Pešić, Milica

Link to this page

Authority KeyName Variants
orcid::0000-0002-9045-8239
  • Pešić, Milica (160)
Projects
Identification of predictive molecular markers for cancer progression, response to therapy and disease outcome Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200007 (University of Belgrade, Institute for Biological Research 'Siniša Stanković')
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200168 (University of Belgrade, Faculty of Chemistry) COST Action CM1106 (Chemical Approaches to Targeting Drug Resistance in Cancer Stem Cells)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) TargetedResponse - Functional diagnostics in non-small cell lung carcinoma: A new concept for the improvement of personalized therapy in Serbian patients
COST Action CM1407 (Challenging organic syntheses inspired by nature - from natural products chemistry to drug discovery) Complex diseases as a model system for phenotype modulation- structural and functional analysis of molecular biomarkers
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200042 (University of Belgrade, Institute of Molecular Genetics and Genetic Engineering) COST Action CA17104
Natural products of wild, cultivated and edible plants: structure and bioactivity determination COST Action CM1407
COST Actions CM1106 (Chemical Approaches to Targeting Drug Resistance in Cancer Stem Cells) ERA.Net RUS plus joint program grant RUS_ST2017-309
EU Research Potential (FP7-REGPOT- 2012-CT2012-31637-IMBRAIN) European Regional Development Fund (FEDER) and the Spanish MINECO (CTQ2014-56362- C2-1- P)
Finnish Cultural Foundation 190336 Fundação para a Ciência e a Tecnologia (SFRH/BPD/84634/2012)
Fundação para a Ciência e Tecnologia PTDC/MED-QUI/30591/2017 Fundação para a Ciência e Tecnologia SFRH/ BD/137671/2018
Fundação para a Ciência e Tecnologia UIDB/ 00100/2020 Fundação para a Ciência e Tecnologia UIDB/04567/2020
Fundação para a Ciência e Tecnologia UID/ DTP/04567/2019 Fundação para a Ciência e Tecnologia UIDP/00100/2020
Fundação para a Ciência e Tecnologia UIDP/04567/2020 Hungarian National Research Fund (OTKA K104385)
Interactions of natural products, their derivatives and coordination compounds with proteins and nucleic acids Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200135 (University of Belgrade, Faculty of Technology and Metallurgy)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200287 (Innovation Center of the Faculty of Technology and Metallurgy) Modulation of intracellular energy balance-controlling signalling pathways in therapy of cancer and neuro-immuno-endocrine disorders

Author's Bibliography

Novel hybrid compounds of sclareol and doxorubicin as potential anticancer nanotherapy for glioblastoma

Stepanović, Ana; Terzić Jovanović, Nataša; Korać, Aleksandra; Zlatović, Mario; Nikolić, Igor; Opsenica, Igor; Pešić, Milica

(Elsevier Masson SAS, 2024)

TY  - JOUR
AU  - Stepanović, Ana
AU  - Terzić Jovanović, Nataša
AU  - Korać, Aleksandra
AU  - Zlatović, Mario
AU  - Nikolić, Igor
AU  - Opsenica, Igor
AU  - Pešić, Milica
PY  - 2024
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6664
AB  - Two novel hybrid compounds, CON1 and CON2, have been developed by combining sclareol (SC) and doxorubicin (DOX) into a single molecular entity. These hybrid compounds have a 1:1 molar ratio of covalently linked SC and DOX. They have demonstrated promising anticancer properties, especially in glioblastoma cells, and have also shown potential in treating multidrug-resistant (MDR) cancer cells that express the P-glycoprotein (P-gp) membrane transporter. CON1 and CON2 form nanoparticles, as confirmed by Zetasizer, transmission electron microscopy (TEM), and chemical modeling. TEM also showed that CON1 and CON2 can be found in glioblastoma cells, specifically in the cytoplasm, different organelles, nucleus, and nucleolus. To examine the anticancer properties, the U87 glioblastoma cell line, and its corresponding multidrug-resistant U87-TxR cell line, as well as patient-derived astrocytoma grade 3 cells (ASC), were used, while normal human lung fibroblasts were used to determine the selectivity. CON1 and CON2 exhibited better resistance and selectivity profiles than DOX, showing less cytotoxicity, as evidenced by real-time cell analysis, DNA damage determination, cell death induction, mitochondrial respiration, and mitochondrial membrane depolarization studies. Cell cycle analysis and the β-galactosidase activity assay suggested that glioblastoma cells die by senescence following CON1 treatment. Overall, CON1 and CON2 showed great potential as they have better anticancer features than DOX. They are promising candidates for additional preclinical and clinical studies on glioblastoma.
PB  - Elsevier Masson SAS
T2  - Biomedicine & Pharmacotherapy
T1  - Novel hybrid compounds of sclareol and doxorubicin as potential anticancer nanotherapy for glioblastoma
VL  - 174
DO  - 10.1016/j.biopha.2024.116496
SP  - 116496
ER  - 
@article{
author = "Stepanović, Ana and Terzić Jovanović, Nataša and Korać, Aleksandra and Zlatović, Mario and Nikolić, Igor and Opsenica, Igor and Pešić, Milica",
year = "2024",
abstract = "Two novel hybrid compounds, CON1 and CON2, have been developed by combining sclareol (SC) and doxorubicin (DOX) into a single molecular entity. These hybrid compounds have a 1:1 molar ratio of covalently linked SC and DOX. They have demonstrated promising anticancer properties, especially in glioblastoma cells, and have also shown potential in treating multidrug-resistant (MDR) cancer cells that express the P-glycoprotein (P-gp) membrane transporter. CON1 and CON2 form nanoparticles, as confirmed by Zetasizer, transmission electron microscopy (TEM), and chemical modeling. TEM also showed that CON1 and CON2 can be found in glioblastoma cells, specifically in the cytoplasm, different organelles, nucleus, and nucleolus. To examine the anticancer properties, the U87 glioblastoma cell line, and its corresponding multidrug-resistant U87-TxR cell line, as well as patient-derived astrocytoma grade 3 cells (ASC), were used, while normal human lung fibroblasts were used to determine the selectivity. CON1 and CON2 exhibited better resistance and selectivity profiles than DOX, showing less cytotoxicity, as evidenced by real-time cell analysis, DNA damage determination, cell death induction, mitochondrial respiration, and mitochondrial membrane depolarization studies. Cell cycle analysis and the β-galactosidase activity assay suggested that glioblastoma cells die by senescence following CON1 treatment. Overall, CON1 and CON2 showed great potential as they have better anticancer features than DOX. They are promising candidates for additional preclinical and clinical studies on glioblastoma.",
publisher = "Elsevier Masson SAS",
journal = "Biomedicine & Pharmacotherapy",
title = "Novel hybrid compounds of sclareol and doxorubicin as potential anticancer nanotherapy for glioblastoma",
volume = "174",
doi = "10.1016/j.biopha.2024.116496",
pages = "116496"
}
Stepanović, A., Terzić Jovanović, N., Korać, A., Zlatović, M., Nikolić, I., Opsenica, I.,& Pešić, M.. (2024). Novel hybrid compounds of sclareol and doxorubicin as potential anticancer nanotherapy for glioblastoma. in Biomedicine & Pharmacotherapy
Elsevier Masson SAS., 174, 116496.
https://doi.org/10.1016/j.biopha.2024.116496
Stepanović A, Terzić Jovanović N, Korać A, Zlatović M, Nikolić I, Opsenica I, Pešić M. Novel hybrid compounds of sclareol and doxorubicin as potential anticancer nanotherapy for glioblastoma. in Biomedicine & Pharmacotherapy. 2024;174:116496.
doi:10.1016/j.biopha.2024.116496 .
Stepanović, Ana, Terzić Jovanović, Nataša, Korać, Aleksandra, Zlatović, Mario, Nikolić, Igor, Opsenica, Igor, Pešić, Milica, "Novel hybrid compounds of sclareol and doxorubicin as potential anticancer nanotherapy for glioblastoma" in Biomedicine & Pharmacotherapy, 174 (2024):116496,
https://doi.org/10.1016/j.biopha.2024.116496 . .
1

Coumarins-lipophilic cations conjugates: Efficient mitocans targeting carbonic anhydrases

Fuentes-Aguilar, Alma; González-Bakker, Aday; Jovanović, Mirna; Jovanović Stojanov, Sofija; Puerta, Adrián; Gargano, Adriana; Dinić, Jelena; Vega-Báez, José L.; Merino-Montiel, Penélope; Montiel-Smith, Sara; Alcaro, Stefano; Nocentini, Alessio; Pešić, Milica; Supuran, Claudiu T.; Padrón, José M.; Fernández-Bolaños, José G.; López, Óscar

(Elsevier Inc., 2024)

TY  - JOUR
AU  - Fuentes-Aguilar, Alma
AU  - González-Bakker, Aday
AU  - Jovanović, Mirna
AU  - Jovanović Stojanov, Sofija
AU  - Puerta, Adrián
AU  - Gargano, Adriana
AU  - Dinić, Jelena
AU  - Vega-Báez, José L.
AU  - Merino-Montiel, Penélope
AU  - Montiel-Smith, Sara
AU  - Alcaro, Stefano
AU  - Nocentini, Alessio
AU  - Pešić, Milica
AU  - Supuran, Claudiu T.
AU  - Padrón, José M.
AU  - Fernández-Bolaños, José G.
AU  - López, Óscar
PY  - 2024
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6550
AB  - Being aware of the need to develop more efficient therapies against cancer, herein we disclose an innovative
approach for the design of selective antiproliferative agents. We have accomplished the conjugation of a
coumarin fragment with lipophilic cations (triphenylphosphonium salts, guanidinium) for providing mitochondriotropic
agents that simultaneously target also carbonic anhydrases IX and XII, involved in the development
and progression of cancer. The new compounds prepared herein turned out to be strong inhibitors of
carbonic anhydrases IX and XII of human origin (low-to-mid nM range), also endowed with high selectivity,
exhibiting negligible activity towards cytosolic CA isoforms. Key interactions with the enzyme were analysed
using docking and molecular dynamics simulations.
Regarding their in vitro antiproliferative activities, an increase of the tether length connecting both pharmacophores
led to a clear improvement in potency, reaching the submicromolar range for the lead compounds, and
an outstanding selectivity towards tumour cell lines (S.I. up to >357). Cytotoxic effects were also analysed on
MDR cell lines under hypoxic and normoxic conditions. Chemoresistance exhibited by phosphonium salts, and
not by guanidines, against MDR cells was based on the fact that the former were found to be substrates of Pglycoprotein
(P-gp), the pump responsible for extruding foreign chemicals; this situation was reversed by
administrating tariquidar, a third generation P-gp inhibitor. Moreover, phosphonium salts provoked a profound
depolarization of mitochondria membranes from tumour cells, thus probably compromising their oxidative
metabolism.
To gain insight into the mode of action of title compounds, continuous live cell microscopy was employed;
interestingly, this technique revealed two different antiproliferative mechanisms for both families of mitocans.
Whereas phosphonium salts had a cytostatic effect, blocking cell division, guanidines led to cell death via
apoptosis.
PB  - Elsevier Inc.
T2  - Bioorganic Chemistry
T1  - Coumarins-lipophilic cations conjugates: Efficient mitocans targeting carbonic anhydrases
VL  - 145
DO  - 10.1016/j.bioorg.2024.107168
SP  - 107168
ER  - 
@article{
author = "Fuentes-Aguilar, Alma and González-Bakker, Aday and Jovanović, Mirna and Jovanović Stojanov, Sofija and Puerta, Adrián and Gargano, Adriana and Dinić, Jelena and Vega-Báez, José L. and Merino-Montiel, Penélope and Montiel-Smith, Sara and Alcaro, Stefano and Nocentini, Alessio and Pešić, Milica and Supuran, Claudiu T. and Padrón, José M. and Fernández-Bolaños, José G. and López, Óscar",
year = "2024",
abstract = "Being aware of the need to develop more efficient therapies against cancer, herein we disclose an innovative
approach for the design of selective antiproliferative agents. We have accomplished the conjugation of a
coumarin fragment with lipophilic cations (triphenylphosphonium salts, guanidinium) for providing mitochondriotropic
agents that simultaneously target also carbonic anhydrases IX and XII, involved in the development
and progression of cancer. The new compounds prepared herein turned out to be strong inhibitors of
carbonic anhydrases IX and XII of human origin (low-to-mid nM range), also endowed with high selectivity,
exhibiting negligible activity towards cytosolic CA isoforms. Key interactions with the enzyme were analysed
using docking and molecular dynamics simulations.
Regarding their in vitro antiproliferative activities, an increase of the tether length connecting both pharmacophores
led to a clear improvement in potency, reaching the submicromolar range for the lead compounds, and
an outstanding selectivity towards tumour cell lines (S.I. up to >357). Cytotoxic effects were also analysed on
MDR cell lines under hypoxic and normoxic conditions. Chemoresistance exhibited by phosphonium salts, and
not by guanidines, against MDR cells was based on the fact that the former were found to be substrates of Pglycoprotein
(P-gp), the pump responsible for extruding foreign chemicals; this situation was reversed by
administrating tariquidar, a third generation P-gp inhibitor. Moreover, phosphonium salts provoked a profound
depolarization of mitochondria membranes from tumour cells, thus probably compromising their oxidative
metabolism.
To gain insight into the mode of action of title compounds, continuous live cell microscopy was employed;
interestingly, this technique revealed two different antiproliferative mechanisms for both families of mitocans.
Whereas phosphonium salts had a cytostatic effect, blocking cell division, guanidines led to cell death via
apoptosis.",
publisher = "Elsevier Inc.",
journal = "Bioorganic Chemistry",
title = "Coumarins-lipophilic cations conjugates: Efficient mitocans targeting carbonic anhydrases",
volume = "145",
doi = "10.1016/j.bioorg.2024.107168",
pages = "107168"
}
Fuentes-Aguilar, A., González-Bakker, A., Jovanović, M., Jovanović Stojanov, S., Puerta, A., Gargano, A., Dinić, J., Vega-Báez, J. L., Merino-Montiel, P., Montiel-Smith, S., Alcaro, S., Nocentini, A., Pešić, M., Supuran, C. T., Padrón, J. M., Fernández-Bolaños, J. G.,& López, Ó.. (2024). Coumarins-lipophilic cations conjugates: Efficient mitocans targeting carbonic anhydrases. in Bioorganic Chemistry
Elsevier Inc.., 145, 107168.
https://doi.org/10.1016/j.bioorg.2024.107168
Fuentes-Aguilar A, González-Bakker A, Jovanović M, Jovanović Stojanov S, Puerta A, Gargano A, Dinić J, Vega-Báez JL, Merino-Montiel P, Montiel-Smith S, Alcaro S, Nocentini A, Pešić M, Supuran CT, Padrón JM, Fernández-Bolaños JG, López Ó. Coumarins-lipophilic cations conjugates: Efficient mitocans targeting carbonic anhydrases. in Bioorganic Chemistry. 2024;145:107168.
doi:10.1016/j.bioorg.2024.107168 .
Fuentes-Aguilar, Alma, González-Bakker, Aday, Jovanović, Mirna, Jovanović Stojanov, Sofija, Puerta, Adrián, Gargano, Adriana, Dinić, Jelena, Vega-Báez, José L., Merino-Montiel, Penélope, Montiel-Smith, Sara, Alcaro, Stefano, Nocentini, Alessio, Pešić, Milica, Supuran, Claudiu T., Padrón, José M., Fernández-Bolaños, José G., López, Óscar, "Coumarins-lipophilic cations conjugates: Efficient mitocans targeting carbonic anhydrases" in Bioorganic Chemistry, 145 (2024):107168,
https://doi.org/10.1016/j.bioorg.2024.107168 . .
4

LC-ESI QToF MS Non-Targeted Screening of Latex Extracts of Euphorbia seguieriana ssp. seguieriana Necker and Euphorbia cyparissias and Determination of Their Potential Anticancer Activity

Jadranin, Milka; Savić, Danica; Lupšić, Ema; Podolski-Renić, Ana; Pešić, Milica; Tešević, Vele; Milosavljević, Slobodan; Krstić, Gordana

(Basel: MDPI, 2023)

