Ilić, Dragan

Link to this page

Authority KeyName Variants
ca557f46-301a-4195-9cc6-ab48579cb460
  • Ilić, Dragan (3)

Author's Bibliography

Investigation of the radiopacity and cytotoxicity of ALBODENT – novel strontium carbonate incorporated calcium silicate based dental cement

Despotović, Ana; Antonijević, Đorđe M; Ilić, Dragan; Zogović, Nevena; Jokanović, Vukoman R

(Belgrade: Serbian Dental Journal, 2021)

TY  - JOUR
AU  - Despotović, Ana
AU  - Antonijević, Đorđe M
AU  - Ilić, Dragan
AU  - Zogović, Nevena
AU  - Jokanović, Vukoman R
PY  - 2021
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/4430
AB  - Introduction Calcium silicate (CS) dental cements have numerous clinical indications in dentistry including pulp capping, root end surgery, perforation repair and apexification/apexogenesis treatment. Materials and methods Novel CS based dental cement with incorporation of SrCO3 radiopacifier named ALBO-DENT was used as an experimental cement material while Portland cement (Aalborg, Denmark) and ProRoot MTA (Tulsa Dental, USA) were used as controls. The radiopacity evaluation was performed using digital Trophy Radiographic system with an intention to precisely determine the minimum of radiopaque agent needed to confer to ISO radiopacity requirement. Thereafter, biocompatibility of material was tested in in vitro conditions in mouse fibrosarcoma L929 cell culture treated with materials’ extracts. Cell morphology was observed using phase-contrast microscopy, while cell viability was measured using crystal violet (CV) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assays. Results Radiopacity evaluation revealed that 30%wt addition of SrCO3 was necessary to achieve satisfactory radiopacity (3.45 mm Al). Cytotoxicity analysis using CV and MTT assays revealed that pure extracts of ALBO-DENT presented superior biocompatibility when compared to PC and MTA controls while serial dilutions of experimental cements’ extracts as well as that of PC and MTA did not influence L929 cell viability. Conclusions Novel formulation of CS cement – ALBO-DENT presented satisfactory radiopacity and adequate biocompatibility.
AB  - Uvod Kalcijum-silikatni (KS) dentalni cementi se koriste u brojnim kliničkim indikacijama u stomatologiji koje uključuju direktno prekrivanje pulpe, retrogradnu hirurgiju korena zuba, lečenje perforacija i apeksogenezu/apeksifikaciju. Materijali i metode U istraživanju je korišćen novosintetisani cement na bazi KS sa dodatkom SrCO3 kao kontrastnog agensa ALBO-DENTA, dok su kao kontrola korišćeni cement Portland (PC, Aalborg, Denmark) i ProRoot MTA (MTA, Tulsa Dental, USA). Rendgenokontrasnost je ispitivana digitalnom radiografijom primenom aparata Trophy, sa namerom da se precizno odredi minimum
kontrastnog agensa koji zadovoljava zahteve standarda ISO za rendgenkontrastnost. Biokompatibilnost materijala je ispitana in vitro, u kulturi ćelija mišjeg fibrosarkoma L929 tretiranoj ekstraktima ispitivanih materijala. Ćelijska morfologija je praćena upotrebom fazno-kontrastne mikroskopije, dok je vijabilnost ćelija utvrđivana kristal violet (KV) i 3-(4,5-dimetiltiazol-2-yl)-2,5-difenfl-tetrazolium bromid (MTT) esejima.
Rezultati Ispitivanje rendgenkontrastnosti je pokazalo da dodatak 30% SrCO3 dovodi do zadovoljavajućeg kontrasta materijala (3,45 mm Al). Analiza citotoksičnosti KV i MTT metodom je pokazala da čisti ekstrakt ALBO-DENTA pokazuje bolju biokompatibilnost u poređenju sa PC i MTA, dok serijska razblaženja ekstrakta ispitivanog cementa, kao i PC i MTA, nisu uticala na vijabilitet ćelija L929. Zaključci Novi cement na bazi KS – ALBO-DENT pokazao je zavodovoljavajuću rendgenkontrastnost i odgovarajuću biokompatibilnost.
PB  - Belgrade: Serbian Dental Journal
T2  - Serbian Dental Journal
T1  - Investigation of the radiopacity and cytotoxicity of ALBODENT – novel strontium carbonate incorporated calcium silicate based dental cement
T1  - Ispitivanje rendgenkontrastnosti i citotoksičnosti ALBO-DENTA – novog kalcijum-silikatnog cementa sa dodatkom stroncijumkarbonata
IS  - 2
VL  - 68
DO  - 10.2298/SGS2102068D
SP  - 68
EP  - 78
ER  - 
@article{
author = "Despotović, Ana and Antonijević, Đorđe M and Ilić, Dragan and Zogović, Nevena and Jokanović, Vukoman R",
year = "2021",
