, USA). After
quantification using Nanodrop, 1 µg of RNA was used for the RT reaction, together with
random hexamer primers, RiboLock, and reverse transcriptase enzyme (all from Thermo
Scientific, Waltham, MA, USA). qPCR was performed using SYBR Green chemistry (Thermo
Scientific, Waltham, MA, USA).

4.4. Cell Viability

In brief, 4000 cells were seeded in 96-well plates in 100 µL volume, and treated with
different concentrations of ABCG2 inhibitors for 48 h. For the crystal violet (CV) assay, the
cells were fixed and incubated for 15 min at room temperature with 1% crystal violet (Mol,
Belgrade, Serbia). The absorbance of dissolved dye was measured at 540 nm. Cell viability
was calculated as a percentage of untreated wells. For the MTT (3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide) assay, the mitochondrial dehydrogenase activity
was determined by the reduction of MTT to formazan. Cells were treated with 0.5 mg/mL
MTT (Sigma, St. Louis, MO, USA) and incubated at 37 ◦C. When the color of the solution
changed from yellow to brown, DMSO was added and the absorbance was measured at
540 nm. Cell viability was calculated as a percentage of control that was arbitrarily set to
100%.

4.5. Isobologram Analysis

A total of 4000 cells were seeded in 96-well plates in 100 µL volume, in an RPMI
medium supplemented with 10% FCS with 2 mM L-glutamine, 0.01% sodium pyruvate,
100 U/mL penicillin, and 100 µg/mL streptomycin. The cells were treated with four
different concentrations of ABCG2 inhibitors (0, 1.5, 3.12, and 6.25 µM) and doxorubicin
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(0, 0.25, 0.5, and 1 µM), or cisplatin (0, 7.5, 15, and 30 µM) for 48 h. The concentrations of
cytostatic drugs were chosen based on our previous results [56]. Cells were treated with
0.5 mg/mL MTT (Sigma, St. Louis, MO, USA) and incubated at 37 ◦C. When the color
of the solution changed from yellow to brown, DMSO was added and the absorbance
was measured at 540 nm. Cell viability was calculated as a percentage of control that
was set to 100%. The IC50 values of single and combined treatment were compared
and the isobologram analysis was performed as described by Tallarida et al. [57]. The
isobologram curves were constructed for the drug combinations where the synergistic
effect was observed.

4.6. JC-1 Staining

Dye loading and flow cytometry was carried out as described by Wolosin et al. [58].
The cells were seeded in a 6-well plate (250,000 cells/well in 1 mL volume), and treated
with ABCG2 inhibitors for 48 h, trypsinized, and incubated with 2 µM JC-1 for 20 min at
37 ◦C. After incubation, the cells were washed and resuspended in cold PBS (phosphate-
buffered saline, pH 7.2). Analytical flow cytometry was performed on CyFlow Space
(Partec, Münster, Germany).

4.7. Statistical Analysis

We used the Statistical Package for the Social Sciences (SPSS, IBM, Armonk, NY, USA)
for data analysis. The Student’s t-test, Mann–Whitney test, and one-way ANOVA (Tukey’s
test as post hoc) were employed to evaluate the significance between groups. Differences
were considered significant when the p value was less than 0.05.

4.8. Molecular Docking

In order to assess the putative binding modes of the examined compounds (QCc, QCe,
DMQCa, DMQCb, DMQCc, DMQCd, and doxorubicin), molecular modeling analysis
was carried out after a recently published protocol [28].

5. Conclusions

The inhibition of drug secretion by MDR transporters is a powerful tool in the cre-
ation of novel therapeutic protocols. Here we reported the effect of carborane-containing
therapeutics—ABCG2 inhibitors that were effective in low dosage, non-toxic to cancer
cells, and performed in synergy when combined with doxorubicin and cisplatin. ABCG2-
inhibiting compound QCe exhibited further synergistic effects with doxorubicin and cis-
platin in ABCG2-expressing cancer cells. Furthermore, the synergistic effects of DMQCa,
DMQCc, and DMQCd in combination with a chemotherapeutic, doxorubicin, for different
cancer cells were shown. The data of this work yielded a selection of four promising candi-
dates worthy of future investigation. Keeping in mind that an in vitro system is simplified
at multiple levels is of pivotal interest to explore the reproducibility of effects observed in
cell culture in animal models as a key step prior to clinical trials.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph16111582/s1. Biological data (expression of ABCB1 and ABCG2
in human cancer cell lines; influence of QCc, QCe, DMQCa, DMQCb, DMQCc, and DMQCd on
the viability of human carcinoma cell lines) and computational data (binding poses of doxorubicin,
QCe, DMQCc, and DMQCd in the ABCG2 cryo-EM structure). References [32,33,36] are cited in the
Supplementary Materials.
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better phenyl ring?—A comparative study on the reversal of ABCG2-mediated drug resistance of carboranylquinazolines and
their organic isoters. ChemMedChem 2023, accepted.

34. Stockmann, P.; Gozzi, M.; Kuhnert, R.; Sárosi, M.-B.; Hey-Hawkins, E. New keys for old locks: Carborane-containing drugs as
platforms for mechanism-based therapies. Chem. Soc. Rev. 2019, 48, 3497–3512. [CrossRef] [PubMed]

35. AbuHammad, S.; Zihlif, M. Gene expression alterations in doxorubicin resistant MCF7 breast cancer cell line. Genomics 2013, 101,
213–220. [CrossRef]

36. Taylor, N.M.I.; Manolaridis, I.; Jackson, S.M.; Kowal, J.; Stahlberg, H.; Locher, K.P. Structure of the human multidrug transporter
ABCG2. Nature 2017, 546, 504–509. [CrossRef]

37. Chen, Y.; Du, F.; Tang, L.; Xu, J.; Zhao, Y.; Wu, X.; Li, M.; Shen, J.; Wen, Q.; Cho, C.H.; et al. Carboranes as unique pharmacophores
in antitumor medicinal chemistry. Mol. Ther. Oncolytics 2022, 24, 400–416. [CrossRef]

38. Hey-Hawkins, E. (Ed.) Boron-Based Compounds: Potential and Emerging Applications in Medicine; John Wiley & Sons Ltd.: Hoboken,
NJ, USA, 2018; ISBN 9781119275596.

39. Scholz, M.; Hey-Hawkins, E. Carbaboranes as pharmacophores: Properties, synthesis, and application strategies. Chem. Rev. 2011,
111, 7035–7062. [CrossRef]

40. Das, B.C.; Nandwana, N.K.; Das, S.; Nandwana, V.; Shareef, M.A.; Das, Y.; Saito, M.; Weiss, L.M.; Almaguel, F.; Hosmane, N.S.;
et al. Boron Chemicals in Drug Discovery and Development: Synthesis and Medicinal Perspective. Molecules 2022, 27, 2615.
[CrossRef]
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