TY  - JOUR
AU  - Jadranin, Milka
AU  - Savić, Danica
AU  - Lupšić, Ema
AU  - Podolski-Renić, Ana
AU  - Pešić, Milica
AU  - Tešević, Vele
AU  - Milosavljević, Slobodan
AU  - Krstić, Gordana
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6557
AB  - Euphorbia seguieriana ssp. seguieriana Necker (ES) and Euphorbia cyparissias (EC) with a habitat in the Deliblato Sands were the subject of this examination. The latexes of these so far insufficiently investigated species of the Euphorbia genus are used in traditional medicine for the treatment of wounds and warts on the skin. To determine their chemical composition, non-targeted screening of the latexes' chloroform extracts was performed using liquid chromatography coupled with quadrupole time-of-flight mass spectrometry employing an electrospray ionization source (LC-ESI QTOF MS). The analysis of the obtained results showed that the latexes of ES and EC represent rich sources of diterpenes, tentatively identified as jatrophanes, ingenanes, tiglianes, myrsinanes, premyrsinanes, and others. Examination of the anticancer activity of the ES and EC latex extracts showed that both extracts significantly inhibited the growth of the non-small cell lung carcinoma NCI-H460 and glioblastoma U87 cell lines as well as of their corresponding multi-drug resistant (MDR) cell lines, NCI-H460/R and U87-TxR. The obtained results also revealed that the ES and EC extracts inhibited the function of P-glycoprotein (P-gp) in MDR cancer cells, whose overexpression is one of the main mechanisms underlying MDR.
PB  - Basel: MDPI
T2  - Plants
T1  - LC-ESI QToF MS Non-Targeted Screening of Latex Extracts of Euphorbia seguieriana ssp. seguieriana Necker and Euphorbia cyparissias and Determination of Their Potential Anticancer Activity
IS  - 24
VL  - 12
DO  - 10.3390/plants12244181
SP  - 4181
ER  - 
@article{
author = "Jadranin, Milka and Savić, Danica and Lupšić, Ema and Podolski-Renić, Ana and Pešić, Milica and Tešević, Vele and Milosavljević, Slobodan and Krstić, Gordana",
year = "2023",
abstract = "Euphorbia seguieriana ssp. seguieriana Necker (ES) and Euphorbia cyparissias (EC) with a habitat in the Deliblato Sands were the subject of this examination. The latexes of these so far insufficiently investigated species of the Euphorbia genus are used in traditional medicine for the treatment of wounds and warts on the skin. To determine their chemical composition, non-targeted screening of the latexes' chloroform extracts was performed using liquid chromatography coupled with quadrupole time-of-flight mass spectrometry employing an electrospray ionization source (LC-ESI QTOF MS). The analysis of the obtained results showed that the latexes of ES and EC represent rich sources of diterpenes, tentatively identified as jatrophanes, ingenanes, tiglianes, myrsinanes, premyrsinanes, and others. Examination of the anticancer activity of the ES and EC latex extracts showed that both extracts significantly inhibited the growth of the non-small cell lung carcinoma NCI-H460 and glioblastoma U87 cell lines as well as of their corresponding multi-drug resistant (MDR) cell lines, NCI-H460/R and U87-TxR. The obtained results also revealed that the ES and EC extracts inhibited the function of P-glycoprotein (P-gp) in MDR cancer cells, whose overexpression is one of the main mechanisms underlying MDR.",
publisher = "Basel: MDPI",
journal = "Plants",
title = "LC-ESI QToF MS Non-Targeted Screening of Latex Extracts of Euphorbia seguieriana ssp. seguieriana Necker and Euphorbia cyparissias and Determination of Their Potential Anticancer Activity",
number = "24",
volume = "12",
doi = "10.3390/plants12244181",
pages = "4181"
}
Jadranin, M., Savić, D., Lupšić, E., Podolski-Renić, A., Pešić, M., Tešević, V., Milosavljević, S.,& Krstić, G.. (2023). LC-ESI QToF MS Non-Targeted Screening of Latex Extracts of Euphorbia seguieriana ssp. seguieriana Necker and Euphorbia cyparissias and Determination of Their Potential Anticancer Activity. in Plants
Basel: MDPI., 12(24), 4181.
https://doi.org/10.3390/plants12244181
Jadranin M, Savić D, Lupšić E, Podolski-Renić A, Pešić M, Tešević V, Milosavljević S, Krstić G. LC-ESI QToF MS Non-Targeted Screening of Latex Extracts of Euphorbia seguieriana ssp. seguieriana Necker and Euphorbia cyparissias and Determination of Their Potential Anticancer Activity. in Plants. 2023;12(24):4181.
doi:10.3390/plants12244181 .
Jadranin, Milka, Savić, Danica, Lupšić, Ema, Podolski-Renić, Ana, Pešić, Milica, Tešević, Vele, Milosavljević, Slobodan, Krstić, Gordana, "LC-ESI QToF MS Non-Targeted Screening of Latex Extracts of Euphorbia seguieriana ssp. seguieriana Necker and Euphorbia cyparissias and Determination of Their Potential Anticancer Activity" in Plants, 12, no. 24 (2023):4181,
https://doi.org/10.3390/plants12244181 . .

The anticancer effects of triterpene saponin deglucocyclamine isolated from Cyclamen hederifolium

Pajović, Milica; Stanković Jeremić, Jovana; Jovanović Stojanov, Sofija; Gođevac, Dejan; Pešić, Milica; Podolski-Renić, Ana

(Belgrade: Serbian Association for Cancer Research, 2023)

TY  - CONF
AU  - Pajović, Milica
AU  - Stanković Jeremić, Jovana
AU  - Jovanović Stojanov, Sofija
AU  - Gođevac, Dejan
AU  - Pešić, Milica
AU  - Podolski-Renić, Ana
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6483
AB  - Background: Following the traditional Serbian use of cyclamen tubers in the treatment of the most aggressive forms of lung cancer, we performed methanolic extraction of fresh tubers of Cyclamen hederifolium to isolate and identify bioactive constituents. The triterpene saponin deglucocyclamine (SDGC) was identified as a major constituent of cyclamen extract, and its anticancer effects were studied using a panel of NCI-60 cell lines and primary cell cultures obtained from patients with non-small cell lung cancer (NSCLC). Material and Methods: The cyclamen tubers were ground, lyophilized, and extracted with methanol at room temperature with the use of an ultrasonic bath. The part of the methanol extract was further fractionated by dissolving in H2O and then washed with CH2Cl2. The water layer was extracted with n-BuOH. The butanol extract was fractionated by isocratic CC on silica gel with CHCl3−MeOH−H2O eluent. This resulted in the isolation of triterpene (SDGC, C52H84O22) which was identified using 1D and 2D NMR spectra. SDGC was tested at 10 µM against a panel of NCI-60 cancer cell lines and then over a concentration range of 0.01-100 µM using the sulforhodamine B (SRB) assay. SDGC was also tested in the concentration range of 0.01-10 µM against 5 primary patient-derived NSCLC cell cultures (2 stage IB, 2 stage IIA, and 1 stage IIB) using the MTT assay. Cell death analysis was performed in patient-derived NSCLC cells using annexin/propidium iodide staining and flow cytometry. Results: SDGC at 10 µM after 72 h significantly inhibited cell growth of all tested cancer cell lines in the NCI-60 panel. Therefore, SDGC IC50 values were evaluated across the entire NCI-60 panel and ranged from 600 nM to 1 µM. In patient-derived NSCLC cells, SDGC IC50 values were between 1.3 µM and 4.6 µM after 72 h of treatment. SDGC at 10 µM induced late apoptosis and necrosis, significantly reducing the percentage of viable cells to 40% after 48 h. At the same concentration, cisplatin was ineffective against patient-derived NSCLC cells. Conclusions: The triterpene saponin deglucocyclamine (SDGC), whose anticancer effects have not been studied before, showed promising results against NSCLC, melanoma, colon, breast, ovarian, kidney, prostate, and CNS cancer cell lines, as well as patient-derived NSCLC cells. Further more detailed studies of SDGC at the cellular and molecular level are planned.
PB  - Belgrade: Serbian Association for Cancer Research
C3  - Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia
T1  - The anticancer effects of triterpene saponin deglucocyclamine isolated from Cyclamen hederifolium
SP  - 61
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6483
ER  - 
@conference{
author = "Pajović, Milica and Stanković Jeremić, Jovana and Jovanović Stojanov, Sofija and Gođevac, Dejan and Pešić, Milica and Podolski-Renić, Ana",
year = "2023",
abstract = "Background: Following the traditional Serbian use of cyclamen tubers in the treatment of the most aggressive forms of lung cancer, we performed methanolic extraction of fresh tubers of Cyclamen hederifolium to isolate and identify bioactive constituents. The triterpene saponin deglucocyclamine (SDGC) was identified as a major constituent of cyclamen extract, and its anticancer effects were studied using a panel of NCI-60 cell lines and primary cell cultures obtained from patients with non-small cell lung cancer (NSCLC). Material and Methods: The cyclamen tubers were ground, lyophilized, and extracted with methanol at room temperature with the use of an ultrasonic bath. The part of the methanol extract was further fractionated by dissolving in H2O and then washed with CH2Cl2. The water layer was extracted with n-BuOH. The butanol extract was fractionated by isocratic CC on silica gel with CHCl3−MeOH−H2O eluent. This resulted in the isolation of triterpene (SDGC, C52H84O22) which was identified using 1D and 2D NMR spectra. SDGC was tested at 10 µM against a panel of NCI-60 cancer cell lines and then over a concentration range of 0.01-100 µM using the sulforhodamine B (SRB) assay. SDGC was also tested in the concentration range of 0.01-10 µM against 5 primary patient-derived NSCLC cell cultures (2 stage IB, 2 stage IIA, and 1 stage IIB) using the MTT assay. Cell death analysis was performed in patient-derived NSCLC cells using annexin/propidium iodide staining and flow cytometry. Results: SDGC at 10 µM after 72 h significantly inhibited cell growth of all tested cancer cell lines in the NCI-60 panel. Therefore, SDGC IC50 values were evaluated across the entire NCI-60 panel and ranged from 600 nM to 1 µM. In patient-derived NSCLC cells, SDGC IC50 values were between 1.3 µM and 4.6 µM after 72 h of treatment. SDGC at 10 µM induced late apoptosis and necrosis, significantly reducing the percentage of viable cells to 40% after 48 h. At the same concentration, cisplatin was ineffective against patient-derived NSCLC cells. Conclusions: The triterpene saponin deglucocyclamine (SDGC), whose anticancer effects have not been studied before, showed promising results against NSCLC, melanoma, colon, breast, ovarian, kidney, prostate, and CNS cancer cell lines, as well as patient-derived NSCLC cells. Further more detailed studies of SDGC at the cellular and molecular level are planned.",
publisher = "Belgrade: Serbian Association for Cancer Research",
journal = "Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia",
title = "The anticancer effects of triterpene saponin deglucocyclamine isolated from Cyclamen hederifolium",
pages = "61",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6483"
}
Pajović, M., Stanković Jeremić, J., Jovanović Stojanov, S., Gođevac, D., Pešić, M.,& Podolski-Renić, A.. (2023). The anticancer effects of triterpene saponin deglucocyclamine isolated from Cyclamen hederifolium. in Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia
Belgrade: Serbian Association for Cancer Research., 61.
https://hdl.handle.net/21.15107/rcub_ibiss_6483
Pajović M, Stanković Jeremić J, Jovanović Stojanov S, Gođevac D, Pešić M, Podolski-Renić A. The anticancer effects of triterpene saponin deglucocyclamine isolated from Cyclamen hederifolium. in Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia. 2023;:61.
https://hdl.handle.net/21.15107/rcub_ibiss_6483 .
Pajović, Milica, Stanković Jeremić, Jovana, Jovanović Stojanov, Sofija, Gođevac, Dejan, Pešić, Milica, Podolski-Renić, Ana, "The anticancer effects of triterpene saponin deglucocyclamine isolated from Cyclamen hederifolium" in Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia (2023):61,
https://hdl.handle.net/21.15107/rcub_ibiss_6483 .

Immunofluorescence-Based Assay for High-Throughput Analysis of Multidrug Resistance Markers in Non-Small Cell Lung Carcinoma Patient-Derived Cells

Dinić, Jelena; Podolski-Renić, Ana; Dragoj, Miodrag; Jovanović Stojanov, Sofija; Stepanović, Ana; Lupšić, Ema; Pajović, Milica; Jovanović, Mirna; Petrović Rodić, Dušica; Marić, Dragana; Ercegovac, Maja; Pešić, Milica

(Basel: MDPI, 2023)

TY  - JOUR
AU  - Dinić, Jelena
AU  - Podolski-Renić, Ana
AU  - Dragoj, Miodrag
AU  - Jovanović Stojanov, Sofija
AU  - Stepanović, Ana
AU  - Lupšić, Ema
AU  - Pajović, Milica
AU  - Jovanović, Mirna
AU  - Petrović Rodić, Dušica
AU  - Marić, Dragana
AU  - Ercegovac, Maja
AU  - Pešić, Milica
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6448
AB  - Lung cancer remains the leading cause of cancer death globally, with non-small cell lung cancer (NSCLC) accounting for the majority of cases. Multidrug resistance (MDR), often caused by ATP-binding cassette (ABC) transporters, represents a significant obstacle in the treatment of NSCLC. While genetic profiling has an important role in personalized therapy, functional assays that measure cellular responses to drugs are gaining in importance. We developed an automated microplate-based immunofluorescence assay for the evaluation of MDR markers ABCB1, ABCC1, and ABCG2 in cells obtained from NSCLC patients through high-content imaging and image analysis, as part of a functional diagnostic approach. This assay effectively discriminated cancer from non-cancer cells within mixed cultures, which is vital for accurate assessment of changes in MDR marker expression in different cell populations in response to anticancer drugs. Validation was performed using established drug-sensitive (NCI-H460) and drug-resistant (NCI-H460/R) NSCLC cell lines, demonstrating the assay’s capacity to distinguish and evaluate different MDR profiles. The obtained results revealed wide-ranging effects of various chemotherapeutic agents on MDR marker expression in different patient-derived NSCLC cultures, emphasizing the need for MDR diagnostics in NSCLC. In addition to being a valuable tool for assessing drug effects on MDR markers in different cell populations, the assay can complement genetic profiling to optimize treatment. Further assay adaptations may extend its application to other cancer types, improving treatment efficacy while minimizing the development of resistance.
PB  - Basel: MDPI
T2  - Diagnostics
T1  - Immunofluorescence-Based Assay for High-Throughput Analysis of Multidrug Resistance Markers in Non-Small Cell Lung Carcinoma Patient-Derived Cells
IS  - 24
VL  - 13
DO  - 10.3390/diagnostics13243617
SP  - 3617
ER  - 
@article{
author = "Dinić, Jelena and Podolski-Renić, Ana and Dragoj, Miodrag and Jovanović Stojanov, Sofija and Stepanović, Ana and Lupšić, Ema and Pajović, Milica and Jovanović, Mirna and Petrović Rodić, Dušica and Marić, Dragana and Ercegovac, Maja and Pešić, Milica",
year = "2023",
abstract = "Lung cancer remains the leading cause of cancer death globally, with non-small cell lung cancer (NSCLC) accounting for the majority of cases. Multidrug resistance (MDR), often caused by ATP-binding cassette (ABC) transporters, represents a significant obstacle in the treatment of NSCLC. While genetic profiling has an important role in personalized therapy, functional assays that measure cellular responses to drugs are gaining in importance. We developed an automated microplate-based immunofluorescence assay for the evaluation of MDR markers ABCB1, ABCC1, and ABCG2 in cells obtained from NSCLC patients through high-content imaging and image analysis, as part of a functional diagnostic approach. This assay effectively discriminated cancer from non-cancer cells within mixed cultures, which is vital for accurate assessment of changes in MDR marker expression in different cell populations in response to anticancer drugs. Validation was performed using established drug-sensitive (NCI-H460) and drug-resistant (NCI-H460/R) NSCLC cell lines, demonstrating the assay’s capacity to distinguish and evaluate different MDR profiles. The obtained results revealed wide-ranging effects of various chemotherapeutic agents on MDR marker expression in different patient-derived NSCLC cultures, emphasizing the need for MDR diagnostics in NSCLC. In addition to being a valuable tool for assessing drug effects on MDR markers in different cell populations, the assay can complement genetic profiling to optimize treatment. Further assay adaptations may extend its application to other cancer types, improving treatment efficacy while minimizing the development of resistance.",
publisher = "Basel: MDPI",
journal = "Diagnostics",
title = "Immunofluorescence-Based Assay for High-Throughput Analysis of Multidrug Resistance Markers in Non-Small Cell Lung Carcinoma Patient-Derived Cells",
number = "24",
volume = "13",
doi = "10.3390/diagnostics13243617",
pages = "3617"
}
Dinić, J., Podolski-Renić, A., Dragoj, M., Jovanović Stojanov, S., Stepanović, A., Lupšić, E., Pajović, M., Jovanović, M., Petrović Rodić, D., Marić, D., Ercegovac, M.,& Pešić, M.. (2023). Immunofluorescence-Based Assay for High-Throughput Analysis of Multidrug Resistance Markers in Non-Small Cell Lung Carcinoma Patient-Derived Cells. in Diagnostics
Basel: MDPI., 13(24), 3617.
https://doi.org/10.3390/diagnostics13243617
Dinić J, Podolski-Renić A, Dragoj M, Jovanović Stojanov S, Stepanović A, Lupšić E, Pajović M, Jovanović M, Petrović Rodić D, Marić D, Ercegovac M, Pešić M. Immunofluorescence-Based Assay for High-Throughput Analysis of Multidrug Resistance Markers in Non-Small Cell Lung Carcinoma Patient-Derived Cells. in Diagnostics. 2023;13(24):3617.
doi:10.3390/diagnostics13243617 .
Dinić, Jelena, Podolski-Renić, Ana, Dragoj, Miodrag, Jovanović Stojanov, Sofija, Stepanović, Ana, Lupšić, Ema, Pajović, Milica, Jovanović, Mirna, Petrović Rodić, Dušica, Marić, Dragana, Ercegovac, Maja, Pešić, Milica, "Immunofluorescence-Based Assay for High-Throughput Analysis of Multidrug Resistance Markers in Non-Small Cell Lung Carcinoma Patient-Derived Cells" in Diagnostics, 13, no. 24 (2023):3617,
https://doi.org/10.3390/diagnostics13243617 . .
1

