Atlagić, Kristina

Link to this page

Authority KeyName Variants
a414687a-72a6-46d3-80ad-3177b79d5735
  • Atlagić, Kristina (1)
Projects

Author's Bibliography

Novel research project – BioPhysFun for advancement of characterization of Trichoderma as biological control agent

Todorović, Nataša; Živić, Miroslav; Stevanović, Katarina; Pajić, Tanja; Cvetić Antić, Tijana; Atlagić, Kristina; Krmpot, Aleksandar

(Belgrade: University of Belgrade, Faculty of Biology, 2023)

TY  - CONF
AU  - Todorović, Nataša
AU  - Živić, Miroslav
AU  - Stevanović, Katarina
AU  - Pajić, Tanja
AU  - Cvetić Antić, Tijana
AU  - Atlagić, Kristina
AU  - Krmpot, Aleksandar
PY  - 2023
UR  - https://microbiology.bg.ac.rs/workshop2023/
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6248
AB  - The use of chemical fungicides is detrimental for soil and aquatic ecosystems.
Although highly effective, they raise concerns about impact on the environment.
Therefore, the need to reduce the use of chemical fungicides and protect
the soil and water, pose the challenge to find novel, eco-friendly, but also
more efficient, means of crop protection from phytopathogenic fungi. We are
aiming to utilize the native Trichoderma species, as biological control agent,
for controlling or eliminating the phytopathogenic fungi. Our research will be
based on cell nano-surgery of fungal cell wall using ultrashort laser pulses and
subsequent patch clamping on the released protoplast membrane. This will
enable the studies of activity and potency of specific class of antimicrobial short
peptides, peptaibols, released by Trichoderma species, which act by forming
ion channels in pathogen membrane as one of the main mechanisms of their
fungicide action. The result of this project will be the developed instrumentation
and unique method based on nano-surgery and patch clamp for studies of ionic
channels in native fungal plasma membrane. Testing a range of autochthonous
Trichoderma sp. isolates will enable formulation of their combinations that work
best. The selected Trichoderma strains with the highest standardized peptaibol
activity in specific combination of conditions, can be used as a starting point for
development of new, more potent biocontrol agents.
PB  - Belgrade: University of Belgrade, Faculty of Biology
C3  - Book of Abstracts: ICGEB Workshop: Trends in microbial solutions for sustainable agriculture; 2023 Sep13-15; Belgrade, Serbia
T1  - Novel research project – BioPhysFun for advancement of characterization of Trichoderma as biological control agent
SP  - 84
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6248
ER  - 
@conference{
author = "Todorović, Nataša and Živić, Miroslav and Stevanović, Katarina and Pajić, Tanja and Cvetić Antić, Tijana and Atlagić, Kristina and Krmpot, Aleksandar",
year = "2023",
abstract = "The use of chemical fungicides is detrimental for soil and aquatic ecosystems.
Although highly effective, they raise concerns about impact on the environment.
Therefore, the need to reduce the use of chemical fungicides and protect
the soil and water, pose the challenge to find novel, eco-friendly, but also
more efficient, means of crop protection from phytopathogenic fungi. We are
aiming to utilize the native Trichoderma species, as biological control agent,
for controlling or eliminating the phytopathogenic fungi. Our research will be
based on cell nano-surgery of fungal cell wall using ultrashort laser pulses and
subsequent patch clamping on the released protoplast membrane. This will
enable the studies of activity and potency of specific class of antimicrobial short
peptides, peptaibols, released by Trichoderma species, which act by forming
ion channels in pathogen membrane as one of the main mechanisms of their
fungicide action. The result of this project will be the developed instrumentation
and unique method based on nano-surgery and patch clamp for studies of ionic
channels in native fungal plasma membrane. Testing a range of autochthonous
Trichoderma sp. isolates will enable formulation of their combinations that work
best. The selected Trichoderma strains with the highest standardized peptaibol
activity in specific combination of conditions, can be used as a starting point for
development of new, more potent biocontrol agents.",
publisher = "Belgrade: University of Belgrade, Faculty of Biology",
journal = "Book of Abstracts: ICGEB Workshop: Trends in microbial solutions for sustainable agriculture; 2023 Sep13-15; Belgrade, Serbia",
title = "Novel research project – BioPhysFun for advancement of characterization of Trichoderma as biological control agent",
pages = "84",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6248"
}
Todorović, N., Živić, M., Stevanović, K., Pajić, T., Cvetić Antić, T., Atlagić, K.,& Krmpot, A.. (2023). Novel research project – BioPhysFun for advancement of characterization of Trichoderma as biological control agent. in Book of Abstracts: ICGEB Workshop: Trends in microbial solutions for sustainable agriculture; 2023 Sep13-15; Belgrade, Serbia
Belgrade: University of Belgrade, Faculty of Biology., 84.
https://hdl.handle.net/21.15107/rcub_ibiss_6248
Todorović N, Živić M, Stevanović K, Pajić T, Cvetić Antić T, Atlagić K, Krmpot A. Novel research project – BioPhysFun for advancement of characterization of Trichoderma as biological control agent. in Book of Abstracts: ICGEB Workshop: Trends in microbial solutions for sustainable agriculture; 2023 Sep13-15; Belgrade, Serbia. 2023;:84.
https://hdl.handle.net/21.15107/rcub_ibiss_6248 .
Todorović, Nataša, Živić, Miroslav, Stevanović, Katarina, Pajić, Tanja, Cvetić Antić, Tijana, Atlagić, Kristina, Krmpot, Aleksandar, "Novel research project – BioPhysFun for advancement of characterization of Trichoderma as biological control agent" in Book of Abstracts: ICGEB Workshop: Trends in microbial solutions for sustainable agriculture; 2023 Sep13-15; Belgrade, Serbia (2023):84,
https://hdl.handle.net/21.15107/rcub_ibiss_6248 .