abstract = "Introduction Calcium silicate (CS) dental cements have numerous clinical indications in dentistry including pulp capping, root end surgery, perforation repair and apexification/apexogenesis treatment. Materials and methods Novel CS based dental cement with incorporation of SrCO3 radiopacifier named ALBO-DENT was used as an experimental cement material while Portland cement (Aalborg, Denmark) and ProRoot MTA (Tulsa Dental, USA) were used as controls. The radiopacity evaluation was performed using digital Trophy Radiographic system with an intention to precisely determine the minimum of radiopaque agent needed to confer to ISO radiopacity requirement. Thereafter, biocompatibility of material was tested in in vitro conditions in mouse fibrosarcoma L929 cell culture treated with materials’ extracts. Cell morphology was observed using phase-contrast microscopy, while cell viability was measured using crystal violet (CV) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assays. Results Radiopacity evaluation revealed that 30%wt addition of SrCO3 was necessary to achieve satisfactory radiopacity (3.45 mm Al). Cytotoxicity analysis using CV and MTT assays revealed that pure extracts of ALBO-DENT presented superior biocompatibility when compared to PC and MTA controls while serial dilutions of experimental cements’ extracts as well as that of PC and MTA did not influence L929 cell viability. Conclusions Novel formulation of CS cement – ALBO-DENT presented satisfactory radiopacity and adequate biocompatibility., Uvod Kalcijum-silikatni (KS) dentalni cementi se koriste u brojnim kliničkim indikacijama u stomatologiji koje uključuju direktno prekrivanje pulpe, retrogradnu hirurgiju korena zuba, lečenje perforacija i apeksogenezu/apeksifikaciju. Materijali i metode U istraživanju je korišćen novosintetisani cement na bazi KS sa dodatkom SrCO3 kao kontrastnog agensa ALBO-DENTA, dok su kao kontrola korišćeni cement Portland (PC, Aalborg, Denmark) i ProRoot MTA (MTA, Tulsa Dental, USA). Rendgenokontrasnost je ispitivana digitalnom radiografijom primenom aparata Trophy, sa namerom da se precizno odredi minimum
kontrastnog agensa koji zadovoljava zahteve standarda ISO za rendgenkontrastnost. Biokompatibilnost materijala je ispitana in vitro, u kulturi ćelija mišjeg fibrosarkoma L929 tretiranoj ekstraktima ispitivanih materijala. Ćelijska morfologija je praćena upotrebom fazno-kontrastne mikroskopije, dok je vijabilnost ćelija utvrđivana kristal violet (KV) i 3-(4,5-dimetiltiazol-2-yl)-2,5-difenfl-tetrazolium bromid (MTT) esejima.
Rezultati Ispitivanje rendgenkontrastnosti je pokazalo da dodatak 30% SrCO3 dovodi do zadovoljavajućeg kontrasta materijala (3,45 mm Al). Analiza citotoksičnosti KV i MTT metodom je pokazala da čisti ekstrakt ALBO-DENTA pokazuje bolju biokompatibilnost u poređenju sa PC i MTA, dok serijska razblaženja ekstrakta ispitivanog cementa, kao i PC i MTA, nisu uticala na vijabilitet ćelija L929. Zaključci Novi cement na bazi KS – ALBO-DENT pokazao je zavodovoljavajuću rendgenkontrastnost i odgovarajuću biokompatibilnost.",
publisher = "Belgrade: Serbian Dental Journal",
journal = "Serbian Dental Journal",
title = "Investigation of the radiopacity and cytotoxicity of ALBODENT – novel strontium carbonate incorporated calcium silicate based dental cement, Ispitivanje rendgenkontrastnosti i citotoksičnosti ALBO-DENTA – novog kalcijum-silikatnog cementa sa dodatkom stroncijumkarbonata",
number = "2",
volume = "68",
doi = "10.2298/SGS2102068D",
pages = "68-78"
}
Despotović, A., Antonijević, Đ. M., Ilić, D., Zogović, N.,& Jokanović, V. R.. (2021). Investigation of the radiopacity and cytotoxicity of ALBODENT – novel strontium carbonate incorporated calcium silicate based dental cement. in Serbian Dental Journal
Belgrade: Serbian Dental Journal., 68(2), 68-78.
https://doi.org/10.2298/SGS2102068D
Despotović A, Antonijević ĐM, Ilić D, Zogović N, Jokanović VR. Investigation of the radiopacity and cytotoxicity of ALBODENT – novel strontium carbonate incorporated calcium silicate based dental cement. in Serbian Dental Journal. 2021;68(2):68-78.
doi:10.2298/SGS2102068D .
Despotović, Ana, Antonijević, Đorđe M, Ilić, Dragan, Zogović, Nevena, Jokanović, Vukoman R, "Investigation of the radiopacity and cytotoxicity of ALBODENT – novel strontium carbonate incorporated calcium silicate based dental cement" in Serbian Dental Journal, 68, no. 2 (2021):68-78,
https://doi.org/10.2298/SGS2102068D . .

Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic

Antonijević, Đorđe; Despotović, Ana; Biočanin, Vladimir; Milošević, Miloš; Trišić, Dijana; Lazović, Vladimir; Zogović, Nevena; Milašin, Jelena; Ilić, Dragan

(Oxford : Elsevier, 2021)

TY  - JOUR
AU  - Antonijević, Đorđe
AU  - Despotović, Ana
AU  - Biočanin, Vladimir
AU  - Milošević, Miloš
AU  - Trišić, Dijana
AU  - Lazović, Vladimir
AU  - Zogović, Nevena
AU  - Milašin, Jelena
AU  - Ilić, Dragan
PY  - 2021
UR  - https://www.sciencedirect.com/science/article/pii/S0272884221020794
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/4464
AB  - The purpose of this study was to investigate the influence of different radiopacifiers on the physicochemical and biological properties of novel calcium silicate based endodontic ceramic enriched with bioactive nano-particulated hydroxyapatite – ECHA. Namely, ECHA was used as a basis for mixing with the following radiopacifiers: strontium fluoride (SrF2), zirconium dioxide (ZrO2) and bismuth oxide (Bi2O3). For comparison, Portland cement (PC) and mineral trioxide aggregate (MTA) were used. The following physicochemical characteristics were examined: the radiopacity, setting time, compressive strength, porosity, wettability and pH value. The biocompatibility of the cements was assessed by crystal violet, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) and cell adhesion assays. The highest radiopacity was obtained for the ECHA + Bi2O3 mixture and MTA that were statistically significant in comparison to other materials (p < 0.05). Both initial and final setting times as well as compressive strengths were statistically lower for experimental cements than for PC and MTA (p < 0.05). The lowest total porosity was observed in the ECHA + ZrO2 group when compared with the other two experimental cements (p < 0.05), but not when compared with PC and MTA (p > 0.05). Experimental cements exhibited statistically higher contact angles of glycerol than PC and MTA (p < 0.05). For blood plasma, a statistical difference was found only between ECHA + Bi2O3 and PC (p < 0.05). All investigated materials had alkalization ability. Cell viability assays revealed that the extracts of tested cements did not exhibit cytotoxic effect on L929 cells. Scanning electron microscopy had shown a high degree of cell proliferation and adhesion of cells from apical papilla on experimental cements’ surfaces. Novel endodontic ceramics with nano-hydroxyapatite addition have satisfactory biological and physicochemical properties when compared to MTA and PC controls. Considerable lower setting time of experimental cements might present a huge advantage of these synthesized materials in clinical practice. SrF2 presents a novel promising radiopacifying agent for dental cements manufacturing.
PB  - Oxford : Elsevier
T2  - Ceramics International
T1  - Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic
IS  - 20
VL  - 47
DO  - 10.1016/j.ceramint.2021.07.052
SP  - 28913
EP  - 28923
ER  - 
@article{
author = "Antonijević, Đorđe and Despotović, Ana and Biočanin, Vladimir and Milošević, Miloš and Trišić, Dijana and Lazović, Vladimir and Zogović, Nevena and Milašin, Jelena and Ilić, Dragan",
year = "2021",