High-throughput screening of multidrug-resistance markers in non-small cell lung carcinoma patient-derived cells - contribution to personalized treatment

Jovanović Stojanov, Sofija; Podolski-Renić, Ana; Dinić, Jelena; Dragoj, Miodrag; Jovanović, Mirna; Stepanović, Ana; Lupšić, Ema; Pajović, Milica; Petrović Rodić, Dušica; Marić, Dragana; Ercegovac, Maja; Pešić, Milica

(Belgrade: Serbian Association for Cancer Research Belgrade, Serbia, 2023)

TY  - CONF
AU  - Jovanović Stojanov, Sofija
AU  - Podolski-Renić, Ana
AU  - Dinić, Jelena
AU  - Dragoj, Miodrag
AU  - Jovanović, Mirna
AU  - Stepanović, Ana
AU  - Lupšić, Ema
AU  - Pajović, Milica
AU  - Petrović Rodić, Dušica
AU  - Marić, Dragana
AU  - Ercegovac, Maja
AU  - Pešić, Milica
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6449
AB  - Introduction

Cancer remains one of the leading causes of death globally, despite significant advancements in cancer treatment over the past decades. A major challenge in cancer therapy is multidrug resistance (MDR), which is responsible for over 90% of deaths in cancer patients receiving both traditional chemotherapeutics and novel targeted drugs. MDR arises from various mechanisms, including elevated metabolism of foreign substances (xenobiotics), enhanced drug efflux from cells, increased DNA repair capacity, and genetic factors such as gene mutations, amplifications, and epigenetic alterations.1 It is categorized into two types: primary resistance, which exists before initiating therapy and acquired resistance, which develops after the initial treatment. The incidence of primary resistance to cancer treatment can be remarkably high (up to 60%) in certain cancer types.2 Furthermore, the majority of cancer patients are likely to develop resistance at some point during treatment.
Although, the various underlying mechanism for drug resistance development in tumors have been highlighted in the past years, enhanced drug efflux, caused by increased expression of ATP-binding cassette (ABC) membrane transporters, is one of the major contributors to MDR. Among the known ABC transporters, three members, P-glycoprotein (P-gp, encoded by the MDR1 gene), Multidrug Resistance-Associated Protein 1 (MRP1), and Breast Cancer Resistance Protein - BCRP or Placenta ABC Protein - ABC-P), have been linked to chemoresistance to various drugs. P-gp and BCRP regulate various chemical compounds' distribution, absorption, and excretion. However, their overexpression can interfere with drug administration, reducing drug bioavailability and intracellular concentration.3 There is a significant correlation between increased expression of P-gp in cancer cells and enhanced resistance to drugs like paclitaxel, etoposide, DOX, and vinblastine. Overexpression of P-gp has been observed in approximately 50% of all human cancers. While in some tumor types, such as lung, liver, kidney, rectum, and colon, increased P-gp expression has been observed before chemotherapy treatment, in others, such as acute lymphoblastic leukemia and acute myeloid leukemia, it has been noticed after exposure to anticancer agents.4 Overexpression of P-gp and BCRP has been associated with poor clinical response and MDR in patients. Therefore, the pharmacological inhibition of the efflux function of these transporters was pursued as a strategy to overcome resistance to anticancer drugs in the clinic. However, despite showing high efficacy in preclinical studies, none of the P-gp inhibitors have been approved yet by the U.S. Food and Drug Administration (FDA) for clinical use in cancer treatment.5
Taking into account all the above mentioned it is clear that screening and assessment of MDR markers in patient’s cancer cells could play an important role in personalized treatment approaches. Expressing MDR markers in cancer cells could predict a patient's response to specific drugs or drug classes, allowing the selection of the most effective treatment regimen and avoiding using drugs that are likely ineffective due to resistance. Moreover, the presence of MDR markers associated with resistance to multiple drugs could guide the design of personalized treatment regimens with a combination of drugs that have a higher chance of overcoming the patient's specific drug resistance profile. Monitoring the expression level of MDR markers during the course of treatment could provide valuable insights into the development of drug resistance, and would allow healthcare professionals to adjust the treatment plan if drug resistance emerges, ensuring that the patient receives the most effective therapy.
Our team established a promising method for high-throughput screening for MDR markers in non-small cell lung carcinoma (NSCLC) patient-derived cells, which implies pharmacological screening and an ex vivo experimental setting. It enables gaining valuable insights into patient characteristics and drug responses that may not be apparent through conventional sequencing or clinical trials. This strategy has the potential to improve personalized cancer treatment approaches, offering patients more effective and tailored therapies based on their individual characteristics and drug responses.

Methodology

Patient-derived NSCLC cell cultures 
Samples from NSCLC patients are collected from the Thoracic Surgery Clinic at the Clinical Center of Serbia. The histological grade is determined by histopathological analysis of the surgical specimen. Collected NSCLC samples are used to establish patient-derived NSCLC cell cultures comprising cancer and stromal cells (mainly fibroblasts). It is well known that the sensitivity of cancer cells depends on their interaction with the microenvironment including neighboring cells.6 The primary cultures obtained from the samples are grown for 1-2 weeks prior to drug testing.

Fluorescence immunoassay for high-throughput identification of cancers cells and MDR markers in NSCLC patient-derived cell cultures
The fluorescence immunoassay utilizes antibodies against CK8 and CK18, which are expressed in nearly all carcinomas of epithelial origin, to identify epithelial cancer cells. Co-staining of CK8/18 with Hoechst 33342 allows the identification and quantification of two types of cells: CK8/18-negative (non-cancer cells) and CK8/18-positive (cancer cells). This immunoassay is also used to identify and quantify changes in the expression of MDR markers ABCB1, ABCC1, and ABCG2 both in cancer and non-cancer cells in primary NSCLC cultures that may occur during chemotherapy and tyrosine kinase inhibitors (TKIs) treatment.7 Co-staining of ABCB1, ABCC1, and ABCG2 with CK8/18 and Hoechst 33342 enables the identification of four types of cells in NSCLC primary cell cultures: drug-sensitive non-cancer cells, MDR non-cancer cells, drug-sensitive cancer cells, and MDR cancer cells.
For validation of the immunoassay patient-derived cells are seeded in 384 well-plates and treated with 5 different concentrations of 8 chemotherapeutics known to induce overexpression of MDR markers (cisplatin, carboplatin, paclitaxel, docetaxel, gemcitabine, vinorelbine, etoposide, and pemetrexed), allowing the ex vivo evaluation of NSCLC MDR profile. Validated immunoassay is further used to evaluate the expression of MDR markers ABCB1, ABCC1, and ABCG2 (MDR profile) in patient-derived cell cultures after treatment with a panel of 10 TKIs (erlotinib, gefitinib, afatinib, osimertinib crizotinib, alectinib, ceritinib, nintedanib, dabrafenib, and trametinib), allowing evaluation of MDR profile in both cancer and stromal cells. The sensitivity of cancer and stromal cells for each individual NSCLC patient to a particular TKI is assessed using a discriminative immunoassay employing CK8/18 antibodies cocktail.
Whole Exome Sequencing (WES)
	Paired patient samples (normal and tumor) were subjected to a DNA isolation procedure using Qiagen genomic DNA extraction kit, recommended for NGS applications. Isolated DNA samples underwent WES analyses by Novogene Company. Bioinformatics and statistics tools were employed to define clinically relevant gene alterations in MDR markers ABCB1, ABCC1, and ABCG2.

Results


In order to understand how NSCLC patient cells respond to chemotherapy and targeted therapy, ex vivo testing was performed. The maximum concentration of drugs in human plasma that the patient is exposed to during therapy (Cmax) was used as an upper limit for drug concentration during testing, with four lower concentrations also used. The results showed that patient-derived cells display individual differences in sensitivity to both chemo and targeted therapeutics. IC50 values, which indicate sensitivity, fell within the concentration range for most chemotherapeutics. Only some chemotherapeutics (cisplatin, etoposide, docetaxel, gemcitabine, and pemetrexed) showed selectivity towards cancer cells with lower IC50 values in cancer than in stromal cells. Among TKIs, only erlotinib was efficient with IC50 below Cmax, showing selectivity towards cancer cells in all investigated patient-derived cell cultures. A number of chemotherapeutics increased the expression of ABCB1, ABCC1, and ABCG2, while TKIs afatinib, alectinib, ceritinib, osimertinib, and trametinib did not affect these transporters. Some TKIs increased the expression of ABC transporters, with nintedanib showing the potential to select cancer cells with higher MDR marker expression. WES showed significant ABCC1 gene instability, while ABCB1 had many SNPs with clinical relevance for drug response. ABCG2 had the lowest number of SNPs, but intron deletions were still identified. However, the clinical significance of these changes is currently unknown.

Conclusion

Screening for multidrug-resistance markers through a high-throughput process provides valuable information about how a patient will respond to therapy. This process can identify if the MDR phenotype is already present or if it can be induced with targeted or chemotherapy. Based on this information, it can provide recommendations for a patient's mono- and combined therapy. This methodology has the potential to greatly impact cancer treatment strategies and improve patient outcomes by tailoring therapies to individual patient profiles. Ultimately, this will benefit a wider range of patients with non-small cell lung carcinoma and other cancers, as it leads to more precise and targeted treatment selections.


References
1.	Bukowski, K., Kciuk, M., & Kontek, R. (2020). Mechanisms of Multidrug Resistance in Cancer Chemotherapy. International Journal of Molecular Sciences, 21(9). 
2.	Sharma, P., Hu-Lieskovan, S., Wargo, J. A., & Ribas, A. (2017). Primary, Adaptive and Acquired Resistance to Cancer Immunotherapy. Cell, 168(4), 707. 
3.	Wang, J. Q., Wu, Z. X., Yang, Y., Teng, Q. X., Li, Y. D., Lei, Z. N., Jani, K. A., Kaushal, N., & Chen, Z. S. (2021). ATP-binding cassette (ABC) transporters in cancer: A review of recent updates. Journal of Evidence-Based Medicine, 14(3), 232–256. 
4.	Wang, X., Zhang, H., & Chen, X. (n.d.). Review Open Access Cancer Drug Resistance Drug resistance and combating drug resistance in cancer.
5.	Nanayakkara, A. K., Follit, C. A., Chen, G., Williams, N. S., Vogel, P. D., & Wise, J. G. (n.d.). Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells OPEN. 
6.	 Sazeides, C., & Le, A. (2021). Metabolic Relationship Between Cancer-Associated Fibroblasts and Cancer Cells. Advances in Experimental Medicine and Biology, 1311, 189–204. 
7.	Beretta, G. L., Cassinelli, G., Pennati, M., Zuco, V., & Gatti, L. (2017). Overcoming ABC transporter-mediated multidrug resistance: The dual role of tyrosine kinase inhibitors as multitargeting agents. European Journal of Medicinal Chemistry, 142, 271–289.
PB  - Belgrade: Serbian Association for Cancer Research Belgrade, Serbia
C3  - Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia
T1  - High-throughput screening of multidrug-resistance markers in non-small cell lung carcinoma patient-derived cells - contribution to personalized treatment
SP  - 37
EP  - 39
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6449
ER  - 
@conference{
author = "Jovanović Stojanov, Sofija and Podolski-Renić, Ana and Dinić, Jelena and Dragoj, Miodrag and Jovanović, Mirna and Stepanović, Ana and Lupšić, Ema and Pajović, Milica and Petrović Rodić, Dušica and Marić, Dragana and Ercegovac, Maja and Pešić, Milica",
year = "2023",
abstract = "Introduction

Cancer remains one of the leading causes of death globally, despite significant advancements in cancer treatment over the past decades. A major challenge in cancer therapy is multidrug resistance (MDR), which is responsible for over 90% of deaths in cancer patients receiving both traditional chemotherapeutics and novel targeted drugs. MDR arises from various mechanisms, including elevated metabolism of foreign substances (xenobiotics), enhanced drug efflux from cells, increased DNA repair capacity, and genetic factors such as gene mutations, amplifications, and epigenetic alterations.1 It is categorized into two types: primary resistance, which exists before initiating therapy and acquired resistance, which develops after the initial treatment. The incidence of primary resistance to cancer treatment can be remarkably high (up to 60%) in certain cancer types.2 Furthermore, the majority of cancer patients are likely to develop resistance at some point during treatment.
Although, the various underlying mechanism for drug resistance development in tumors have been highlighted in the past years, enhanced drug efflux, caused by increased expression of ATP-binding cassette (ABC) membrane transporters, is one of the major contributors to MDR. Among the known ABC transporters, three members, P-glycoprotein (P-gp, encoded by the MDR1 gene), Multidrug Resistance-Associated Protein 1 (MRP1), and Breast Cancer Resistance Protein - BCRP or Placenta ABC Protein - ABC-P), have been linked to chemoresistance to various drugs. P-gp and BCRP regulate various chemical compounds' distribution, absorption, and excretion. However, their overexpression can interfere with drug administration, reducing drug bioavailability and intracellular concentration.3 There is a significant correlation between increased expression of P-gp in cancer cells and enhanced resistance to drugs like paclitaxel, etoposide, DOX, and vinblastine. Overexpression of P-gp has been observed in approximately 50% of all human cancers. While in some tumor types, such as lung, liver, kidney, rectum, and colon, increased P-gp expression has been observed before chemotherapy treatment, in others, such as acute lymphoblastic leukemia and acute myeloid leukemia, it has been noticed after exposure to anticancer agents.4 Overexpression of P-gp and BCRP has been associated with poor clinical response and MDR in patients. Therefore, the pharmacological inhibition of the efflux function of these transporters was pursued as a strategy to overcome resistance to anticancer drugs in the clinic. However, despite showing high efficacy in preclinical studies, none of the P-gp inhibitors have been approved yet by the U.S. Food and Drug Administration (FDA) for clinical use in cancer treatment.5
Taking into account all the above mentioned it is clear that screening and assessment of MDR markers in patient’s cancer cells could play an important role in personalized treatment approaches. Expressing MDR markers in cancer cells could predict a patient's response to specific drugs or drug classes, allowing the selection of the most effective treatment regimen and avoiding using drugs that are likely ineffective due to resistance. Moreover, the presence of MDR markers associated with resistance to multiple drugs could guide the design of personalized treatment regimens with a combination of drugs that have a higher chance of overcoming the patient's specific drug resistance profile. Monitoring the expression level of MDR markers during the course of treatment could provide valuable insights into the development of drug resistance, and would allow healthcare professionals to adjust the treatment plan if drug resistance emerges, ensuring that the patient receives the most effective therapy.
Our team established a promising method for high-throughput screening for MDR markers in non-small cell lung carcinoma (NSCLC) patient-derived cells, which implies pharmacological screening and an ex vivo experimental setting. It enables gaining valuable insights into patient characteristics and drug responses that may not be apparent through conventional sequencing or clinical trials. This strategy has the potential to improve personalized cancer treatment approaches, offering patients more effective and tailored therapies based on their individual characteristics and drug responses.

Methodology

Patient-derived NSCLC cell cultures 
Samples from NSCLC patients are collected from the Thoracic Surgery Clinic at the Clinical Center of Serbia. The histological grade is determined by histopathological analysis of the surgical specimen. Collected NSCLC samples are used to establish patient-derived NSCLC cell cultures comprising cancer and stromal cells (mainly fibroblasts). It is well known that the sensitivity of cancer cells depends on their interaction with the microenvironment including neighboring cells.6 The primary cultures obtained from the samples are grown for 1-2 weeks prior to drug testing.

Fluorescence immunoassay for high-throughput identification of cancers cells and MDR markers in NSCLC patient-derived cell cultures
The fluorescence immunoassay utilizes antibodies against CK8 and CK18, which are expressed in nearly all carcinomas of epithelial origin, to identify epithelial cancer cells. Co-staining of CK8/18 with Hoechst 33342 allows the identification and quantification of two types of cells: CK8/18-negative (non-cancer cells) and CK8/18-positive (cancer cells). This immunoassay is also used to identify and quantify changes in the expression of MDR markers ABCB1, ABCC1, and ABCG2 both in cancer and non-cancer cells in primary NSCLC cultures that may occur during chemotherapy and tyrosine kinase inhibitors (TKIs) treatment.7 Co-staining of ABCB1, ABCC1, and ABCG2 with CK8/18 and Hoechst 33342 enables the identification of four types of cells in NSCLC primary cell cultures: drug-sensitive non-cancer cells, MDR non-cancer cells, drug-sensitive cancer cells, and MDR cancer cells.
For validation of the immunoassay patient-derived cells are seeded in 384 well-plates and treated with 5 different concentrations of 8 chemotherapeutics known to induce overexpression of MDR markers (cisplatin, carboplatin, paclitaxel, docetaxel, gemcitabine, vinorelbine, etoposide, and pemetrexed), allowing the ex vivo evaluation of NSCLC MDR profile. Validated immunoassay is further used to evaluate the expression of MDR markers ABCB1, ABCC1, and ABCG2 (MDR profile) in patient-derived cell cultures after treatment with a panel of 10 TKIs (erlotinib, gefitinib, afatinib, osimertinib crizotinib, alectinib, ceritinib, nintedanib, dabrafenib, and trametinib), allowing evaluation of MDR profile in both cancer and stromal cells. The sensitivity of cancer and stromal cells for each individual NSCLC patient to a particular TKI is assessed using a discriminative immunoassay employing CK8/18 antibodies cocktail.
Whole Exome Sequencing (WES)
	Paired patient samples (normal and tumor) were subjected to a DNA isolation procedure using Qiagen genomic DNA extraction kit, recommended for NGS applications. Isolated DNA samples underwent WES analyses by Novogene Company. Bioinformatics and statistics tools were employed to define clinically relevant gene alterations in MDR markers ABCB1, ABCC1, and ABCG2.

