Jeremić, Rada

Link to this page

Authority KeyName Variants
664ee0ee-8463-4673-9fa1-d93457a806a5
  • Jeremić, Rada (4)

Author's Bibliography

Hyperbaric Oxygenation Prevents Loss of Immature Neurons in the Adult Hippocampal Dentate Gyrus Following Brain Injury

Jeremić, Rada; Peković, Sanja; Lavrnja, Irena; Bjelobaba, Ivana; Đelić, Marina; Dacić, Sanja; Brkić, Predrag D

(Basel: MDPI, 2023)

TY  - JOUR
AU  - Jeremić, Rada
AU  - Peković, Sanja
AU  - Lavrnja, Irena
AU  - Bjelobaba, Ivana
AU  - Đelić, Marina
AU  - Dacić, Sanja
AU  - Brkić, Predrag D
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5975
AB  - A growing body of evidence suggests that hyperbaric oxygenation (HBO) may affect the activity of adult neural stem cells (NSCs). Since the role of NSCs in recovery from brain injury is still unclear, the purpose of this study was to investigate the effects of sensorimotor cortex ablation (SCA) and HBO treatment (HBOT) on the processes of neurogenesis in the adult dentate gyrus (DG), a region of the hippocampus that is the site of adult neurogenesis. Ten-week-old Wistar rats were divided into groups: Control (C, intact animals), Sham control (S, animals that underwent the surgical procedure without opening the skull), SCA (animals in whom the right sensorimotor cortex was removed via suction ablation), and SCA + HBO (operated animals that passed HBOT). HBOT protocol: pressure applied at 2.5 absolute atmospheres for 60 min, once daily for 10 days. Using immunohistochemistry and double immunofluorescence labeling, we show that SCA causes significant loss of neurons in the DG. Newborn neurons in the subgranular zone (SGZ), inner-third, and partially mid-third of the granule cell layer are predominantly affected by SCA. HBOT decreases the SCA-caused loss of immature neurons, prevents reduction of dendritic arborization, and increases proliferation of progenitor cells. Our results suggest a protective effect of HBO by reducing the vulnerability of immature neurons in the adult DG to SCA injury.
PB  - Basel: MDPI
T2  - International Journal of Molecular Sciences
T1  - Hyperbaric Oxygenation Prevents Loss of Immature Neurons in the Adult Hippocampal Dentate Gyrus Following Brain Injury
IS  - 5
VL  - 24
DO  - 10.3390/ijms24054261
SP  - 4261
ER  - 
@article{
author = "Jeremić, Rada and Peković, Sanja and Lavrnja, Irena and Bjelobaba, Ivana and Đelić, Marina and Dacić, Sanja and Brkić, Predrag D",
year = "2023",
abstract = "A growing body of evidence suggests that hyperbaric oxygenation (HBO) may affect the activity of adult neural stem cells (NSCs). Since the role of NSCs in recovery from brain injury is still unclear, the purpose of this study was to investigate the effects of sensorimotor cortex ablation (SCA) and HBO treatment (HBOT) on the processes of neurogenesis in the adult dentate gyrus (DG), a region of the hippocampus that is the site of adult neurogenesis. Ten-week-old Wistar rats were divided into groups: Control (C, intact animals), Sham control (S, animals that underwent the surgical procedure without opening the skull), SCA (animals in whom the right sensorimotor cortex was removed via suction ablation), and SCA + HBO (operated animals that passed HBOT). HBOT protocol: pressure applied at 2.5 absolute atmospheres for 60 min, once daily for 10 days. Using immunohistochemistry and double immunofluorescence labeling, we show that SCA causes significant loss of neurons in the DG. Newborn neurons in the subgranular zone (SGZ), inner-third, and partially mid-third of the granule cell layer are predominantly affected by SCA. HBOT decreases the SCA-caused loss of immature neurons, prevents reduction of dendritic arborization, and increases proliferation of progenitor cells. Our results suggest a protective effect of HBO by reducing the vulnerability of immature neurons in the adult DG to SCA injury.",
publisher = "Basel: MDPI",
journal = "International Journal of Molecular Sciences",
title = "Hyperbaric Oxygenation Prevents Loss of Immature Neurons in the Adult Hippocampal Dentate Gyrus Following Brain Injury",
number = "5",
volume = "24",
doi = "10.3390/ijms24054261",
pages = "4261"
}
Jeremić, R., Peković, S., Lavrnja, I., Bjelobaba, I., Đelić, M., Dacić, S.,& Brkić, P. D.. (2023). Hyperbaric Oxygenation Prevents Loss of Immature Neurons in the Adult Hippocampal Dentate Gyrus Following Brain Injury. in International Journal of Molecular Sciences
Basel: MDPI., 24(5), 4261.
https://doi.org/10.3390/ijms24054261
Jeremić R, Peković S, Lavrnja I, Bjelobaba I, Đelić M, Dacić S, Brkić PD. Hyperbaric Oxygenation Prevents Loss of Immature Neurons in the Adult Hippocampal Dentate Gyrus Following Brain Injury. in International Journal of Molecular Sciences. 2023;24(5):4261.
doi:10.3390/ijms24054261 .
Jeremić, Rada, Peković, Sanja, Lavrnja, Irena, Bjelobaba, Ivana, Đelić, Marina, Dacić, Sanja, Brkić, Predrag D, "Hyperbaric Oxygenation Prevents Loss of Immature Neurons in the Adult Hippocampal Dentate Gyrus Following Brain Injury" in International Journal of Molecular Sciences, 24, no. 5 (2023):4261,
https://doi.org/10.3390/ijms24054261 . .
3
2

