Veljović, Katarina

Link to this page

Authority KeyName Variants
de032fc7-373c-42b3-877f-5a9987b471e5
  • Veljović, Katarina (2)
Projects

Author's Bibliography

Oral neonatal antibiotic treatment perturbs gut microbiota and aggravates central nervous system autoimmunity in Dark Agouti rats.

Stanisavljević, Suzana; Čepić, Aleksa; Bojić, Svetlana; Veljović, Katarina; Mihajlović, Sanja; Nikolovski, Neda; Jevtić, Bojan; Momčilović, Miljana; Lazarević, Milica; Mostarica Stojković, Marija; Miljković, Đorđe; Golić, Nataša

(2019)

TY  - JOUR
AU  - Stanisavljević, Suzana
AU  - Čepić, Aleksa
AU  - Bojić, Svetlana
AU  - Veljović, Katarina
AU  - Mihajlović, Sanja
AU  - Nikolovski, Neda
AU  - Jevtić, Bojan
AU  - Momčilović, Miljana
AU  - Lazarević, Milica
AU  - Mostarica Stojković, Marija
AU  - Miljković, Đorđe
AU  - Golić, Nataša
PY  - 2019
UR  - http://www.nature.com/articles/s41598-018-37505-7
UR  - http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6351648
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/3264
AB  - Gut microbiota dysbiosis has been considered the essential element in the pathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Antibiotics were administered orally to Dark Agouti (DA) rats early in their life with the aim of perturbing gut microbiota and investigating the effects of such intervention on the course of EAE. As a result, the diversity of the gut microbiota was reduced under the influence of antibiotics. Mainly, Firmicutes and Actinobacteria were replaced by Proteobacteria and Bacteroidetes, while decreased proportions of Clostridia and Bacilli classes were accompanied by an increase in Gamma-Proteobacteria in antibiotic-treated animals. Interestingly, a notable decrease in the Helicobacteraceae, Spirochaetaceae and Turicibacteriaceae was scored in antibiotic-treated groups. Also, levels of short chain fatty acids were reduced in the faeces of antibiotic-treated rats. Consequently, aggravation of EAE, paralleled with stronger immune response in lymph nodes draining the site of immunization, and increased inflammation within the CNS, were observed in antibiotic-treated DA rats. Thus, the alteration of gut microbiota leads to an escalation of CNS-directed autoimmunity in DA rats. The results of this study indicate that antibiotic use in early life may have subsequent unfavourable effects on the regulation of the immune system.
T2  - Scientific Reports
T1  - Oral neonatal antibiotic treatment perturbs gut microbiota and aggravates central nervous system autoimmunity in Dark Agouti rats.
IS  - 1
VL  - 9
DO  - 10.1038/s41598-018-37505-7
SP  - 918
ER  - 
@article{
author = "Stanisavljević, Suzana and Čepić, Aleksa and Bojić, Svetlana and Veljović, Katarina and Mihajlović, Sanja and Nikolovski, Neda and Jevtić, Bojan and Momčilović, Miljana and Lazarević, Milica and Mostarica Stojković, Marija and Miljković, Đorđe and Golić, Nataša",
year = "2019",
abstract = "Gut microbiota dysbiosis has been considered the essential element in the pathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Antibiotics were administered orally to Dark Agouti (DA) rats early in their life with the aim of perturbing gut microbiota and investigating the effects of such intervention on the course of EAE. As a result, the diversity of the gut microbiota was reduced under the influence of antibiotics. Mainly, Firmicutes and Actinobacteria were replaced by Proteobacteria and Bacteroidetes, while decreased proportions of Clostridia and Bacilli classes were accompanied by an increase in Gamma-Proteobacteria in antibiotic-treated animals. Interestingly, a notable decrease in the Helicobacteraceae, Spirochaetaceae and Turicibacteriaceae was scored in antibiotic-treated groups. Also, levels of short chain fatty acids were reduced in the faeces of antibiotic-treated rats. Consequently, aggravation of EAE, paralleled with stronger immune response in lymph nodes draining the site of immunization, and increased inflammation within the CNS, were observed in antibiotic-treated DA rats. Thus, the alteration of gut microbiota leads to an escalation of CNS-directed autoimmunity in DA rats. The results of this study indicate that antibiotic use in early life may have subsequent unfavourable effects on the regulation of the immune system.",
journal = "Scientific Reports",
title = "Oral neonatal antibiotic treatment perturbs gut microbiota and aggravates central nervous system autoimmunity in Dark Agouti rats.",
number = "1",
volume = "9",
doi = "10.1038/s41598-018-37505-7",
pages = "918"
}
Stanisavljević, S., Čepić, A., Bojić, S., Veljović, K., Mihajlović, S., Nikolovski, N., Jevtić, B., Momčilović, M., Lazarević, M., Mostarica Stojković, M., Miljković, Đ.,& Golić, N.. (2019). Oral neonatal antibiotic treatment perturbs gut microbiota and aggravates central nervous system autoimmunity in Dark Agouti rats.. in Scientific Reports, 9(1), 918.
https://doi.org/10.1038/s41598-018-37505-7
Stanisavljević S, Čepić A, Bojić S, Veljović K, Mihajlović S, Nikolovski N, Jevtić B, Momčilović M, Lazarević M, Mostarica Stojković M, Miljković Đ, Golić N. Oral neonatal antibiotic treatment perturbs gut microbiota and aggravates central nervous system autoimmunity in Dark Agouti rats.. in Scientific Reports. 2019;9(1):918.
doi:10.1038/s41598-018-37505-7 .
Stanisavljević, Suzana, Čepić, Aleksa, Bojić, Svetlana, Veljović, Katarina, Mihajlović, Sanja, Nikolovski, Neda, Jevtić, Bojan, Momčilović, Miljana, Lazarević, Milica, Mostarica Stojković, Marija, Miljković, Đorđe, Golić, Nataša, "Oral neonatal antibiotic treatment perturbs gut microbiota and aggravates central nervous system autoimmunity in Dark Agouti rats." in Scientific Reports, 9, no. 1 (2019):918,
https://doi.org/10.1038/s41598-018-37505-7 . .
15
29
15
29