Results


In order to understand how NSCLC patient cells respond to chemotherapy and targeted therapy, ex vivo testing was performed. The maximum concentration of drugs in human plasma that the patient is exposed to during therapy (Cmax) was used as an upper limit for drug concentration during testing, with four lower concentrations also used. The results showed that patient-derived cells display individual differences in sensitivity to both chemo and targeted therapeutics. IC50 values, which indicate sensitivity, fell within the concentration range for most chemotherapeutics. Only some chemotherapeutics (cisplatin, etoposide, docetaxel, gemcitabine, and pemetrexed) showed selectivity towards cancer cells with lower IC50 values in cancer than in stromal cells. Among TKIs, only erlotinib was efficient with IC50 below Cmax, showing selectivity towards cancer cells in all investigated patient-derived cell cultures. A number of chemotherapeutics increased the expression of ABCB1, ABCC1, and ABCG2, while TKIs afatinib, alectinib, ceritinib, osimertinib, and trametinib did not affect these transporters. Some TKIs increased the expression of ABC transporters, with nintedanib showing the potential to select cancer cells with higher MDR marker expression. WES showed significant ABCC1 gene instability, while ABCB1 had many SNPs with clinical relevance for drug response. ABCG2 had the lowest number of SNPs, but intron deletions were still identified. However, the clinical significance of these changes is currently unknown.

Conclusion

Screening for multidrug-resistance markers through a high-throughput process provides valuable information about how a patient will respond to therapy. This process can identify if the MDR phenotype is already present or if it can be induced with targeted or chemotherapy. Based on this information, it can provide recommendations for a patient's mono- and combined therapy. This methodology has the potential to greatly impact cancer treatment strategies and improve patient outcomes by tailoring therapies to individual patient profiles. Ultimately, this will benefit a wider range of patients with non-small cell lung carcinoma and other cancers, as it leads to more precise and targeted treatment selections.


References
1.	Bukowski, K., Kciuk, M., & Kontek, R. (2020). Mechanisms of Multidrug Resistance in Cancer Chemotherapy. International Journal of Molecular Sciences, 21(9). 
2.	Sharma, P., Hu-Lieskovan, S., Wargo, J. A., & Ribas, A. (2017). Primary, Adaptive and Acquired Resistance to Cancer Immunotherapy. Cell, 168(4), 707. 
3.	Wang, J. Q., Wu, Z. X., Yang, Y., Teng, Q. X., Li, Y. D., Lei, Z. N., Jani, K. A., Kaushal, N., & Chen, Z. S. (2021). ATP-binding cassette (ABC) transporters in cancer: A review of recent updates. Journal of Evidence-Based Medicine, 14(3), 232–256. 
4.	Wang, X., Zhang, H., & Chen, X. (n.d.). Review Open Access Cancer Drug Resistance Drug resistance and combating drug resistance in cancer.
5.	Nanayakkara, A. K., Follit, C. A., Chen, G., Williams, N. S., Vogel, P. D., & Wise, J. G. (n.d.). Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells OPEN. 
6.	 Sazeides, C., & Le, A. (2021). Metabolic Relationship Between Cancer-Associated Fibroblasts and Cancer Cells. Advances in Experimental Medicine and Biology, 1311, 189–204. 
7.	Beretta, G. L., Cassinelli, G., Pennati, M., Zuco, V., & Gatti, L. (2017). Overcoming ABC transporter-mediated multidrug resistance: The dual role of tyrosine kinase inhibitors as multitargeting agents. European Journal of Medicinal Chemistry, 142, 271–289.",
publisher = "Belgrade: Serbian Association for Cancer Research Belgrade, Serbia",
journal = "Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia",
title = "High-throughput screening of multidrug-resistance markers in non-small cell lung carcinoma patient-derived cells - contribution to personalized treatment",
pages = "37-39",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6449"
}
Jovanović Stojanov, S., Podolski-Renić, A., Dinić, J., Dragoj, M., Jovanović, M., Stepanović, A., Lupšić, E., Pajović, M., Petrović Rodić, D., Marić, D., Ercegovac, M.,& Pešić, M.. (2023). High-throughput screening of multidrug-resistance markers in non-small cell lung carcinoma patient-derived cells - contribution to personalized treatment. in Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia
Belgrade: Serbian Association for Cancer Research Belgrade, Serbia., 37-39.
https://hdl.handle.net/21.15107/rcub_ibiss_6449
Jovanović Stojanov S, Podolski-Renić A, Dinić J, Dragoj M, Jovanović M, Stepanović A, Lupšić E, Pajović M, Petrović Rodić D, Marić D, Ercegovac M, Pešić M. High-throughput screening of multidrug-resistance markers in non-small cell lung carcinoma patient-derived cells - contribution to personalized treatment. in Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia. 2023;:37-39.
https://hdl.handle.net/21.15107/rcub_ibiss_6449 .
Jovanović Stojanov, Sofija, Podolski-Renić, Ana, Dinić, Jelena, Dragoj, Miodrag, Jovanović, Mirna, Stepanović, Ana, Lupšić, Ema, Pajović, Milica, Petrović Rodić, Dušica, Marić, Dragana, Ercegovac, Maja, Pešić, Milica, "High-throughput screening of multidrug-resistance markers in non-small cell lung carcinoma patient-derived cells - contribution to personalized treatment" in Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia (2023):37-39,
https://hdl.handle.net/21.15107/rcub_ibiss_6449 .

New formulations with royleanone derivatives from Plectranthus spp. to inhibit P-glycoprotein activity

Bangay, Gabrielle; Isca, Vera; Domínguez-Martín, Eva María; Santos, Daniel J.V.A.; Díaz-Lanza, Ana María; Saraiva, Lucília; Afonso, Carlos A.M.; Jovanović, Mirna; Pešić, Milica; Rijo, Patricia

(Georg Thieme Verlag KG, 2023)

TY  - CONF
AU  - Bangay, Gabrielle
AU  - Isca, Vera
AU  - Domínguez-Martín, Eva María
AU  - Santos, Daniel J.V.A.
AU  - Díaz-Lanza, Ana María
AU  - Saraiva, Lucília
AU  - Afonso, Carlos A.M.
AU  - Jovanović, Mirna
AU  - Pešić, Milica
AU  - Rijo, Patricia
PY  - 2023
UR  - https://www.thieme-connect.com/products/ejournals/html/10.1055/s-0043-1774270
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6435
AB  - Multidrug resistant (MDR) cancer cases continue to increase, such that the search for novel and more effective anti-cancer therapeutics is of high priority. In some MDR cancers, the overexpression of membrane transport proteins, like P-glycoprotein (P-gp), continues to be a major impediment to successful therapy. Plectranthus genus (Lamiaceae), known for their medicinal and therapeutic properties, is a well-known source of bioactive diterpenoids, such as 7α-acetoxy-6β-hydroxyroyleanone (Roy) and 6,7- dehydroroyleanone (DeRoy). Based on in silico molecular docking studies, a small library of semi-synthetic derivates was prepared. The antitumoural activity of the compounds was assessed in resistant human cancer cell lines NCI-H460/R and DLD1-TxR. Cell viability was assessed using MTT assay and cell death induction by Annexin V/PI. Overall, it was demonstrated that three of the abietane diterpenoid analogues induced P-gp inhibition in MDR cancer cell lines, presenting novel selective compounds for the possible treatment of lung and colon cancer. Moreover, Roy and DeRoy nano-formulations were successfully prepared. DeRoy hybrid nanoparticles significantly increased the efficacy of DeRoy in NCI-H460 and NCI- H460/R. Roy, conjugated with oleic acid afforded self-assembly nanoparticles, to improve aqueous solubility and bioavailability of Roy. This new nano formulation did not decrease cell viability of Vero-E6 cells when compared to Roy with potential as a pro-drug delivery system. Currently, top hit derivatives are being prepared into nano-formulations for prospective pharmaceutical use as P-gp modulators.
PB  - Georg Thieme Verlag KG
C3  - 71st International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research (GA); 2023 Jul 2-5; Dublin, Ireland
T1  - New formulations with royleanone derivatives from Plectranthus spp. to inhibit P-glycoprotein activity
DO  - 10.1055/s-0043-1774270
SP  - 1424
ER  - 
@conference{
author = "Bangay, Gabrielle and Isca, Vera and Domínguez-Martín, Eva María and Santos, Daniel J.V.A. and Díaz-Lanza, Ana María and Saraiva, Lucília and Afonso, Carlos A.M. and Jovanović, Mirna and Pešić, Milica and Rijo, Patricia",
year = "2023",
abstract = "Multidrug resistant (MDR) cancer cases continue to increase, such that the search for novel and more effective anti-cancer therapeutics is of high priority. In some MDR cancers, the overexpression of membrane transport proteins, like P-glycoprotein (P-gp), continues to be a major impediment to successful therapy. Plectranthus genus (Lamiaceae), known for their medicinal and therapeutic properties, is a well-known source of bioactive diterpenoids, such as 7α-acetoxy-6β-hydroxyroyleanone (Roy) and 6,7- dehydroroyleanone (DeRoy). Based on in silico molecular docking studies, a small library of semi-synthetic derivates was prepared. The antitumoural activity of the compounds was assessed in resistant human cancer cell lines NCI-H460/R and DLD1-TxR. Cell viability was assessed using MTT assay and cell death induction by Annexin V/PI. Overall, it was demonstrated that three of the abietane diterpenoid analogues induced P-gp inhibition in MDR cancer cell lines, presenting novel selective compounds for the possible treatment of lung and colon cancer. Moreover, Roy and DeRoy nano-formulations were successfully prepared. DeRoy hybrid nanoparticles significantly increased the efficacy of DeRoy in NCI-H460 and NCI- H460/R. Roy, conjugated with oleic acid afforded self-assembly nanoparticles, to improve aqueous solubility and bioavailability of Roy. This new nano formulation did not decrease cell viability of Vero-E6 cells when compared to Roy with potential as a pro-drug delivery system. Currently, top hit derivatives are being prepared into nano-formulations for prospective pharmaceutical use as P-gp modulators.",
publisher = "Georg Thieme Verlag KG",
journal = "71st International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research (GA); 2023 Jul 2-5; Dublin, Ireland",
title = "New formulations with royleanone derivatives from Plectranthus spp. to inhibit P-glycoprotein activity",
doi = "10.1055/s-0043-1774270",
pages = "1424"
}
Bangay, G., Isca, V., Domínguez-Martín, E. M., Santos, D. J.V.A., Díaz-Lanza, A. M., Saraiva, L., Afonso, C. A.M., Jovanović, M., Pešić, M.,& Rijo, P.. (2023). New formulations with royleanone derivatives from Plectranthus spp. to inhibit P-glycoprotein activity. in 71st International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research (GA); 2023 Jul 2-5; Dublin, Ireland
Georg Thieme Verlag KG., 1424.
https://doi.org/10.1055/s-0043-1774270
Bangay G, Isca V, Domínguez-Martín EM, Santos DJ, Díaz-Lanza AM, Saraiva L, Afonso CA, Jovanović M, Pešić M, Rijo P. New formulations with royleanone derivatives from Plectranthus spp. to inhibit P-glycoprotein activity. in 71st International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research (GA); 2023 Jul 2-5; Dublin, Ireland. 2023;:1424.
doi:10.1055/s-0043-1774270 .
Bangay, Gabrielle, Isca, Vera, Domínguez-Martín, Eva María, Santos, Daniel J.V.A., Díaz-Lanza, Ana María, Saraiva, Lucília, Afonso, Carlos A.M., Jovanović, Mirna, Pešić, Milica, Rijo, Patricia, "New formulations with royleanone derivatives from Plectranthus spp. to inhibit P-glycoprotein activity" in 71st International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research (GA); 2023 Jul 2-5; Dublin, Ireland (2023):1424,
https://doi.org/10.1055/s-0043-1774270 . .

Functional diagnostics and ex-vivo screening of erlotinib and nintedanib in non-small cell lung carcinoma: Implications for multidrug resistance and personalized therapy

Dinić, Jelena; Podolski-Renić, Ana; Dragoj, Miodrag; Jovanović Stojanov, Sofija; Stepanović, Ana; Lupšić, Ema; Pajović, Milica; Petrović Rodić, Dušica; Marić, Dragana; Ercegovac, Maja; Pešić, Milica

(Elsevier Inc, 2023)

TY  - CONF
AU  - Dinić, Jelena
AU  - Podolski-Renić, Ana
AU  - Dragoj, Miodrag
AU  - Jovanović Stojanov, Sofija
AU  - Stepanović, Ana
AU  - Lupšić, Ema
AU  - Pajović, Milica
AU  - Petrović Rodić, Dušica
AU  - Marić, Dragana
AU  - Ercegovac, Maja
AU  - Pešić, Milica
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6380
AB  - Background: Multidrug resistance (MDR) hampers tyrosine kinase inhibitor (TKI) efficacy in non-small cell lung carcinoma (NSCLC). ABC transporters ABCB1, ABCC1, and ABCG2 trigger MDR by effluxing drugs from cancer cells. We studied erlotinib and nintedanib effects in patient-derived NSCLC cultures, MDR phenotype impact, and genetic alterations influencing drug response.
Methods: ABC transporter expression in 10 NSCLC patient-derived cell cultures was assessed after TKI treatment via immunofluorescence assay which enables discrimination between cancer and stromal cells. Erlotinib (1 µM – 4 µM) and nintedanib (2.5 µM – 20 µM) were used in clinically relevant concentrations. Whole exome sequencing was employed to analyze genetic alterations in NSCLC samples. 
Results: Erlotinib selectively inhibited cancer cell growth (IC50: 0.25 µM – 3.2 µM). It increased ABCC1 expression in 4/10 cultures and ABCB1/ABCG2 in 2/10 cultures. Erlotinib induced MDR markers expression at all concentrations. Nintedanib stimulated cancer cell growth at lower concentrations (˂10 µM) and caused 90% cell death at higher concentrations (˃15 µM), enriching the culture with cancer cells with high expression of ABCB1, ABCC1, and ABCG2. TKIs had no impact on MDR marker expression in stromal cells. Genetic alterations without clinical relevance for NSCLC were found in EGFR, ALK, ROS1, RET, and BRAF. L858R mutation in EGFR, indicated for erlotinib treatment, was detected in one patient, although all patients were responsive to erlotinib. Genetic alterations related to drug response were found in ABCB1 (7/10 patients) and ABCG2 (1/10 patients). 
Conclusions: The employed functional diagnostics approach can effectively assess how erlotinib and nintedanib influence the MDR phenotype for individual patients. The ex-vivo screening system utilized in this study identifies the sensitivity of cancer and stromal cells and the correlation between response and their MDR profile, as well as the dependence of drug response on genetic alterations. This approach holds great promise for advancing personalized treatment strategies in NSCLC.
PB  - Elsevier Inc
C3  - Abstract book: Molecular Analysis for Precision Oncology Congress 2023; 2023 Oct 4-6; Paris, France
T1  - Functional diagnostics and ex-vivo screening of erlotinib and nintedanib in non-small cell lung carcinoma: Implications for multidrug resistance and personalized therapy
DO  - 10.1016/j.esmoop.2023.101680
SP  - 12
EP  - 12
ER  - 
@conference{
author = "Dinić, Jelena and Podolski-Renić, Ana and Dragoj, Miodrag and Jovanović Stojanov, Sofija and Stepanović, Ana and Lupšić, Ema and Pajović, Milica and Petrović Rodić, Dušica and Marić, Dragana and Ercegovac, Maja and Pešić, Milica",
year = "2023",
abstract = "Background: Multidrug resistance (MDR) hampers tyrosine kinase inhibitor (TKI) efficacy in non-small cell lung carcinoma (NSCLC). ABC transporters ABCB1, ABCC1, and ABCG2 trigger MDR by effluxing drugs from cancer cells. We studied erlotinib and nintedanib effects in patient-derived NSCLC cultures, MDR phenotype impact, and genetic alterations influencing drug response.
Methods: ABC transporter expression in 10 NSCLC patient-derived cell cultures was assessed after TKI treatment via immunofluorescence assay which enables discrimination between cancer and stromal cells. Erlotinib (1 µM – 4 µM) and nintedanib (2.5 µM – 20 µM) were used in clinically relevant concentrations. Whole exome sequencing was employed to analyze genetic alterations in NSCLC samples. 
Results: Erlotinib selectively inhibited cancer cell growth (IC50: 0.25 µM – 3.2 µM). It increased ABCC1 expression in 4/10 cultures and ABCB1/ABCG2 in 2/10 cultures. Erlotinib induced MDR markers expression at all concentrations. Nintedanib stimulated cancer cell growth at lower concentrations (˂10 µM) and caused 90% cell death at higher concentrations (˃15 µM), enriching the culture with cancer cells with high expression of ABCB1, ABCC1, and ABCG2. TKIs had no impact on MDR marker expression in stromal cells. Genetic alterations without clinical relevance for NSCLC were found in EGFR, ALK, ROS1, RET, and BRAF. L858R mutation in EGFR, indicated for erlotinib treatment, was detected in one patient, although all patients were responsive to erlotinib. Genetic alterations related to drug response were found in ABCB1 (7/10 patients) and ABCG2 (1/10 patients). 
Conclusions: The employed functional diagnostics approach can effectively assess how erlotinib and nintedanib influence the MDR phenotype for individual patients. The ex-vivo screening system utilized in this study identifies the sensitivity of cancer and stromal cells and the correlation between response and their MDR profile, as well as the dependence of drug response on genetic alterations. This approach holds great promise for advancing personalized treatment strategies in NSCLC.",
publisher = "Elsevier Inc",
journal = "Abstract book: Molecular Analysis for Precision Oncology Congress 2023; 2023 Oct 4-6; Paris, France",
title = "Functional diagnostics and ex-vivo screening of erlotinib and nintedanib in non-small cell lung carcinoma: Implications for multidrug resistance and personalized therapy",
doi = "10.1016/j.esmoop.2023.101680",
pages = "12-12"
}
Dinić, J., Podolski-Renić, A., Dragoj, M., Jovanović Stojanov, S., Stepanović, A., Lupšić, E., Pajović, M., Petrović Rodić, D., Marić, D., Ercegovac, M.,& Pešić, M.. (2023). Functional diagnostics and ex-vivo screening of erlotinib and nintedanib in non-small cell lung carcinoma: Implications for multidrug resistance and personalized therapy. in Abstract book: Molecular Analysis for Precision Oncology Congress 2023; 2023 Oct 4-6; Paris, France
Elsevier Inc., 12-12.
https://doi.org/10.1016/j.esmoop.2023.101680
Dinić J, Podolski-Renić A, Dragoj M, Jovanović Stojanov S, Stepanović A, Lupšić E, Pajović M, Petrović Rodić D, Marić D, Ercegovac M, Pešić M. Functional diagnostics and ex-vivo screening of erlotinib and nintedanib in non-small cell lung carcinoma: Implications for multidrug resistance and personalized therapy. in Abstract book: Molecular Analysis for Precision Oncology Congress 2023; 2023 Oct 4-6; Paris, France. 2023;:12-12.
doi:10.1016/j.esmoop.2023.101680 .
Dinić, Jelena, Podolski-Renić, Ana, Dragoj, Miodrag, Jovanović Stojanov, Sofija, Stepanović, Ana, Lupšić, Ema, Pajović, Milica, Petrović Rodić, Dušica, Marić, Dragana, Ercegovac, Maja, Pešić, Milica, "Functional diagnostics and ex-vivo screening of erlotinib and nintedanib in non-small cell lung carcinoma: Implications for multidrug resistance and personalized therapy" in Abstract book: Molecular Analysis for Precision Oncology Congress 2023; 2023 Oct 4-6; Paris, France (2023):12-12,
https://doi.org/10.1016/j.esmoop.2023.101680 . .