Hyperbaric oxygen prevents dendrite degeneration and loss of DCX-positive newborn immature neurons in the dentate gyrus after traumatic brain injury

Jeremić, Rada; Peković, Sanja; Lavrnja, Irena; Bjelobaba, Ivana; Đelić, Marina N; Brkić, Predrag D; Dacić, Sanja

(Belgrade: Serbian Neuroscience Society, 2023)

TY  - CONF
AU  - Jeremić, Rada
AU  - Peković, Sanja
AU  - Lavrnja, Irena
AU  - Bjelobaba, Ivana
AU  - Đelić, Marina N
AU  - Brkić, Predrag D
AU  - Dacić, Sanja
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5984
AB  - Introduction: There is growing evidence that hyperbaric oxygenation (HBO) can affect adult neural stem cells (NSCs) activity. Because the role of NSCs in recovery from brain injury is still unclear, this study examined how ablation of the sensorimotor cortex (SCA) and HBO treatment (HBOT) affect the process of neurogenesis in the adult dentate gyrus (DG), a region of the hippocampus considered to be the site of adult neurogenesis. Material and methods: Ten-week-old Wistar rats were divided into groups: Control (C, intact animals), SCA (animals in which the right sensorimotor cortex was removed by suction ablation), and SCA+HBO (operated animals subjected to HBOT). HBOT protocol: pressure applied at 2.5 absolute atmospheres for 60 min, once daily for 10 days. The effects of HBOT were monitored by immunohistochemistry and double immunofluorescence labeling. In addition, the number of DCX+ cells was determined along the length of the SGZ in the inner and separately in the outer blade of the right dentate gyrus. Also, the total dendrite length was measured and the number of branching points, dendrite terminals, and segments were counted to quantify dendritic arborization in each neuron. Results: HBOT decreases SCA-induced loss of immature neurons, prevents reduction of dendritic branching, and increases proliferation of progenitor cells. Conclusion: Our results suggest a protective effect of HBOT by reducing the vulnerability of immature neurons in the adult DG to SCA injury.
PB  - Belgrade: Serbian Neuroscience Society
C3  - Book of abstracts: 8th Congress of Serbian neuroscience society with international participation; 2023 May 31 - Jun 2; Belgrade, Serbia
T1  - Hyperbaric oxygen prevents dendrite degeneration and loss of DCX-positive newborn immature neurons in the dentate gyrus after traumatic brain injury
SP  - 78
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_5984
ER  - 
@conference{
author = "Jeremić, Rada and Peković, Sanja and Lavrnja, Irena and Bjelobaba, Ivana and Đelić, Marina N and Brkić, Predrag D and Dacić, Sanja",
year = "2023",