Pulmonary Aspergillus fumigatus infection in rats affects gastrointestinal homeostasis.

Kulaš, Jelena; Mirkov, Ivana; Tucović, Dina; Zolotarevski, Lidija; Glamočlija, Jasmina; Veljović, Katarina; Tolinački, Maja; Golić, Nataša; Kataranovski, Milena

(2019)

TY  - JOUR
AU  - Kulaš, Jelena
AU  - Mirkov, Ivana
AU  - Tucović, Dina
AU  - Zolotarevski, Lidija
AU  - Glamočlija, Jasmina
AU  - Veljović, Katarina
AU  - Tolinački, Maja
AU  - Golić, Nataša
AU  - Kataranovski, Milena
PY  - 2019
UR  - https://www.sciencedirect.com/science/article/pii/S0171298518301001?via%3Dihub
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/3165
AB  - Microbiota inhabiting mucosal tissues is involved in maintenance of their immune homeostasis. Growing body of evidence indicate that dysbiosis in gut influence immune responses at distal sites including lungs. There are also reports concerning gut involvement with pulmonary injury/inflammation in settings of respiratory viral and bacterial infections. The impact of infections with other microorganisms on gut homeostasis is not explored. In this study, the rat model of sublethal pulmonary infection with Aspergillus fumigatus was used to investigate the effect of fungal respiratory infection on gut immune-mediated homeostasis. Signs of intestinal damage, intestinal and gut-draining lymphoid tissue cytokine responses and gut bacterial microbiota diversity were examined. Intestinal injury, inflammatory cell infiltration, as well as increased levels of intestinal interferon-γ (IFN-γ) and interleukin-17 (IL-17) (as opposed to unchanged levels of anti-inflammatory cytokine IL-10) during the two-week period depict intestinal inflammation in rats with pulmonary A. fumigatus infection. It could not be ascribed to the fungus as it was not detected in the intestine of infected rats. Increased production of pro-inflammatory cytokines by major gut-draining mesenteric lymph nodes point to these lymphoid organs as places of generation of cytokine-producing cells. No changes in spleen or systemic cytokine responses was observed, showing lack of the effects of pulmonary A. fumigatus infection outside mucosal immune system. Drop of intestinal bacterial microbiota diversity (disappearance of several bacterial bands) was noted early in infection with normalization starting from day seven. From day three, appearance of new bacterial bands (unique to infected individuals, not present in controls) was seen, and some of them are pathogens. Alterations in intestinal bacterial community might have affected intestinal immune tolerance contributing to inflammation. Disruption of gut homeostasis during pulmonary infection might render gastrointestinal tract more susceptible to variety of physiological and pathological stimuli. Data which showed for the first time gut involvement with pulmonary infection with A. fumigatus provide the baseline for future studies of the impact of fungal lung infections to gut homeostasis, particularly in individuals susceptible to these infections.
T2  - Immunobiology
T2  - Immunobiology
T1  - Pulmonary Aspergillus fumigatus infection in rats affects gastrointestinal homeostasis.
IS  - 1
VL  - 224
DO  - 10.1016/j.imbio.2018.10.001
SP  - 116
EP  - 123
ER  - 
@article{
author = "Kulaš, Jelena and Mirkov, Ivana and Tucović, Dina and Zolotarevski, Lidija and Glamočlija, Jasmina and Veljović, Katarina and Tolinački, Maja and Golić, Nataša and Kataranovski, Milena",
year = "2019",