Synthesis of Novel Artemisinin Derivatives With Potent Anticancer Activities Against Multidrug-resistant Cancer Cells

Opsenica, Igor; Koračak, Ljiljana; Lupšić, Ema; Jovanović, Mirna; Novaković, Miroslav; Pešić, Milica

(Cambridge: Royal Society of Chemistry, 2023)

TY  - CONF
AU  - Opsenica, Igor
AU  - Koračak, Ljiljana
AU  - Lupšić, Ema
AU  - Jovanović, Mirna
AU  - Novaković, Miroslav
AU  - Pešić, Milica
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6382
AB  - Derivatization of artemisinin, a natural sesquiterpene lactone, and its synthetic analog artesunate, is of significant interest in medicinal chemistry due to their versatile biological activity, including antimalarial and anticancer. The importance of the pyrimidine scaffold in medicinal chemistry is evidenced by its presence in many natural products and approved drugs, as well as in numerous biologically active compounds.
In this study, we report the synthesis of several novel hybrid molecules comprising two pharmacophores
(artesunic acid and pyrimidine scaffold) and their activity against sensitive and multidrug‐resistant (MDR)
human non‐small cell lung carcinoma (NSCLC) cells. The synthesis of novel artemisinin-pyrimidine hybrid
molecules was accomplished via amide bond formation between artesunic acid and pyrimidine derivatives. A lead compound was identified through structure activity relationship (SAR) studies. Several hybrids were capable of evading the MDR phenotype, increasing the sensitivity of MDR NSCLC cells toward doxorubicin and displayed inhibitory activity against P-glycoprotein.
PB  - Cambridge: Royal Society of Chemistry
C3  - Book of abstracts: 22nd European Symposium on Organic Chemistry Ghent: ESOC23GHENT; 2023 Jul 9-13; Ghent, Belgium
T1  - Synthesis of Novel Artemisinin Derivatives With Potent Anticancer Activities Against Multidrug-resistant Cancer Cells
SP  - 213
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6382
ER  - 
@conference{
author = "Opsenica, Igor and Koračak, Ljiljana and Lupšić, Ema and Jovanović, Mirna and Novaković, Miroslav and Pešić, Milica",
year = "2023",
abstract = "Derivatization of artemisinin, a natural sesquiterpene lactone, and its synthetic analog artesunate, is of significant interest in medicinal chemistry due to their versatile biological activity, including antimalarial and anticancer. The importance of the pyrimidine scaffold in medicinal chemistry is evidenced by its presence in many natural products and approved drugs, as well as in numerous biologically active compounds.
In this study, we report the synthesis of several novel hybrid molecules comprising two pharmacophores
(artesunic acid and pyrimidine scaffold) and their activity against sensitive and multidrug‐resistant (MDR)
human non‐small cell lung carcinoma (NSCLC) cells. The synthesis of novel artemisinin-pyrimidine hybrid
molecules was accomplished via amide bond formation between artesunic acid and pyrimidine derivatives. A lead compound was identified through structure activity relationship (SAR) studies. Several hybrids were capable of evading the MDR phenotype, increasing the sensitivity of MDR NSCLC cells toward doxorubicin and displayed inhibitory activity against P-glycoprotein.",
publisher = "Cambridge: Royal Society of Chemistry",
journal = "Book of abstracts: 22nd European Symposium on Organic Chemistry Ghent: ESOC23GHENT; 2023 Jul 9-13; Ghent, Belgium",
title = "Synthesis of Novel Artemisinin Derivatives With Potent Anticancer Activities Against Multidrug-resistant Cancer Cells",
pages = "213",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6382"
}
Opsenica, I., Koračak, L., Lupšić, E., Jovanović, M., Novaković, M.,& Pešić, M.. (2023). Synthesis of Novel Artemisinin Derivatives With Potent Anticancer Activities Against Multidrug-resistant Cancer Cells. in Book of abstracts: 22nd European Symposium on Organic Chemistry Ghent: ESOC23GHENT; 2023 Jul 9-13; Ghent, Belgium
Cambridge: Royal Society of Chemistry., 213.
https://hdl.handle.net/21.15107/rcub_ibiss_6382
Opsenica I, Koračak L, Lupšić E, Jovanović M, Novaković M, Pešić M. Synthesis of Novel Artemisinin Derivatives With Potent Anticancer Activities Against Multidrug-resistant Cancer Cells. in Book of abstracts: 22nd European Symposium on Organic Chemistry Ghent: ESOC23GHENT; 2023 Jul 9-13; Ghent, Belgium. 2023;:213.
https://hdl.handle.net/21.15107/rcub_ibiss_6382 .
Opsenica, Igor, Koračak, Ljiljana, Lupšić, Ema, Jovanović, Mirna, Novaković, Miroslav, Pešić, Milica, "Synthesis of Novel Artemisinin Derivatives With Potent Anticancer Activities Against Multidrug-resistant Cancer Cells" in Book of abstracts: 22nd European Symposium on Organic Chemistry Ghent: ESOC23GHENT; 2023 Jul 9-13; Ghent, Belgium (2023):213,
https://hdl.handle.net/21.15107/rcub_ibiss_6382 .

The effect of tyrosine kinase inhibitors in high-grade glioma patient-derived cells

Lupšić, Ema; Dinić, Jelena; Nikolić, Igor; Jovanović Stojanov, Sofija; Pešić, Milica; Podolski-Renić, Ana

(Belgrade, Serbia: Serbian Associaton for Cancer Research, 2023)

TY  - CONF
AU  - Lupšić, Ema
AU  - Dinić, Jelena
AU  - Nikolić, Igor
AU  - Jovanović Stojanov, Sofija
AU  - Pešić, Milica
AU  - Podolski-Renić, Ana
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6381
AB  - Background:  High-grade gliomas are the most frequently diagnosed malignant brain tumors in adults, with a very unfavorable prognosis. Although various strategies have been applied in the clinical setting, no significant progress has been made in the treatment of high-grade glioma. Clinical trials continue to expand into new approaches such as targeted agents and immunotherapy. Here, we performed pharmacological screening of tyrosine kinase inhibitors (TKIs) on patient-derived glioma cells ex vivo and assessed the expression of multidrug resistance (MDR) marker in glioma and stromal (non-glioma) cells. The effects of TKIs have been compared with chemotherapeutic agents approved for the treatment of high-grade glioma. Material and Methods: Primary patient-derived cell cultures were established from resections of high-grade gliomas. After short-term culturing (2-3 weeks), a mixed population of glioma and non-glioma cells was treated with 4 TKIs (alectinib, dabrafenib, trametinib, and nintedanib), as well as temozolomide (TMZ) and carmustine (BCNU). The maximum achieved concentration in human plasma during therapy (Cmax) was set as the upper limit and 4 lower concentrations were also used during the study. An immunofluorescence assay allowing discrimination of glial fibrillary acidic protein antibody-positive glioma cells versus negative non-glioma cells was performed using an ImageXpress Pico high-content imager (Molecular Devices) with CellReporterXpress 2.9 software. The MDR marker (ABCB1) was analyzed with the corresponding antibody in the same immunoassay. Results: Among the compounds tested, alectinib and TMZ did not affect cell growth and did not change the number of ABCB1-positive cells. Other compounds significantly inhibited the growth of glioma cells. However, they were not selective towards glioma cells, on the contrary, they showed greater cytotoxicity in non-glioma cells. The number of glioma cells positive for the ABCB1 marker increased significantly after treatment with dabrafenib, nintedanib, and BCNU, while trametinib and did not change ABCB1 expression in glioma cells. Stromal (non-glioma) cells generally followed the pattern of ABCB1 observed in glioma cells. Conclusions: Novel functional immunoassay may provide valuable information on the sensitivity of high-grade gliomas to different TKIs and possible treatment outcomes based on the expression of MDR marker.
PB  - Belgrade, Serbia: Serbian Associaton for Cancer Research
C3  - Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia
T1  - The effect of tyrosine kinase inhibitors in high-grade glioma patient-derived cells
SP  - 84
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6381
ER  - 
@conference{
author = "Lupšić, Ema and Dinić, Jelena and Nikolić, Igor and Jovanović Stojanov, Sofija and Pešić, Milica and Podolski-Renić, Ana",
year = "2023",
abstract = "Background:  High-grade gliomas are the most frequently diagnosed malignant brain tumors in adults, with a very unfavorable prognosis. Although various strategies have been applied in the clinical setting, no significant progress has been made in the treatment of high-grade glioma. Clinical trials continue to expand into new approaches such as targeted agents and immunotherapy. Here, we performed pharmacological screening of tyrosine kinase inhibitors (TKIs) on patient-derived glioma cells ex vivo and assessed the expression of multidrug resistance (MDR) marker in glioma and stromal (non-glioma) cells. The effects of TKIs have been compared with chemotherapeutic agents approved for the treatment of high-grade glioma. Material and Methods: Primary patient-derived cell cultures were established from resections of high-grade gliomas. After short-term culturing (2-3 weeks), a mixed population of glioma and non-glioma cells was treated with 4 TKIs (alectinib, dabrafenib, trametinib, and nintedanib), as well as temozolomide (TMZ) and carmustine (BCNU). The maximum achieved concentration in human plasma during therapy (Cmax) was set as the upper limit and 4 lower concentrations were also used during the study. An immunofluorescence assay allowing discrimination of glial fibrillary acidic protein antibody-positive glioma cells versus negative non-glioma cells was performed using an ImageXpress Pico high-content imager (Molecular Devices) with CellReporterXpress 2.9 software. The MDR marker (ABCB1) was analyzed with the corresponding antibody in the same immunoassay. Results: Among the compounds tested, alectinib and TMZ did not affect cell growth and did not change the number of ABCB1-positive cells. Other compounds significantly inhibited the growth of glioma cells. However, they were not selective towards glioma cells, on the contrary, they showed greater cytotoxicity in non-glioma cells. The number of glioma cells positive for the ABCB1 marker increased significantly after treatment with dabrafenib, nintedanib, and BCNU, while trametinib and did not change ABCB1 expression in glioma cells. Stromal (non-glioma) cells generally followed the pattern of ABCB1 observed in glioma cells. Conclusions: Novel functional immunoassay may provide valuable information on the sensitivity of high-grade gliomas to different TKIs and possible treatment outcomes based on the expression of MDR marker.",
publisher = "Belgrade, Serbia: Serbian Associaton for Cancer Research",
journal = "Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia",
title = "The effect of tyrosine kinase inhibitors in high-grade glioma patient-derived cells",
pages = "84",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6381"
}
Lupšić, E., Dinić, J., Nikolić, I., Jovanović Stojanov, S., Pešić, M.,& Podolski-Renić, A.. (2023). The effect of tyrosine kinase inhibitors in high-grade glioma patient-derived cells. in Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia
Belgrade, Serbia: Serbian Associaton for Cancer Research., 84.
https://hdl.handle.net/21.15107/rcub_ibiss_6381
Lupšić E, Dinić J, Nikolić I, Jovanović Stojanov S, Pešić M, Podolski-Renić A. The effect of tyrosine kinase inhibitors in high-grade glioma patient-derived cells. in Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia. 2023;:84.
https://hdl.handle.net/21.15107/rcub_ibiss_6381 .
Lupšić, Ema, Dinić, Jelena, Nikolić, Igor, Jovanović Stojanov, Sofija, Pešić, Milica, Podolski-Renić, Ana, "The effect of tyrosine kinase inhibitors in high-grade glioma patient-derived cells" in Proceedings book of The Sixth Congress of The Serbian Association for Cancer Research with international participation: From Collaboration to Innovation in Cancer Research; 2023 Oct 2-4; Belgrade, Serbia (2023):84,
https://hdl.handle.net/21.15107/rcub_ibiss_6381 .

Sinteza novih derivata artemizinina sa antitumorskom aktivnošću na rezistentne ćelije raka

Koračak, Ljiljana K.; Lupšić, Ema; Jovanović, Mirna; Novaković, Miroslav; Pešić, Milica; Opsenica, Igor M.

(Belgrade: Serbian Chemical Society, 2023)

TY  - CONF
AU  - Koračak, Ljiljana K.
AU  - Lupšić, Ema
AU  - Jovanović, Mirna
AU  - Novaković, Miroslav
AU  - Pešić, Milica
AU  - Opsenica, Igor M.
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6383
AB  - Značaj artemizinina i njegovih derivata se ogleda u biološkoj aktivnosti jer osim što su
našli primjenu kao efikasni lijekovi za liječenje malarije, pokazuju i antitumorsku
aktivnost. Pirimidinsko jezgro je važno zbog prisustva ovog strukturnog motiva u
prirodnim proizvodima, u odobrenim lijekovima, ali i u biološki aktivnim molekulima. U
okviru ovog istraživanja prijavljena je sinteza novih hibridnih molekula dobijenih
povezivanjem dvije farmakofore, kao i njihova antitumorska aktivnost na rezistentnim i
osjetljivim ćelijama nesitnoćelijskog karcinoma pluća.
AB  - In addition to being used for the effective treatment of malaria, artemisinin and derivatives also exhibit anticancer activity. The importance of the pyrimidine scaffold is evidenced by its presence in natural products and approved drugs, as well as in biologically active compounds. In this study, we report the synthesis of novel hybrid molecules comprising two pharmacophores and their activity against sensitive and multidrug‐resistant human non‐small cell lung carcinoma cells.
PB  - Belgrade: Serbian Chemical Society
C3  - Book of Abstracts and Proceedings: 59th meeting of the Serbian Chemical Society; 2023 Jun 1-2; Novi Sad, Serbia
T1  - Sinteza novih derivata artemizinina sa antitumorskom aktivnošću na rezistentne ćelije raka
T1  - Synthesis of novel artemisinin derivatives with anticancer activity against multidrug-resistant cancer cells
SP  - 70
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_6383
ER  - 
@conference{
author = "Koračak, Ljiljana K. and Lupšić, Ema and Jovanović, Mirna and Novaković, Miroslav and Pešić, Milica and Opsenica, Igor M.",
year = "2023",
abstract = "Značaj artemizinina i njegovih derivata se ogleda u biološkoj aktivnosti jer osim što su
našli primjenu kao efikasni lijekovi za liječenje malarije, pokazuju i antitumorsku
aktivnost. Pirimidinsko jezgro je važno zbog prisustva ovog strukturnog motiva u
prirodnim proizvodima, u odobrenim lijekovima, ali i u biološki aktivnim molekulima. U
okviru ovog istraživanja prijavljena je sinteza novih hibridnih molekula dobijenih
povezivanjem dvije farmakofore, kao i njihova antitumorska aktivnost na rezistentnim i
osjetljivim ćelijama nesitnoćelijskog karcinoma pluća., In addition to being used for the effective treatment of malaria, artemisinin and derivatives also exhibit anticancer activity. The importance of the pyrimidine scaffold is evidenced by its presence in natural products and approved drugs, as well as in biologically active compounds. In this study, we report the synthesis of novel hybrid molecules comprising two pharmacophores and their activity against sensitive and multidrug‐resistant human non‐small cell lung carcinoma cells.",
publisher = "Belgrade: Serbian Chemical Society",
journal = "Book of Abstracts and Proceedings: 59th meeting of the Serbian Chemical Society; 2023 Jun 1-2; Novi Sad, Serbia",
title = "Sinteza novih derivata artemizinina sa antitumorskom aktivnošću na rezistentne ćelije raka, Synthesis of novel artemisinin derivatives with anticancer activity against multidrug-resistant cancer cells",
pages = "70",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_6383"
}
Koračak, L. K., Lupšić, E., Jovanović, M., Novaković, M., Pešić, M.,& Opsenica, I. M.. (2023). Sinteza novih derivata artemizinina sa antitumorskom aktivnošću na rezistentne ćelije raka. in Book of Abstracts and Proceedings: 59th meeting of the Serbian Chemical Society; 2023 Jun 1-2; Novi Sad, Serbia
Belgrade: Serbian Chemical Society., 70.
https://hdl.handle.net/21.15107/rcub_ibiss_6383
Koračak LK, Lupšić E, Jovanović M, Novaković M, Pešić M, Opsenica IM. Sinteza novih derivata artemizinina sa antitumorskom aktivnošću na rezistentne ćelije raka. in Book of Abstracts and Proceedings: 59th meeting of the Serbian Chemical Society; 2023 Jun 1-2; Novi Sad, Serbia. 2023;:70.
https://hdl.handle.net/21.15107/rcub_ibiss_6383 .
Koračak, Ljiljana K., Lupšić, Ema, Jovanović, Mirna, Novaković, Miroslav, Pešić, Milica, Opsenica, Igor M., "Sinteza novih derivata artemizinina sa antitumorskom aktivnošću na rezistentne ćelije raka" in Book of Abstracts and Proceedings: 59th meeting of the Serbian Chemical Society; 2023 Jun 1-2; Novi Sad, Serbia (2023):70,
https://hdl.handle.net/21.15107/rcub_ibiss_6383 .