abstract = "The purpose of this study was to investigate the influence of different radiopacifiers on the physicochemical and biological properties of novel calcium silicate based endodontic ceramic enriched with bioactive nano-particulated hydroxyapatite – ECHA. Namely, ECHA was used as a basis for mixing with the following radiopacifiers: strontium fluoride (SrF2), zirconium dioxide (ZrO2) and bismuth oxide (Bi2O3). For comparison, Portland cement (PC) and mineral trioxide aggregate (MTA) were used. The following physicochemical characteristics were examined: the radiopacity, setting time, compressive strength, porosity, wettability and pH value. The biocompatibility of the cements was assessed by crystal violet, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) and cell adhesion assays. The highest radiopacity was obtained for the ECHA + Bi2O3 mixture and MTA that were statistically significant in comparison to other materials (p < 0.05). Both initial and final setting times as well as compressive strengths were statistically lower for experimental cements than for PC and MTA (p < 0.05). The lowest total porosity was observed in the ECHA + ZrO2 group when compared with the other two experimental cements (p < 0.05), but not when compared with PC and MTA (p > 0.05). Experimental cements exhibited statistically higher contact angles of glycerol than PC and MTA (p < 0.05). For blood plasma, a statistical difference was found only between ECHA + Bi2O3 and PC (p < 0.05). All investigated materials had alkalization ability. Cell viability assays revealed that the extracts of tested cements did not exhibit cytotoxic effect on L929 cells. Scanning electron microscopy had shown a high degree of cell proliferation and adhesion of cells from apical papilla on experimental cements’ surfaces. Novel endodontic ceramics with nano-hydroxyapatite addition have satisfactory biological and physicochemical properties when compared to MTA and PC controls. Considerable lower setting time of experimental cements might present a huge advantage of these synthesized materials in clinical practice. SrF2 presents a novel promising radiopacifying agent for dental cements manufacturing.",
publisher = "Oxford : Elsevier",
journal = "Ceramics International",
title = "Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic",
number = "20",
volume = "47",
doi = "10.1016/j.ceramint.2021.07.052",
pages = "28913-28923"
}
Antonijević, Đ., Despotović, A., Biočanin, V., Milošević, M., Trišić, D., Lazović, V., Zogović, N., Milašin, J.,& Ilić, D.. (2021). Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic. in Ceramics International
Oxford : Elsevier., 47(20), 28913-28923.
https://doi.org/10.1016/j.ceramint.2021.07.052
Antonijević Đ, Despotović A, Biočanin V, Milošević M, Trišić D, Lazović V, Zogović N, Milašin J, Ilić D. Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic. in Ceramics International. 2021;47(20):28913-28923.
doi:10.1016/j.ceramint.2021.07.052 .
Antonijević, Đorđe, Despotović, Ana, Biočanin, Vladimir, Milošević, Miloš, Trišić, Dijana, Lazović, Vladimir, Zogović, Nevena, Milašin, Jelena, Ilić, Dragan, "Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic" in Ceramics International, 47, no. 20 (2021):28913-28923,
https://doi.org/10.1016/j.ceramint.2021.07.052 . .
10
2
10

Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic

Antonijević, Đorđe; Despotović, Ana; Biočanin, Vladimir; Milošević, Miloš; Trišić, Dijana; Lazović, Vladimir; Zogović, Nevena; Milašin, Jelena; Ilić, Dragan

(Oxford: Elsevier Ltd, 2021)

TY  - JOUR
AU  - Antonijević, Đorđe
AU  - Despotović, Ana
AU  - Biočanin, Vladimir
AU  - Milošević, Miloš
AU  - Trišić, Dijana
AU  - Lazović, Vladimir
AU  - Zogović, Nevena
AU  - Milašin, Jelena
AU  - Ilić, Dragan
PY  - 2021
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0272884221020794
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/4445
AB  - The purpose of this study was to investigate the influence of different radiopacifiers on the physicochemical and biological properties of novel calcium silicate based endodontic ceramic enriched with bioactive nano-particulated hydroxyapatite – ECHA. Namely, ECHA was used as a basis for mixing with the following radiopacifiers: strontium fluoride (SrF2), zirconium dioxide (ZrO2) and bismuth oxide (Bi2O3). For comparison, Portland cement (PC) and mineral trioxide aggregate (MTA) were used. The following physicochemical characteristics were examined: the radiopacity, setting time, compressive strength, porosity, wettability and pH value. The biocompatibility of the cements was assessed by crystal violet, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) and cell adhesion assays. The highest radiopacity was obtained for the ECHA + Bi2O3 mixture and MTA that were statistically significant in comparison to other materials (p < 0.05). Both initial and final setting times as well as compressive strengths were statistically lower for experimental cements than for PC and MTA (p < 0.05). The lowest total porosity was observed in the ECHA + ZrO2 group when compared with the other two experimental cements (p < 0.05), but not when compared with PC and MTA (p > 0.05). Experimental cements exhibited statistically higher contact angles of glycerol than PC and MTA (p < 0.05). For blood plasma, a statistical difference was found only between ECHA + Bi2O3 and PC (p < 0.05). All investigated materials had alkalization ability. Cell viability assays revealed that the extracts of tested cements did not exhibit cytotoxic effect on L929 cells. Scanning electron microscopy had shown a high degree of cell proliferation and adhesion of cells from apical papilla on experimental cements’ surfaces. Novel endodontic ceramics with nano-hydroxyapatite addition have satisfactory biological and physicochemical properties when compared to MTA and PC controls. Considerable lower setting time of experimental cements might present a huge advantage of these synthesized materials in clinical practice. SrF2 presents a novel promising radiopacifying agent for dental cements manufacturing.
PB  - Oxford: Elsevier Ltd
T2  - Ceramics International
T1  - Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic
IS  - 20
VL  - 47
DO  - 10.1016/j.ceramint.2021.07.052
SP  - 28913
EP  - 28923
ER  - 
@article{
author = "Antonijević, Đorđe and Despotović, Ana and Biočanin, Vladimir and Milošević, Miloš and Trišić, Dijana and Lazović, Vladimir and Zogović, Nevena and Milašin, Jelena and Ilić, Dragan",
year = "2021",
abstract = "The purpose of this study was to investigate the influence of different radiopacifiers on the physicochemical and biological properties of novel calcium silicate based endodontic ceramic enriched with bioactive nano-particulated hydroxyapatite – ECHA. Namely, ECHA was used as a basis for mixing with the following radiopacifiers: strontium fluoride (SrF2), zirconium dioxide (ZrO2) and bismuth oxide (Bi2O3). For comparison, Portland cement (PC) and mineral trioxide aggregate (MTA) were used. The following physicochemical characteristics were examined: the radiopacity, setting time, compressive strength, porosity, wettability and pH value. The biocompatibility of the cements was assessed by crystal violet, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) and cell adhesion assays. The highest radiopacity was obtained for the ECHA + Bi2O3 mixture and MTA that were statistically significant in comparison to other materials (p < 0.05). Both initial and final setting times as well as compressive strengths were statistically lower for experimental cements than for PC and MTA (p < 0.05). The lowest total porosity was observed in the ECHA + ZrO2 group when compared with the other two experimental cements (p < 0.05), but not when compared with PC and MTA (p > 0.05). Experimental cements exhibited statistically higher contact angles of glycerol than PC and MTA (p < 0.05). For blood plasma, a statistical difference was found only between ECHA + Bi2O3 and PC (p < 0.05). All investigated materials had alkalization ability. Cell viability assays revealed that the extracts of tested cements did not exhibit cytotoxic effect on L929 cells. Scanning electron microscopy had shown a high degree of cell proliferation and adhesion of cells from apical papilla on experimental cements’ surfaces. Novel endodontic ceramics with nano-hydroxyapatite addition have satisfactory biological and physicochemical properties when compared to MTA and PC controls. Considerable lower setting time of experimental cements might present a huge advantage of these synthesized materials in clinical practice. SrF2 presents a novel promising radiopacifying agent for dental cements manufacturing.",
publisher = "Oxford: Elsevier Ltd",
journal = "Ceramics International",
title = "Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic",
number = "20",
volume = "47",
doi = "10.1016/j.ceramint.2021.07.052",
pages = "28913-28923"
}
Antonijević, Đ., Despotović, A., Biočanin, V., Milošević, M., Trišić, D., Lazović, V., Zogović, N., Milašin, J.,& Ilić, D.. (2021). Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic. in Ceramics International
Oxford: Elsevier Ltd., 47(20), 28913-28923.
https://doi.org/10.1016/j.ceramint.2021.07.052
Antonijević Đ, Despotović A, Biočanin V, Milošević M, Trišić D, Lazović V, Zogović N, Milašin J, Ilić D. Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic. in Ceramics International. 2021;47(20):28913-28923.
doi:10.1016/j.ceramint.2021.07.052 .
Antonijević, Đorđe, Despotović, Ana, Biočanin, Vladimir, Milošević, Miloš, Trišić, Dijana, Lazović, Vladimir, Zogović, Nevena, Milašin, Jelena, Ilić, Dragan, "Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic" in Ceramics International, 47, no. 20 (2021):28913-28923,
https://doi.org/10.1016/j.ceramint.2021.07.052 . .
9
2
9