abstract = "Microbiota inhabiting mucosal tissues is involved in maintenance of their immune homeostasis. Growing body of evidence indicate that dysbiosis in gut influence immune responses at distal sites including lungs. There are also reports concerning gut involvement with pulmonary injury/inflammation in settings of respiratory viral and bacterial infections. The impact of infections with other microorganisms on gut homeostasis is not explored. In this study, the rat model of sublethal pulmonary infection with Aspergillus fumigatus was used to investigate the effect of fungal respiratory infection on gut immune-mediated homeostasis. Signs of intestinal damage, intestinal and gut-draining lymphoid tissue cytokine responses and gut bacterial microbiota diversity were examined. Intestinal injury, inflammatory cell infiltration, as well as increased levels of intestinal interferon-γ (IFN-γ) and interleukin-17 (IL-17) (as opposed to unchanged levels of anti-inflammatory cytokine IL-10) during the two-week period depict intestinal inflammation in rats with pulmonary A. fumigatus infection. It could not be ascribed to the fungus as it was not detected in the intestine of infected rats. Increased production of pro-inflammatory cytokines by major gut-draining mesenteric lymph nodes point to these lymphoid organs as places of generation of cytokine-producing cells. No changes in spleen or systemic cytokine responses was observed, showing lack of the effects of pulmonary A. fumigatus infection outside mucosal immune system. Drop of intestinal bacterial microbiota diversity (disappearance of several bacterial bands) was noted early in infection with normalization starting from day seven. From day three, appearance of new bacterial bands (unique to infected individuals, not present in controls) was seen, and some of them are pathogens. Alterations in intestinal bacterial community might have affected intestinal immune tolerance contributing to inflammation. Disruption of gut homeostasis during pulmonary infection might render gastrointestinal tract more susceptible to variety of physiological and pathological stimuli. Data which showed for the first time gut involvement with pulmonary infection with A. fumigatus provide the baseline for future studies of the impact of fungal lung infections to gut homeostasis, particularly in individuals susceptible to these infections.",
journal = "Immunobiology, Immunobiology",
title = "Pulmonary Aspergillus fumigatus infection in rats affects gastrointestinal homeostasis.",
number = "1",
volume = "224",
doi = "10.1016/j.imbio.2018.10.001",
pages = "116-123"
}
Kulaš, J., Mirkov, I., Tucović, D., Zolotarevski, L., Glamočlija, J., Veljović, K., Tolinački, M., Golić, N.,& Kataranovski, M.. (2019). Pulmonary Aspergillus fumigatus infection in rats affects gastrointestinal homeostasis.. in Immunobiology, 224(1), 116-123.
https://doi.org/10.1016/j.imbio.2018.10.001
Kulaš J, Mirkov I, Tucović D, Zolotarevski L, Glamočlija J, Veljović K, Tolinački M, Golić N, Kataranovski M. Pulmonary Aspergillus fumigatus infection in rats affects gastrointestinal homeostasis.. in Immunobiology. 2019;224(1):116-123.
doi:10.1016/j.imbio.2018.10.001 .
Kulaš, Jelena, Mirkov, Ivana, Tucović, Dina, Zolotarevski, Lidija, Glamočlija, Jasmina, Veljović, Katarina, Tolinački, Maja, Golić, Nataša, Kataranovski, Milena, "Pulmonary Aspergillus fumigatus infection in rats affects gastrointestinal homeostasis." in Immunobiology, 224, no. 1 (2019):116-123,
https://doi.org/10.1016/j.imbio.2018.10.001 . .
1
9
4
8