Coleon U, Isolated from Plectranthus mutabilis Codd., Decreases P-Glycoprotein Activity Due to Mitochondrial Inhibition

Jovanović Stojanov, Sofija; Ntungwe, Epole N.; Dinić, Jelena; Podolski-Renić, Ana; Pajović, Milica; Rijo, Patrícia; Pešić, Milica

(Basel: MDPI, 2023)

TY  - JOUR
AU  - Jovanović Stojanov, Sofija
AU  - Ntungwe, Epole N.
AU  - Dinić, Jelena
AU  - Podolski-Renić, Ana
AU  - Pajović, Milica
AU  - Rijo, Patrícia
AU  - Pešić, Milica
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6027
AB  - Multidrug resistance in cancer is often mediated by P-glycoprotein. Natural compounds
have been suggested as a fourth generation of P-glycoprotein inhibitors. Coleon U, isolated from
Plectranthus mutabilis Codd., was reported to modulate P-glycoprotein activity but the underlying
mechanism has not yet been revealed. Therefore, the effects of Coleon U on cell viability, proliferation, and cell death induction were studied in a non-small-cell lung carcinoma model comprising
sensitive and multidrug-resistant cells with P-glycoprotein overexpression. P-glycoprotein activity
and mitochondrial membrane potential were assessed by flow cytometry upon Coleon U, sodiumorthovanadate (an ATPase inhibitor), and verapamil (an ATPase stimulator) treatments. SwissADME
was used to identify the pharmacokinetic properties of Coleon U, while P-glycoprotein expression
was studied by immunofluorescence. Our results showed that Coleon U is not a P-glycoprotein
substrate and is equally efficient in sensitive and multidrug-resistant cancer cells. A decrease in
P-glycoprotein activity observed with Coleon U and verapamil after 72 h is antagonized in combination with sodium-orthovanadate. Coleon U induced a pronounced effect on mitochondrial membrane
depolarization and showed a tendency to decrease P-glycoprotein expression. In conclusion, Coleon
U-delayed effect on the decrease in P-glycoprotein activity is due to P-glycoprotein’s functioning
dependence on ATP production in mitochondria.
PB  - Basel: MDPI
T2  - Pharmaceutics
T1  - Coleon U, Isolated from Plectranthus mutabilis Codd., Decreases P-Glycoprotein Activity Due to Mitochondrial Inhibition
IS  - 7
VL  - 15
DO  - 10.3390/pharmaceutics15071942
SP  - 1942
ER  - 
@article{
author = "Jovanović Stojanov, Sofija and Ntungwe, Epole N. and Dinić, Jelena and Podolski-Renić, Ana and Pajović, Milica and Rijo, Patrícia and Pešić, Milica",
year = "2023",
abstract = "Multidrug resistance in cancer is often mediated by P-glycoprotein. Natural compounds
have been suggested as a fourth generation of P-glycoprotein inhibitors. Coleon U, isolated from
Plectranthus mutabilis Codd., was reported to modulate P-glycoprotein activity but the underlying
mechanism has not yet been revealed. Therefore, the effects of Coleon U on cell viability, proliferation, and cell death induction were studied in a non-small-cell lung carcinoma model comprising
sensitive and multidrug-resistant cells with P-glycoprotein overexpression. P-glycoprotein activity
and mitochondrial membrane potential were assessed by flow cytometry upon Coleon U, sodiumorthovanadate (an ATPase inhibitor), and verapamil (an ATPase stimulator) treatments. SwissADME
was used to identify the pharmacokinetic properties of Coleon U, while P-glycoprotein expression
was studied by immunofluorescence. Our results showed that Coleon U is not a P-glycoprotein
substrate and is equally efficient in sensitive and multidrug-resistant cancer cells. A decrease in
P-glycoprotein activity observed with Coleon U and verapamil after 72 h is antagonized in combination with sodium-orthovanadate. Coleon U induced a pronounced effect on mitochondrial membrane
depolarization and showed a tendency to decrease P-glycoprotein expression. In conclusion, Coleon
U-delayed effect on the decrease in P-glycoprotein activity is due to P-glycoprotein’s functioning
dependence on ATP production in mitochondria.",
publisher = "Basel: MDPI",
journal = "Pharmaceutics",
title = "Coleon U, Isolated from Plectranthus mutabilis Codd., Decreases P-Glycoprotein Activity Due to Mitochondrial Inhibition",
number = "7",
volume = "15",
doi = "10.3390/pharmaceutics15071942",
pages = "1942"
}
Jovanović Stojanov, S., Ntungwe, E. N., Dinić, J., Podolski-Renić, A., Pajović, M., Rijo, P.,& Pešić, M.. (2023). Coleon U, Isolated from Plectranthus mutabilis Codd., Decreases P-Glycoprotein Activity Due to Mitochondrial Inhibition. in Pharmaceutics
Basel: MDPI., 15(7), 1942.
https://doi.org/10.3390/pharmaceutics15071942
Jovanović Stojanov S, Ntungwe EN, Dinić J, Podolski-Renić A, Pajović M, Rijo P, Pešić M. Coleon U, Isolated from Plectranthus mutabilis Codd., Decreases P-Glycoprotein Activity Due to Mitochondrial Inhibition. in Pharmaceutics. 2023;15(7):1942.
doi:10.3390/pharmaceutics15071942 .
Jovanović Stojanov, Sofija, Ntungwe, Epole N., Dinić, Jelena, Podolski-Renić, Ana, Pajović, Milica, Rijo, Patrícia, Pešić, Milica, "Coleon U, Isolated from Plectranthus mutabilis Codd., Decreases P-Glycoprotein Activity Due to Mitochondrial Inhibition" in Pharmaceutics, 15, no. 7 (2023):1942,
https://doi.org/10.3390/pharmaceutics15071942 . .
1
1

Osimertinib is selective against NSCLC cells and modulates the multidrug-resistant phenotype in patient-derived cell cultures and co-cultures of NSCLC cells and fibroblasts

Jovanović Stojanov, Sofija; Podolski-Renić, Ana; Dinić, Jelena; Dragoj, Miodrag; Jovanović, Mirna; Stepanović, Ana; Lupšić, Ema; Bajović, Radovan; Glumac, Sofija; Marić, Dragana; Ercegovac, Maja; Pešić, Milica

(Elsevier Inc., 2023)

TY  - CONF
AU  - Jovanović Stojanov, Sofija
AU  - Podolski-Renić, Ana
AU  - Dinić, Jelena
AU  - Dragoj, Miodrag
AU  - Jovanović, Mirna
AU  - Stepanović, Ana
AU  - Lupšić, Ema
AU  - Bajović, Radovan
AU  - Glumac, Sofija
AU  - Marić, Dragana
AU  - Ercegovac, Maja
AU  - Pešić, Milica
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5712
AB  - Background: Osimertinib belongs to the third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) approved for metastatic EGFR-mutant non-small-cell lung carcinoma (NSCLC) patients. Herein, we studied osimertinib selectivity towards NSCLC cells, its efficacy dependence on the EGFR mutation status, and its ability to evade the classical mechanism of multidrug-resistance (MDR) mirrored in the increased expression of main ATP Binding Cassette (ABC) transporters (ABCB1, ABCC1, and ABCG2).
Methods: Primary patient-derived cultures were established from the NSCLC resections. After short-term culturing (2-3 weeks), a mixed population of cancer and non-cancer cells (around a ratio of 1:1) and two co-cultures of NSCLC cell lines (sensitive NCI-H460 and MDR NCI-H460/R) with lung fibroblasts MRC-5 were treated with 8 chemotherapeutics (cisplatin, carboplatin, paclitaxel, docetaxel, etoposide, vinorelbine, gemcitabine, and pemetrexed) as well as osimertinib. The maximum concentration reached in human plasma to which the patient is exposed during therapy (Cmax) was set as an upper limit and four lower concentrations were also applied during the study. Immunofluorescence assay enabling discrimination of epithelial cancer cells positive to a cocktail of antibodies against cytokeratin 8/18 vs. negative mesenchymal non-cancer cells was conducted using high-content imager ImageXpress Pico (Molecular Devices) with CellReporterXpress 2.9 software. Within the same immunoassay, MDR markers (ABCB1, ABCC1, and ABCG2) were analyzed by corresponding antibodies.
Results: Osimertinib showed selectivity against NSCLC cells, particularly in the patient-derived cell culture without EGFR mutations. Other chemotherapeutics were not selective towards cancer cells, on contrary, they showed higher cytotoxicity in non-cancer cells. Osimertinib did not change the expression of ABCB1 in cancer cells, but it significantly decreased the expression of ABCC1 and ABCG2 transporters in cancer and non-cancer cells.
Conclusions: Osimertinib can be valuable as a selective anticancer drug and an MDR modulator even in NSCLC without EGFR mutations.
PB  - Elsevier Inc.
C3  - Abstract Book of the ESMO Targeted Anticancer Therapies Congress (TAT); 2023 Mar 6-8; Paris, France
T1  - Osimertinib is selective against NSCLC cells and modulates the multidrug-resistant phenotype in patient-derived cell cultures and co-cultures of NSCLC cells and fibroblasts
IS  - 69p
DO  - 10.1016/j.esmoop.2023.100927
ER  - 
@conference{
author = "Jovanović Stojanov, Sofija and Podolski-Renić, Ana and Dinić, Jelena and Dragoj, Miodrag and Jovanović, Mirna and Stepanović, Ana and Lupšić, Ema and Bajović, Radovan and Glumac, Sofija and Marić, Dragana and Ercegovac, Maja and Pešić, Milica",
year = "2023",
abstract = "Background: Osimertinib belongs to the third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) approved for metastatic EGFR-mutant non-small-cell lung carcinoma (NSCLC) patients. Herein, we studied osimertinib selectivity towards NSCLC cells, its efficacy dependence on the EGFR mutation status, and its ability to evade the classical mechanism of multidrug-resistance (MDR) mirrored in the increased expression of main ATP Binding Cassette (ABC) transporters (ABCB1, ABCC1, and ABCG2).
Methods: Primary patient-derived cultures were established from the NSCLC resections. After short-term culturing (2-3 weeks), a mixed population of cancer and non-cancer cells (around a ratio of 1:1) and two co-cultures of NSCLC cell lines (sensitive NCI-H460 and MDR NCI-H460/R) with lung fibroblasts MRC-5 were treated with 8 chemotherapeutics (cisplatin, carboplatin, paclitaxel, docetaxel, etoposide, vinorelbine, gemcitabine, and pemetrexed) as well as osimertinib. The maximum concentration reached in human plasma to which the patient is exposed during therapy (Cmax) was set as an upper limit and four lower concentrations were also applied during the study. Immunofluorescence assay enabling discrimination of epithelial cancer cells positive to a cocktail of antibodies against cytokeratin 8/18 vs. negative mesenchymal non-cancer cells was conducted using high-content imager ImageXpress Pico (Molecular Devices) with CellReporterXpress 2.9 software. Within the same immunoassay, MDR markers (ABCB1, ABCC1, and ABCG2) were analyzed by corresponding antibodies.
Results: Osimertinib showed selectivity against NSCLC cells, particularly in the patient-derived cell culture without EGFR mutations. Other chemotherapeutics were not selective towards cancer cells, on contrary, they showed higher cytotoxicity in non-cancer cells. Osimertinib did not change the expression of ABCB1 in cancer cells, but it significantly decreased the expression of ABCC1 and ABCG2 transporters in cancer and non-cancer cells.
Conclusions: Osimertinib can be valuable as a selective anticancer drug and an MDR modulator even in NSCLC without EGFR mutations.",
publisher = "Elsevier Inc.",
journal = "Abstract Book of the ESMO Targeted Anticancer Therapies Congress (TAT); 2023 Mar 6-8; Paris, France",
title = "Osimertinib is selective against NSCLC cells and modulates the multidrug-resistant phenotype in patient-derived cell cultures and co-cultures of NSCLC cells and fibroblasts",
number = "69p",
doi = "10.1016/j.esmoop.2023.100927"
}
Jovanović Stojanov, S., Podolski-Renić, A., Dinić, J., Dragoj, M., Jovanović, M., Stepanović, A., Lupšić, E., Bajović, R., Glumac, S., Marić, D., Ercegovac, M.,& Pešić, M.. (2023). Osimertinib is selective against NSCLC cells and modulates the multidrug-resistant phenotype in patient-derived cell cultures and co-cultures of NSCLC cells and fibroblasts. in Abstract Book of the ESMO Targeted Anticancer Therapies Congress (TAT); 2023 Mar 6-8; Paris, France
Elsevier Inc..(69p).
https://doi.org/10.1016/j.esmoop.2023.100927
Jovanović Stojanov S, Podolski-Renić A, Dinić J, Dragoj M, Jovanović M, Stepanović A, Lupšić E, Bajović R, Glumac S, Marić D, Ercegovac M, Pešić M. Osimertinib is selective against NSCLC cells and modulates the multidrug-resistant phenotype in patient-derived cell cultures and co-cultures of NSCLC cells and fibroblasts. in Abstract Book of the ESMO Targeted Anticancer Therapies Congress (TAT); 2023 Mar 6-8; Paris, France. 2023;(69p).
doi:10.1016/j.esmoop.2023.100927 .
Jovanović Stojanov, Sofija, Podolski-Renić, Ana, Dinić, Jelena, Dragoj, Miodrag, Jovanović, Mirna, Stepanović, Ana, Lupšić, Ema, Bajović, Radovan, Glumac, Sofija, Marić, Dragana, Ercegovac, Maja, Pešić, Milica, "Osimertinib is selective against NSCLC cells and modulates the multidrug-resistant phenotype in patient-derived cell cultures and co-cultures of NSCLC cells and fibroblasts" in Abstract Book of the ESMO Targeted Anticancer Therapies Congress (TAT); 2023 Mar 6-8; Paris, France, no. 69p (2023),
https://doi.org/10.1016/j.esmoop.2023.100927 . .