abstract = "Introduction: There is growing evidence that hyperbaric oxygenation (HBO) can affect adult neural stem cells (NSCs) activity. Because the role of NSCs in recovery from brain injury is still unclear, this study examined how ablation of the sensorimotor cortex (SCA) and HBO treatment (HBOT) affect the process of neurogenesis in the adult dentate gyrus (DG), a region of the hippocampus considered to be the site of adult neurogenesis. Material and methods: Ten-week-old Wistar rats were divided into groups: Control (C, intact animals), SCA (animals in which the right sensorimotor cortex was removed by suction ablation), and SCA+HBO (operated animals subjected to HBOT). HBOT protocol: pressure applied at 2.5 absolute atmospheres for 60 min, once daily for 10 days. The effects of HBOT were monitored by immunohistochemistry and double immunofluorescence labeling. In addition, the number of DCX+ cells was determined along the length of the SGZ in the inner and separately in the outer blade of the right dentate gyrus. Also, the total dendrite length was measured and the number of branching points, dendrite terminals, and segments were counted to quantify dendritic arborization in each neuron. Results: HBOT decreases SCA-induced loss of immature neurons, prevents reduction of dendritic branching, and increases proliferation of progenitor cells. Conclusion: Our results suggest a protective effect of HBOT by reducing the vulnerability of immature neurons in the adult DG to SCA injury.",
publisher = "Belgrade: Serbian Neuroscience Society",
journal = "Book of abstracts: 8th Congress of Serbian neuroscience society with international participation; 2023 May 31 - Jun 2; Belgrade, Serbia",
title = "Hyperbaric oxygen prevents dendrite degeneration and loss of DCX-positive newborn immature neurons in the dentate gyrus after traumatic brain injury",
pages = "78",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_5984"
}
Jeremić, R., Peković, S., Lavrnja, I., Bjelobaba, I., Đelić, M. N., Brkić, P. D.,& Dacić, S.. (2023). Hyperbaric oxygen prevents dendrite degeneration and loss of DCX-positive newborn immature neurons in the dentate gyrus after traumatic brain injury. in Book of abstracts: 8th Congress of Serbian neuroscience society with international participation; 2023 May 31 - Jun 2; Belgrade, Serbia
Belgrade: Serbian Neuroscience Society., 78.
https://hdl.handle.net/21.15107/rcub_ibiss_5984
Jeremić R, Peković S, Lavrnja I, Bjelobaba I, Đelić MN, Brkić PD, Dacić S. Hyperbaric oxygen prevents dendrite degeneration and loss of DCX-positive newborn immature neurons in the dentate gyrus after traumatic brain injury. in Book of abstracts: 8th Congress of Serbian neuroscience society with international participation; 2023 May 31 - Jun 2; Belgrade, Serbia. 2023;:78.
https://hdl.handle.net/21.15107/rcub_ibiss_5984 .
Jeremić, Rada, Peković, Sanja, Lavrnja, Irena, Bjelobaba, Ivana, Đelić, Marina N, Brkić, Predrag D, Dacić, Sanja, "Hyperbaric oxygen prevents dendrite degeneration and loss of DCX-positive newborn immature neurons in the dentate gyrus after traumatic brain injury" in Book of abstracts: 8th Congress of Serbian neuroscience society with international participation; 2023 May 31 - Jun 2; Belgrade, Serbia (2023):78,
https://hdl.handle.net/21.15107/rcub_ibiss_5984 .