New anti-glioblastoma strategy with natural compounds sclareol and doxorubicin

Stepanović, Ana; Lupšić, Ema; Dinić, Jelena; Podolski-Renić, Ana; Pajović, Milica; Jovanović Stojanov, Sofija; Dragoj, Miodrag; Terzić Jovanović, Nataša; Opsenica, Igor; Pešić, Milica

(Belgrade: Serbian Neuroscience Society, 2023)

TY  - CONF
AU  - Stepanović, Ana
AU  - Lupšić, Ema
AU  - Dinić, Jelena
AU  - Podolski-Renić, Ana
AU  - Pajović, Milica
AU  - Jovanović Stojanov, Sofija
AU  - Dragoj, Miodrag
AU  - Terzić Jovanović, Nataša
AU  - Opsenica, Igor
AU  - Pešić, Milica
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5905
AB  - Background: Doxorubicin (DOX) has been very effective against glioblastoma in
vitro. Its application in vivo is hampered because it cannot pass the blood–brain
barrier (BBB). Significant research efforts are invested to overcome this limitation.
Sclareol (SC) is an aromatic compound naturally found in clary sage. The
combination of SC and DOX showed promising effects in different tumor types in
vitro and in vivo. Therefore, we tested their combination and innovative hybrid
molecules (SC:DOX) on glioblastoma cells with the expression of P-glycoprotein, a
major component of BBB and cancer multidrug resistance marker. Methods:
Cytotoxicity and selectivity towards glioblastoma cells of SC, DOX, their
combination, and SC:DOX were examined by MTT assay. The effect of SC on DOX
accumulation was determined by flow cytometry. We also studied SC:DOX
accumulation, cellular uptake, localization imaging, and DNA damage induction.
Results: The effects of simultaneous SC and DOX treatments demonstrated the
considerable potential of SC to reverse DOX resistance in glioblastoma cells and
increase DOX accumulation. SC:DOX hybrids, named CON1 and CON2 were less
cytotoxic than DOX, but with reduced resistance and increased selectivity towards
glioblastoma cells. Cellular uptake of CON1 and CON2 was increased in glioblastoma
cells compared to DOX. Perinuclear localization of CON1 and CON2 vs. nuclear
localization of DOX as well as no DNA damaging effects suggest a different
mechanism of action for SC:DOX. Conclusion: The combination of SC and DOX, and
their innovative hybrids, could be considered a promising strategy that can overcome
the limitations of DOX application in glioblastoma.
PB  - Belgrade: Serbian Neuroscience Society
C3  - Book of abstracts: 8th Congress of Serbian neuroscience society with international participation; 2023 May 31 - Jun 2; Belgrade, Serbia
T1  - New anti-glioblastoma strategy with natural compounds sclareol and doxorubicin
SP  - 71
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_5905
ER  - 
@conference{
author = "Stepanović, Ana and Lupšić, Ema and Dinić, Jelena and Podolski-Renić, Ana and Pajović, Milica and Jovanović Stojanov, Sofija and Dragoj, Miodrag and Terzić Jovanović, Nataša and Opsenica, Igor and Pešić, Milica",
year = "2023",
abstract = "Background: Doxorubicin (DOX) has been very effective against glioblastoma in
vitro. Its application in vivo is hampered because it cannot pass the blood–brain
barrier (BBB). Significant research efforts are invested to overcome this limitation.
Sclareol (SC) is an aromatic compound naturally found in clary sage. The
combination of SC and DOX showed promising effects in different tumor types in
vitro and in vivo. Therefore, we tested their combination and innovative hybrid
molecules (SC:DOX) on glioblastoma cells with the expression of P-glycoprotein, a
major component of BBB and cancer multidrug resistance marker. Methods:
Cytotoxicity and selectivity towards glioblastoma cells of SC, DOX, their
combination, and SC:DOX were examined by MTT assay. The effect of SC on DOX
accumulation was determined by flow cytometry. We also studied SC:DOX
accumulation, cellular uptake, localization imaging, and DNA damage induction.
Results: The effects of simultaneous SC and DOX treatments demonstrated the
considerable potential of SC to reverse DOX resistance in glioblastoma cells and
increase DOX accumulation. SC:DOX hybrids, named CON1 and CON2 were less
cytotoxic than DOX, but with reduced resistance and increased selectivity towards
glioblastoma cells. Cellular uptake of CON1 and CON2 was increased in glioblastoma
cells compared to DOX. Perinuclear localization of CON1 and CON2 vs. nuclear
localization of DOX as well as no DNA damaging effects suggest a different
mechanism of action for SC:DOX. Conclusion: The combination of SC and DOX, and
their innovative hybrids, could be considered a promising strategy that can overcome
the limitations of DOX application in glioblastoma.",
publisher = "Belgrade: Serbian Neuroscience Society",
journal = "Book of abstracts: 8th Congress of Serbian neuroscience society with international participation; 2023 May 31 - Jun 2; Belgrade, Serbia",
title = "New anti-glioblastoma strategy with natural compounds sclareol and doxorubicin",
pages = "71",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_5905"
}
Stepanović, A., Lupšić, E., Dinić, J., Podolski-Renić, A., Pajović, M., Jovanović Stojanov, S., Dragoj, M., Terzić Jovanović, N., Opsenica, I.,& Pešić, M.. (2023). New anti-glioblastoma strategy with natural compounds sclareol and doxorubicin. in Book of abstracts: 8th Congress of Serbian neuroscience society with international participation; 2023 May 31 - Jun 2; Belgrade, Serbia
Belgrade: Serbian Neuroscience Society., 71.
https://hdl.handle.net/21.15107/rcub_ibiss_5905
Stepanović A, Lupšić E, Dinić J, Podolski-Renić A, Pajović M, Jovanović Stojanov S, Dragoj M, Terzić Jovanović N, Opsenica I, Pešić M. New anti-glioblastoma strategy with natural compounds sclareol and doxorubicin. in Book of abstracts: 8th Congress of Serbian neuroscience society with international participation; 2023 May 31 - Jun 2; Belgrade, Serbia. 2023;:71.
https://hdl.handle.net/21.15107/rcub_ibiss_5905 .
Stepanović, Ana, Lupšić, Ema, Dinić, Jelena, Podolski-Renić, Ana, Pajović, Milica, Jovanović Stojanov, Sofija, Dragoj, Miodrag, Terzić Jovanović, Nataša, Opsenica, Igor, Pešić, Milica, "New anti-glioblastoma strategy with natural compounds sclareol and doxorubicin" in Book of abstracts: 8th Congress of Serbian neuroscience society with international participation; 2023 May 31 - Jun 2; Belgrade, Serbia (2023):71,
https://hdl.handle.net/21.15107/rcub_ibiss_5905 .

Evading multidrug resistance in glioblastoma with natural compound sclareol and its novel derivatives

Lupšić, Ema; Stepanović, Ana; Stojković, Pavle; Terzić-Jpvanović, Nataša; Novaković, Miroslav; Nedialkov, Paraskev; Trendafilova, Antoaneta; Opsenica, Igor M.; Pešić, Milica

(Belgrade: Serbian Neuroscience Society, 2023)

TY  - CONF
AU  - Lupšić, Ema
AU  - Stepanović, Ana
AU  - Stojković, Pavle
AU  - Terzić-Jpvanović, Nataša
AU  - Novaković, Miroslav
AU  - Nedialkov, Paraskev
AU  - Trendafilova, Antoaneta
AU  - Opsenica, Igor M.
AU  - Pešić, Milica
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5928
AB  - Background: Glioblastoma is a highly aggressive and resistant brain tumor. P-glycoprotein
(P-gp) constitutes the blood-brain barrier and is expressed on the cell membrane of multidrugresistant (MDR) glioblastoma cells. Our objective was to investigate the anti-glioblastoma
effects of sclareol (SCL), a natural diterpene alcohol, and its two derivatives (11c and 12l).
Methods: Our cellular model included human glioblastoma U87 cell line without P-gp
expression, its MDR counterpart U87-TxR with P-gp expression, and normal lung fibroblasts
MRC-5. Cytotoxic effects were examined by MTT. P-gp function, cell cycle disturbance,
time-dependent cell death induction, the level of reactive oxygen and nitrogen species, and
changes in the mitochondrial membrane potential were studied by flow cytometry. Results:
SCL and its derivatives evaded the MDR in glioblastoma cells, showing lower IC50 values in
U87-TxR than in U87, referred to as collateral sensitivity. Both derivatives were more potent
than SCL, while 12l was active in the nanomolar range. 11c and 12l displayed greater
selectivity towards glioblastoma cells compared to SCL. All compounds significantly
disturbed the cell cycle and induced cell death: SCL - late apoptosis and necrosis, 11c - only
early apoptosis, and 12l - early and late apoptosis. SCL and its derivatives acted as
antioxidants, while 11c and 12l decreased mitochondrial membrane potential. Conclusion:
SCL derivatives were more potent than SCL. The observed collateral sensitivity in
glioblastoma cells can be explained by oxidative stress modulation because although resistant
due to P-gp expression, U87-TxR cells are more susceptible to changes in oxidative status
than U87 cells.
PB  - Belgrade: Serbian Neuroscience Society
C3  - Book of abstracts: 8th Congress of Serbian neuroscience society with international participation; 2023 May 31 - Jun 2; Belgrade, Serbia
T1  - Evading multidrug resistance in glioblastoma with natural compound sclareol and its novel derivatives
SP  - 72
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_5928
ER  - 
@conference{
author = "Lupšić, Ema and Stepanović, Ana and Stojković, Pavle and Terzić-Jpvanović, Nataša and Novaković, Miroslav and Nedialkov, Paraskev and Trendafilova, Antoaneta and Opsenica, Igor M. and Pešić, Milica",
year = "2023",
abstract = "Background: Glioblastoma is a highly aggressive and resistant brain tumor. P-glycoprotein
(P-gp) constitutes the blood-brain barrier and is expressed on the cell membrane of multidrugresistant (MDR) glioblastoma cells. Our objective was to investigate the anti-glioblastoma
effects of sclareol (SCL), a natural diterpene alcohol, and its two derivatives (11c and 12l).
Methods: Our cellular model included human glioblastoma U87 cell line without P-gp
expression, its MDR counterpart U87-TxR with P-gp expression, and normal lung fibroblasts
MRC-5. Cytotoxic effects were examined by MTT. P-gp function, cell cycle disturbance,
time-dependent cell death induction, the level of reactive oxygen and nitrogen species, and
changes in the mitochondrial membrane potential were studied by flow cytometry. Results:
SCL and its derivatives evaded the MDR in glioblastoma cells, showing lower IC50 values in
U87-TxR than in U87, referred to as collateral sensitivity. Both derivatives were more potent
than SCL, while 12l was active in the nanomolar range. 11c and 12l displayed greater
selectivity towards glioblastoma cells compared to SCL. All compounds significantly
disturbed the cell cycle and induced cell death: SCL - late apoptosis and necrosis, 11c - only
early apoptosis, and 12l - early and late apoptosis. SCL and its derivatives acted as
antioxidants, while 11c and 12l decreased mitochondrial membrane potential. Conclusion:
SCL derivatives were more potent than SCL. The observed collateral sensitivity in
glioblastoma cells can be explained by oxidative stress modulation because although resistant
due to P-gp expression, U87-TxR cells are more susceptible to changes in oxidative status
than U87 cells.",
publisher = "Belgrade: Serbian Neuroscience Society",
journal = "Book of abstracts: 8th Congress of Serbian neuroscience society with international participation; 2023 May 31 - Jun 2; Belgrade, Serbia",
title = "Evading multidrug resistance in glioblastoma with natural compound sclareol and its novel derivatives",
pages = "72",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_5928"
}
Lupšić, E., Stepanović, A., Stojković, P., Terzić-Jpvanović, N., Novaković, M., Nedialkov, P., Trendafilova, A., Opsenica, I. M.,& Pešić, M.. (2023). Evading multidrug resistance in glioblastoma with natural compound sclareol and its novel derivatives. in Book of abstracts: 8th Congress of Serbian neuroscience society with international participation; 2023 May 31 - Jun 2; Belgrade, Serbia
Belgrade: Serbian Neuroscience Society., 72.
https://hdl.handle.net/21.15107/rcub_ibiss_5928
Lupšić E, Stepanović A, Stojković P, Terzić-Jpvanović N, Novaković M, Nedialkov P, Trendafilova A, Opsenica IM, Pešić M. Evading multidrug resistance in glioblastoma with natural compound sclareol and its novel derivatives. in Book of abstracts: 8th Congress of Serbian neuroscience society with international participation; 2023 May 31 - Jun 2; Belgrade, Serbia. 2023;:72.
https://hdl.handle.net/21.15107/rcub_ibiss_5928 .
Lupšić, Ema, Stepanović, Ana, Stojković, Pavle, Terzić-Jpvanović, Nataša, Novaković, Miroslav, Nedialkov, Paraskev, Trendafilova, Antoaneta, Opsenica, Igor M., Pešić, Milica, "Evading multidrug resistance in glioblastoma with natural compound sclareol and its novel derivatives" in Book of abstracts: 8th Congress of Serbian neuroscience society with international participation; 2023 May 31 - Jun 2; Belgrade, Serbia (2023):72,
https://hdl.handle.net/21.15107/rcub_ibiss_5928 .

Sinteza i citotoksičnost novih derivata sklareola

Stojković, Pavle A.; Stepanović, Ana; Lupšić, Ema; Terzić Jovanović, Nataša; Novaković, Miroslav; Pešić, Milica; Opsenica, Igor M.

(Belgrade: Serbian Chemical Society, 2023)

TY  - CONF
AU  - Stojković, Pavle A.
AU  - Stepanović, Ana
AU  - Lupšić, Ema
AU  - Terzić Jovanović, Nataša
AU  - Novaković, Miroslav
AU  - Pešić, Milica
AU  - Opsenica, Igor M.
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5911
AB  - Sklareol, biološki aktivan diterpen, je iskorišćen kao polazna supstanca za sintezu novih hibridnih molekula sa 1,2,4-triazolo[1,5-a]-pirimidinskim jezgrom (Slika 1). Svi derivati sklareola su testirani na ćelijsku liniju ljudskog glioblastoma U 7 i ćelijsku liniju U 7-TxR koja ispoljava višestruku rezistenciju na lekove. Jedinjenja su modifikovala aktivnost P-glikoproteina u sličnoj meri kao P-gp inhibitor treće generacije – tarikvidar. Ispitan je uticaj novih jedinjenja na različite ćelijske procese među kojima su ćelijski ciklus i ćelijska smrt, kao i na koncentraciju reaktivnih kiseoničnih i azotnih vrsta (ROS/RNS) u ćelijama glioblastoma i na potencijal membrane mitohondrija.
AB  - Sclareol, a biologically active diterpenoid, was used as the starting material for the synthesis of novel hybrid molecules containing the 1,2,4-triazolo[1,5-a]-pyrimidine moiety. All sclareol derivatives were tested on human glioblastoma U87 and multi-drug resistant U87-TxR cells. Hybrid compounds decreased P-gp activity to the same extent as a third generation P-gp inhibitor - tariquidar. We examined the effect of novel compounds on various cellular processes including the cell cycle and cell death, as well as their influence on the levels of reactive oxygen and nitrogen species (ROS/RNS) and mitochondrial membrane potential in glioblastoma cells.
PB  - Belgrade: Serbian Chemical Society
C3  - Book of Abstracts and Proceedings: 59th meeting of the Serbian Chemical Society; 2023 Jun 1-2; Novi Sad, Serbia
T1  - Sinteza i citotoksičnost novih derivata sklareola
T1  - Synthesis and cytotoxic activity of novel sclareol derivatives
SP  - 77
UR  - https://hdl.handle.net/21.15107/rcub_ibiss_5911
ER  - 
@conference{
author = "Stojković, Pavle A. and Stepanović, Ana and Lupšić, Ema and Terzić Jovanović, Nataša and Novaković, Miroslav and Pešić, Milica and Opsenica, Igor M.",
year = "2023",
abstract = "Sklareol, biološki aktivan diterpen, je iskorišćen kao polazna supstanca za sintezu novih hibridnih molekula sa 1,2,4-triazolo[1,5-a]-pirimidinskim jezgrom (Slika 1). Svi derivati sklareola su testirani na ćelijsku liniju ljudskog glioblastoma U 7 i ćelijsku liniju U 7-TxR koja ispoljava višestruku rezistenciju na lekove. Jedinjenja su modifikovala aktivnost P-glikoproteina u sličnoj meri kao P-gp inhibitor treće generacije – tarikvidar. Ispitan je uticaj novih jedinjenja na različite ćelijske procese među kojima su ćelijski ciklus i ćelijska smrt, kao i na koncentraciju reaktivnih kiseoničnih i azotnih vrsta (ROS/RNS) u ćelijama glioblastoma i na potencijal membrane mitohondrija., Sclareol, a biologically active diterpenoid, was used as the starting material for the synthesis of novel hybrid molecules containing the 1,2,4-triazolo[1,5-a]-pyrimidine moiety. All sclareol derivatives were tested on human glioblastoma U87 and multi-drug resistant U87-TxR cells. Hybrid compounds decreased P-gp activity to the same extent as a third generation P-gp inhibitor - tariquidar. We examined the effect of novel compounds on various cellular processes including the cell cycle and cell death, as well as their influence on the levels of reactive oxygen and nitrogen species (ROS/RNS) and mitochondrial membrane potential in glioblastoma cells.",
publisher = "Belgrade: Serbian Chemical Society",
journal = "Book of Abstracts and Proceedings: 59th meeting of the Serbian Chemical Society; 2023 Jun 1-2; Novi Sad, Serbia",
title = "Sinteza i citotoksičnost novih derivata sklareola, Synthesis and cytotoxic activity of novel sclareol derivatives",
pages = "77",
url = "https://hdl.handle.net/21.15107/rcub_ibiss_5911"
}
Stojković, P. A., Stepanović, A., Lupšić, E., Terzić Jovanović, N., Novaković, M., Pešić, M.,& Opsenica, I. M.. (2023). Sinteza i citotoksičnost novih derivata sklareola. in Book of Abstracts and Proceedings: 59th meeting of the Serbian Chemical Society; 2023 Jun 1-2; Novi Sad, Serbia
Belgrade: Serbian Chemical Society., 77.
https://hdl.handle.net/21.15107/rcub_ibiss_5911
Stojković PA, Stepanović A, Lupšić E, Terzić Jovanović N, Novaković M, Pešić M, Opsenica IM. Sinteza i citotoksičnost novih derivata sklareola. in Book of Abstracts and Proceedings: 59th meeting of the Serbian Chemical Society; 2023 Jun 1-2; Novi Sad, Serbia. 2023;:77.
https://hdl.handle.net/21.15107/rcub_ibiss_5911 .
Stojković, Pavle A., Stepanović, Ana, Lupšić, Ema, Terzić Jovanović, Nataša, Novaković, Miroslav, Pešić, Milica, Opsenica, Igor M., "Sinteza i citotoksičnost novih derivata sklareola" in Book of Abstracts and Proceedings: 59th meeting of the Serbian Chemical Society; 2023 Jun 1-2; Novi Sad, Serbia (2023):77,
https://hdl.handle.net/21.15107/rcub_ibiss_5911 .