Gray-Level Co-Occurrence Matrix Analysis of Granule Neurons of the Hippocampal Dentate Gyrus Following Cortical Injury.

Pantić, Igor; Jeremić, Rada; Dacić, Sanja; Peković, Sanja; Pantić, Senka; Đelić, Marina; Vitić, Zagorka; Brkić, Predrag; Brodski, Claude

(2020)

TY  - JOUR
AU  - Pantić, Igor
AU  - Jeremić, Rada
AU  - Dacić, Sanja
AU  - Peković, Sanja
AU  - Pantić, Senka
AU  - Đelić, Marina
AU  - Vitić, Zagorka
AU  - Brkić, Predrag
AU  - Brodski, Claude
PY  - 2020
UR  - https://radar.ibiss.bg.ac.rs/handle/123456789/3599
AB  - Traumatic brain injury (TBI) is a main cause of death and disabilities in young adults. Although learning and memory impairments are a major clinical manifestation of TBI, the consequences of TBI on the hippocampus are still not well understood. In particular, how lesions to the sensorimotor cortex damage the hippocampus, to which it is not directly connected, is still elusive. Here, we study the effects of sensorimotor cortex ablation (SCA) on the hippocampal dentate gyrus, by applying a highly sensitive gray-level co-occurrence matrix (GLCM) analysis. Using GLCM analysis of granule neurons, we discovered, in our TBI paradigm, subtle changes in granule cell (GC) morphology, including textual uniformity, contrast, and variance, which is not detected by conventional microscopy. We conclude that sensorimotor cortex trauma leads to specific changes in the hippocampus that advance our understanding of the cellular underpinnings of cognitive impairments in TBI. Moreover, we identified GLCM analysis as a highly sensitive method to detect subtle changes in the GC layers that is expected to significantly improve further studies investigating the impact of TBI on hippocampal neuropathology.
T2  - Microscopy and Microanalysis
T1  - Gray-Level Co-Occurrence Matrix Analysis of Granule Neurons of the Hippocampal Dentate Gyrus Following Cortical Injury.
IS  - 1
VL  - 26
DO  - 10.1017/S143192762000001X
SP  - 166
EP  - 172
ER  - 
@article{
author = "Pantić, Igor and Jeremić, Rada and Dacić, Sanja and Peković, Sanja and Pantić, Senka and Đelić, Marina and Vitić, Zagorka and Brkić, Predrag and Brodski, Claude",
year = "2020",
abstract = "Traumatic brain injury (TBI) is a main cause of death and disabilities in young adults. Although learning and memory impairments are a major clinical manifestation of TBI, the consequences of TBI on the hippocampus are still not well understood. In particular, how lesions to the sensorimotor cortex damage the hippocampus, to which it is not directly connected, is still elusive. Here, we study the effects of sensorimotor cortex ablation (SCA) on the hippocampal dentate gyrus, by applying a highly sensitive gray-level co-occurrence matrix (GLCM) analysis. Using GLCM analysis of granule neurons, we discovered, in our TBI paradigm, subtle changes in granule cell (GC) morphology, including textual uniformity, contrast, and variance, which is not detected by conventional microscopy. We conclude that sensorimotor cortex trauma leads to specific changes in the hippocampus that advance our understanding of the cellular underpinnings of cognitive impairments in TBI. Moreover, we identified GLCM analysis as a highly sensitive method to detect subtle changes in the GC layers that is expected to significantly improve further studies investigating the impact of TBI on hippocampal neuropathology.",
journal = "Microscopy and Microanalysis",
title = "Gray-Level Co-Occurrence Matrix Analysis of Granule Neurons of the Hippocampal Dentate Gyrus Following Cortical Injury.",
number = "1",
volume = "26",
doi = "10.1017/S143192762000001X",
pages = "166-172"
}
Pantić, I., Jeremić, R., Dacić, S., Peković, S., Pantić, S., Đelić, M., Vitić, Z., Brkić, P.,& Brodski, C.. (2020). Gray-Level Co-Occurrence Matrix Analysis of Granule Neurons of the Hippocampal Dentate Gyrus Following Cortical Injury.. in Microscopy and Microanalysis, 26(1), 166-172.
https://doi.org/10.1017/S143192762000001X
Pantić I, Jeremić R, Dacić S, Peković S, Pantić S, Đelić M, Vitić Z, Brkić P, Brodski C. Gray-Level Co-Occurrence Matrix Analysis of Granule Neurons of the Hippocampal Dentate Gyrus Following Cortical Injury.. in Microscopy and Microanalysis. 2020;26(1):166-172.
doi:10.1017/S143192762000001X .
Pantić, Igor, Jeremić, Rada, Dacić, Sanja, Peković, Sanja, Pantić, Senka, Đelić, Marina, Vitić, Zagorka, Brkić, Predrag, Brodski, Claude, "Gray-Level Co-Occurrence Matrix Analysis of Granule Neurons of the Hippocampal Dentate Gyrus Following Cortical Injury." in Microscopy and Microanalysis, 26, no. 1 (2020):166-172,
https://doi.org/10.1017/S143192762000001X . .
9
3
7

L-type Calcium Channels Involvement in the Regulation of Neuroinflammation and Neuroregeneration After Brain Injury

Dacić, Sanja; Božić, Iva; Jeremić, Rada; Bjelobaba, Ivana; Lavrnja, Irena; Savić, Danijela; Rakić, Ljubisav; Stojiljković, Mirjana; Peković, Sanja

(Belgrade: Serbian Neuroscience Society, 2019)

TY  - JOUR
AU  - Dacić, Sanja
AU  - Božić, Iva
AU  - Jeremić, Rada
AU  - Bjelobaba, Ivana
AU  - Lavrnja, Irena
AU  - Savić, Danijela
AU  - Rakić, Ljubisav
AU  - Stojiljković, Mirjana
AU  - Peković, Sanja
PY  - 2019
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5989
AB  - Aims: Traumatic brain injury (TBI) causes disruption in homeostasis of calcium ions (Ca2+), important second messenger considered as the major culprit of secondary injury and TBI-induced neuronal damage and death. Ca2+ entry into the cells occurs via various types of voltage-dependent calcium channels (VDCCs). The aim of this study was to evaluate the involvement of Ca2+ entry via L-type CaV1.2 VDCCs in the processes of neuroinflammation and regeneration after brain injury. Methods: TBI was performed on male Wistar rats by sensorimotor cortex ablation (SCA) at the following coordinates: 2 mm anterior and 4 mm posterior to bregma, and 4 mm lateral from the midline. Temporal and cellular pattern of CaV1.2 expression was followed at different time points post-injury (2, 7, 14, 30 dpi) using double immunofluorescence staining with specific markers. Results: Upregulation of CaV1.2 expression was detected on reactive astrocytes and astrocytic processes that form glial scar around the lesion site, on subset of proinflammatory microglia/macrophages and neutrophils surrounding the lesion cavity. Interestingly, presence of CaV1.2+ cells was detected in the migratory pathway, consisted of DCX+ progenitors, extending from subventricular zone up to the lesion site. Furthermore, CaV1.2+/DCX+ newborn neurons were detected in subgranular layer of hippocampal dentate gyrus. Conclusions: We concluded that L-type CaV1.2 calcium channel has an important role in the regulation of processes of neuroinflammation, neuroregeneration and neurogenesis, pointing to the complexity of intercellular regulation of Ca2+ homeostasis after brain injury. Consequently, modulation of CaV1.2 channels expression may be potential target for the treatment of brain injury.
PB  - Belgrade: Serbian Neuroscience Society
T2  - Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia
T1  - L-type Calcium Channels Involvement in the Regulation of Neuroinflammation and Neuroregeneration After Brain Injury
SP  - 487
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_5989
ER  - 
@article{
author = "Dacić, Sanja and Božić, Iva and Jeremić, Rada and Bjelobaba, Ivana and Lavrnja, Irena and Savić, Danijela and Rakić, Ljubisav and Stojiljković, Mirjana and Peković, Sanja",
year = "2019",
abstract = "Aims: Traumatic brain injury (TBI) causes disruption in homeostasis of calcium ions (Ca2+), important second messenger considered as the major culprit of secondary injury and TBI-induced neuronal damage and death. Ca2+ entry into the cells occurs via various types of voltage-dependent calcium channels (VDCCs). The aim of this study was to evaluate the involvement of Ca2+ entry via L-type CaV1.2 VDCCs in the processes of neuroinflammation and regeneration after brain injury. Methods: TBI was performed on male Wistar rats by sensorimotor cortex ablation (SCA) at the following coordinates: 2 mm anterior and 4 mm posterior to bregma, and 4 mm lateral from the midline. Temporal and cellular pattern of CaV1.2 expression was followed at different time points post-injury (2, 7, 14, 30 dpi) using double immunofluorescence staining with specific markers. Results: Upregulation of CaV1.2 expression was detected on reactive astrocytes and astrocytic processes that form glial scar around the lesion site, on subset of proinflammatory microglia/macrophages and neutrophils surrounding the lesion cavity. Interestingly, presence of CaV1.2+ cells was detected in the migratory pathway, consisted of DCX+ progenitors, extending from subventricular zone up to the lesion site. Furthermore, CaV1.2+/DCX+ newborn neurons were detected in subgranular layer of hippocampal dentate gyrus. Conclusions: We concluded that L-type CaV1.2 calcium channel has an important role in the regulation of processes of neuroinflammation, neuroregeneration and neurogenesis, pointing to the complexity of intercellular regulation of Ca2+ homeostasis after brain injury. Consequently, modulation of CaV1.2 channels expression may be potential target for the treatment of brain injury.",
publisher = "Belgrade: Serbian Neuroscience Society",
journal = "Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia",
title = "L-type Calcium Channels Involvement in the Regulation of Neuroinflammation and Neuroregeneration After Brain Injury",
pages = "487",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_5989"
}
Dacić, S., Božić, I., Jeremić, R., Bjelobaba, I., Lavrnja, I., Savić, D., Rakić, L., Stojiljković, M.,& Peković, S.. (2019). L-type Calcium Channels Involvement in the Regulation of Neuroinflammation and Neuroregeneration After Brain Injury. in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia
Belgrade: Serbian Neuroscience Society., 487.
https://hdl.handle.net/21.15107/rcub_ibiss_5989
Dacić S, Božić I, Jeremić R, Bjelobaba I, Lavrnja I, Savić D, Rakić L, Stojiljković M, Peković S. L-type Calcium Channels Involvement in the Regulation of Neuroinflammation and Neuroregeneration After Brain Injury. in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia. 2019;:487.
https://hdl.handle.net/21.15107/rcub_ibiss_5989 .
Dacić, Sanja, Božić, Iva, Jeremić, Rada, Bjelobaba, Ivana, Lavrnja, Irena, Savić, Danijela, Rakić, Ljubisav, Stojiljković, Mirjana, Peković, Sanja, "L-type Calcium Channels Involvement in the Regulation of Neuroinflammation and Neuroregeneration After Brain Injury" in Book of Abstract: Federation of European Neuroscience Societies (FENS) Regional Meeting; 2019 Jul 10-13; Belgrade, Serbia (2019):487,
https://hdl.handle.net/21.15107/rcub_ibiss_5989 .