Novel hybrids of sclareol and 1,2,4-triazolo[1,5-a]pyrimidine show collateral sensitivity in multidrug-resistant glioblastoma cells

Stojković, Pavle; Stepanović, Ana; Lupšić, Ema; Terzić Jovanović, Nataša; Novaković, Miroslav; Nedialkov, Paraskev; Trendafilova, Antoaneta; Pešić, Milica; Opsenica, Igor M.

(Academic Press Inc., 2023)

TY  - JOUR
AU  - Stojković, Pavle
AU  - Stepanović, Ana
AU  - Lupšić, Ema
AU  - Terzić Jovanović, Nataša
AU  - Novaković, Miroslav
AU  - Nedialkov, Paraskev
AU  - Trendafilova, Antoaneta
AU  - Pešić, Milica
AU  - Opsenica, Igor M.
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5910
AB  - The synthesis of 24 hybrid molecules, consisting of naturally occurring sclareol (SCL) and synthetic 1,2,4-triazolo
[1,5-a]pyrimidines (TPs), is described. New compounds were designed with the aim of improving the cytotoxic
properties, activity, and selectivity of the parent compounds. Six analogs (12a-f) contained 4-benzylpiperazine
linkage, while 4-benzyldiamine linkage was present in eighteen derivatives (12g-r and 13a-f). Hybrids 13a-f
consist of two TP units. After purification, all hybrids (12a-r and 13a-f), as well as their precursors (9a-e and
11a-c), were tested on human glioblastoma U87 cells. More than half of the tested synthesized molecules, 16 out
of 31, caused a significant reduction of U87 cell viability (more than 75% reduction) at 30 μM. The
concentration-dependent cytotoxicity of these 16 compounds was also examined on U87 cells, corresponding
multidrug-resistant (MDR) U87-TxR cells with increased P-glycoprotein (P-gp) expression and activity, and
normal lung fibroblasts MRC-5. Importantly, 12l and 12r were active in the nanomolar range, while seven
compounds (11b, 11c, 12i, 12l, 12n, 12q, and 12r) were more selective towards glioblastoma cells than SCL. All
compounds except 12r evaded MDR, showing even better cytotoxicity in U87-TxR cells. In particular, 11c, 12a,
12g, 12j, 12k, 12m, 12n, and SCL showed collateral sensitivity. Hybrid compounds 12l, 12q, and 12r decreased
P-gp activity to the same extent as a well-known P-gp inhibitor - tariquidar (TQ). Hybrid compound 12l and its
precursor 11c affected different cellular processes including the cell cycle, cell death, and mitochondrial
membrane potential, and changed the levels of reactive oxygen and nitrogen species (ROS/RNS) in glioblastoma
cells. Collateral sensitivity towards MDR glioblastoma cells was caused by the modulation of oxidative stress
accompanied by inhibition of mitochondria.
PB  - Academic Press Inc.
T2  - Bioorganic Chemistry
T1  - Novel hybrids of sclareol and 1,2,4-triazolo[1,5-a]pyrimidine show collateral sensitivity in multidrug-resistant glioblastoma cells
VL  - 138
DO  - 10.1016/j.bioorg.2023.106605
SP  - 106605
ER  - 
@article{
author = "Stojković, Pavle and Stepanović, Ana and Lupšić, Ema and Terzić Jovanović, Nataša and Novaković, Miroslav and Nedialkov, Paraskev and Trendafilova, Antoaneta and Pešić, Milica and Opsenica, Igor M.",
year = "2023",
abstract = "The synthesis of 24 hybrid molecules, consisting of naturally occurring sclareol (SCL) and synthetic 1,2,4-triazolo
[1,5-a]pyrimidines (TPs), is described. New compounds were designed with the aim of improving the cytotoxic
properties, activity, and selectivity of the parent compounds. Six analogs (12a-f) contained 4-benzylpiperazine
linkage, while 4-benzyldiamine linkage was present in eighteen derivatives (12g-r and 13a-f). Hybrids 13a-f
consist of two TP units. After purification, all hybrids (12a-r and 13a-f), as well as their precursors (9a-e and
11a-c), were tested on human glioblastoma U87 cells. More than half of the tested synthesized molecules, 16 out
of 31, caused a significant reduction of U87 cell viability (more than 75% reduction) at 30 μM. The
concentration-dependent cytotoxicity of these 16 compounds was also examined on U87 cells, corresponding
multidrug-resistant (MDR) U87-TxR cells with increased P-glycoprotein (P-gp) expression and activity, and
normal lung fibroblasts MRC-5. Importantly, 12l and 12r were active in the nanomolar range, while seven
compounds (11b, 11c, 12i, 12l, 12n, 12q, and 12r) were more selective towards glioblastoma cells than SCL. All
compounds except 12r evaded MDR, showing even better cytotoxicity in U87-TxR cells. In particular, 11c, 12a,
12g, 12j, 12k, 12m, 12n, and SCL showed collateral sensitivity. Hybrid compounds 12l, 12q, and 12r decreased
P-gp activity to the same extent as a well-known P-gp inhibitor - tariquidar (TQ). Hybrid compound 12l and its
precursor 11c affected different cellular processes including the cell cycle, cell death, and mitochondrial
membrane potential, and changed the levels of reactive oxygen and nitrogen species (ROS/RNS) in glioblastoma
cells. Collateral sensitivity towards MDR glioblastoma cells was caused by the modulation of oxidative stress
accompanied by inhibition of mitochondria.",
publisher = "Academic Press Inc.",
journal = "Bioorganic Chemistry",
title = "Novel hybrids of sclareol and 1,2,4-triazolo[1,5-a]pyrimidine show collateral sensitivity in multidrug-resistant glioblastoma cells",
volume = "138",
doi = "10.1016/j.bioorg.2023.106605",
pages = "106605"
}
Stojković, P., Stepanović, A., Lupšić, E., Terzić Jovanović, N., Novaković, M., Nedialkov, P., Trendafilova, A., Pešić, M.,& Opsenica, I. M.. (2023). Novel hybrids of sclareol and 1,2,4-triazolo[1,5-a]pyrimidine show collateral sensitivity in multidrug-resistant glioblastoma cells. in Bioorganic Chemistry
Academic Press Inc.., 138, 106605.
https://doi.org/10.1016/j.bioorg.2023.106605
Stojković P, Stepanović A, Lupšić E, Terzić Jovanović N, Novaković M, Nedialkov P, Trendafilova A, Pešić M, Opsenica IM. Novel hybrids of sclareol and 1,2,4-triazolo[1,5-a]pyrimidine show collateral sensitivity in multidrug-resistant glioblastoma cells. in Bioorganic Chemistry. 2023;138:106605.
doi:10.1016/j.bioorg.2023.106605 .
Stojković, Pavle, Stepanović, Ana, Lupšić, Ema, Terzić Jovanović, Nataša, Novaković, Miroslav, Nedialkov, Paraskev, Trendafilova, Antoaneta, Pešić, Milica, Opsenica, Igor M., "Novel hybrids of sclareol and 1,2,4-triazolo[1,5-a]pyrimidine show collateral sensitivity in multidrug-resistant glioblastoma cells" in Bioorganic Chemistry, 138 (2023):106605,
https://doi.org/10.1016/j.bioorg.2023.106605 . .
3
1
1

Novel artesunate–pyrimidine-based hybrids with anticancer potential against multidrug-resistant cancer cells

Koračak, Ljiljana; Lupšić, Ema; Terzić Jovanović, Nataša; Jovanović, Mirna; Novaković, Miroslav; Nedialkov, Paraskev; Trendafilova, Antoaneta; Zlatović, Mario; Pešić, Milica; Opsenica, Igor

(Cambridge: Royal Society of Chemistry, 2023)

TY  - JOUR
AU  - Koračak, Ljiljana
AU  - Lupšić, Ema
AU  - Terzić Jovanović, Nataša
AU  - Jovanović, Mirna
AU  - Novaković, Miroslav
AU  - Nedialkov, Paraskev
AU  - Trendafilova, Antoaneta
AU  - Zlatović, Mario
AU  - Pešić, Milica
AU  - Opsenica, Igor
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5890
AB  - The synthesis of 17 hybrid molecules, consisting of artesunate, a derivative of naturally occurring artemisinin, and synthetic 4-aryl-2-aminopyrimidines, is described. New compounds were designed to improve the parent compounds' cytotoxic properties, activity, and selectivity. The synthesized hybrid molecules (15a–f with ethylenediamine linker and 16a–k with piperazine linker), as well as their precursors – pyrimidine derivatives (13a–f and 14a–k), artemisinin, and artesunate, were tested on sensitive and multidrug-resistant (MDR) human non-small cell lung carcinoma (NSCLC) cells. All hybrid compounds with piperazine linker 16a–k were selective toward NSCLC cells and displayed IC50 values below 5 μM. Although they showed similar anticancer potency as artesunate, their selectivity against cancer cells was considerably improved. Importantly, 16h–k hybrid compounds were able to evade MDR phenotype, inhibit P-glycoprotein (P-gp) activity, and increase the sensitivity of MDR NSCLC cells to doxorubicin (DOX). The inhibition of P-gp activity induced by 16h–j was stronger than the one obtained with artesunate. Among these four hybrid compounds, 16k was the most potent anticancer agent with similar IC50 values of around 1.5 μM (for comparison – over 3.1 μM for artesunate) in sensitive and MDR NSCLC cells.
PB  - Cambridge: Royal Society of Chemistry
T2  - New Journal of Chemistry
T1  - Novel artesunate–pyrimidine-based hybrids with anticancer potential against multidrug-resistant cancer cells
IS  - 14
VL  - 47
DO  - 10.1039/D3NJ00427A
SP  - 6844
EP  - 6855
ER  - 
@article{
author = "Koračak, Ljiljana and Lupšić, Ema and Terzić Jovanović, Nataša and Jovanović, Mirna and Novaković, Miroslav and Nedialkov, Paraskev and Trendafilova, Antoaneta and Zlatović, Mario and Pešić, Milica and Opsenica, Igor",
year = "2023",
abstract = "The synthesis of 17 hybrid molecules, consisting of artesunate, a derivative of naturally occurring artemisinin, and synthetic 4-aryl-2-aminopyrimidines, is described. New compounds were designed to improve the parent compounds' cytotoxic properties, activity, and selectivity. The synthesized hybrid molecules (15a–f with ethylenediamine linker and 16a–k with piperazine linker), as well as their precursors – pyrimidine derivatives (13a–f and 14a–k), artemisinin, and artesunate, were tested on sensitive and multidrug-resistant (MDR) human non-small cell lung carcinoma (NSCLC) cells. All hybrid compounds with piperazine linker 16a–k were selective toward NSCLC cells and displayed IC50 values below 5 μM. Although they showed similar anticancer potency as artesunate, their selectivity against cancer cells was considerably improved. Importantly, 16h–k hybrid compounds were able to evade MDR phenotype, inhibit P-glycoprotein (P-gp) activity, and increase the sensitivity of MDR NSCLC cells to doxorubicin (DOX). The inhibition of P-gp activity induced by 16h–j was stronger than the one obtained with artesunate. Among these four hybrid compounds, 16k was the most potent anticancer agent with similar IC50 values of around 1.5 μM (for comparison – over 3.1 μM for artesunate) in sensitive and MDR NSCLC cells.",
publisher = "Cambridge: Royal Society of Chemistry",
journal = "New Journal of Chemistry",
title = "Novel artesunate–pyrimidine-based hybrids with anticancer potential against multidrug-resistant cancer cells",
number = "14",
volume = "47",
doi = "10.1039/D3NJ00427A",
pages = "6844-6855"
}
Koračak, L., Lupšić, E., Terzić Jovanović, N., Jovanović, M., Novaković, M., Nedialkov, P., Trendafilova, A., Zlatović, M., Pešić, M.,& Opsenica, I.. (2023). Novel artesunate–pyrimidine-based hybrids with anticancer potential against multidrug-resistant cancer cells. in New Journal of Chemistry
Cambridge: Royal Society of Chemistry., 47(14), 6844-6855.
https://doi.org/10.1039/D3NJ00427A
Koračak L, Lupšić E, Terzić Jovanović N, Jovanović M, Novaković M, Nedialkov P, Trendafilova A, Zlatović M, Pešić M, Opsenica I. Novel artesunate–pyrimidine-based hybrids with anticancer potential against multidrug-resistant cancer cells. in New Journal of Chemistry. 2023;47(14):6844-6855.
doi:10.1039/D3NJ00427A .
Koračak, Ljiljana, Lupšić, Ema, Terzić Jovanović, Nataša, Jovanović, Mirna, Novaković, Miroslav, Nedialkov, Paraskev, Trendafilova, Antoaneta, Zlatović, Mario, Pešić, Milica, Opsenica, Igor, "Novel artesunate–pyrimidine-based hybrids with anticancer potential against multidrug-resistant cancer cells" in New Journal of Chemistry, 47, no. 14 (2023):6844-6855,
https://doi.org/10.1039/D3NJ00427A . .
3
1
1

Novel functional immunoassay for identification of multidrug resistance markers in non-small cell lung carcinoma patient-derived cells

Stepanović, Ana; Dinić, Jelena; Podolski-Renić, Ana; Jovanović Stojanov, Sofija; Dragoj, Miodrag; Jovanović, Mirna; Lupšić, Ema; Milićević, Aleksandar; Glumac, Sofija; Marić, Dragana; Ercegovac, Maja; Pešić, Milica

(John Wiley and Sons Inc, 2023)

TY  - CONF
AU  - Stepanović, Ana
AU  - Dinić, Jelena
AU  - Podolski-Renić, Ana
AU  - Jovanović Stojanov, Sofija
AU  - Dragoj, Miodrag
AU  - Jovanović, Mirna
AU  - Lupšić, Ema
AU  - Milićević, Aleksandar
AU  - Glumac, Sofija
AU  - Marić, Dragana
AU  - Ercegovac, Maja
AU  - Pešić, Milica
PY  - 2023
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5884
AB  - Introduction: Multidrug resistance (MDR) significantly hampers nonsmall cell lung carcinoma (NSCLC) drugs’ efficacy. To evaluate the contribution of MDR markers to anticancer drugs’ sensitivity, we performed pharmacological screening on patient-derived NSCLC cells ex vivo and assessed the expression of MDR markers in cancer and stromal (non-cancer) cells.
Material and Methods: Primary patient-derived cultures were established from the NSCLC resections. After short-term culturing (2-3 weeks), a mixed population of cancer and non-cancer cells were treated with 8 chemotherapeutics (cisplatin, carboplatin, paclitaxel, docetaxel, etoposide, vinorelbine, gemcitabine, and pemetrexed). The maximum concentration reached in human plasma to which the patient is exposed during therapy (Cmax) was set as an upper limit and four lower concentrations were 
also applied during the study. Immunofluorescence assay enabling discrimination of epithelial cancer cells positive to a cocktail of antibodies against cytokeratin 8/18 vs. negative mesenchymal noncancer cells was conducted using high-content imager ImageXpress Pico (Molecular Devices) with CellReporterXpress 2.9 software. Within the same immunoassay, MDR markers (ABCB1, ABCC1, and ABCG2) were analyzed by corresponding antibodies.
Results and Discussions: Among all tested compounds, only gemcitabine increased the number of positive cancer cells to all MDR markers in all investigated primary cell cultures. Pemetrexed did not
change the number of MDR-positive cancer cells. In a patient sample IIIA stage bearing EGFR mutation
(L858R), the number of positive cancer cells to all MDR markers increased upon treatment with cisplatin, carboplatin, paclitaxel, docetaxel, etoposide, vinorelbine, and gemcitabine. Stromal (non-cancer) cells mainly followed the pattern of MDR observed in cancer cells.
Conclusion: Novel functional immunoassay can provide valuable information about the sensitivity of NSCLC to different drugs and possible treatment outcomes based on the
expression of MDR markers.
PB  - John Wiley and Sons Inc
C3  - EACR 2023 Congress: Innovative Cancer Science; 2023 Jun 12-15; Torino, Italy
T1  - Novel functional immunoassay for identification of multidrug resistance markers in non-small cell lung carcinoma patient-derived cells
DO  - 10.1002/1878-0261.13469
SP  - 461
EP  - 462
ER  - 
@conference{
author = "Stepanović, Ana and Dinić, Jelena and Podolski-Renić, Ana and Jovanović Stojanov, Sofija and Dragoj, Miodrag and Jovanović, Mirna and Lupšić, Ema and Milićević, Aleksandar and Glumac, Sofija and Marić, Dragana and Ercegovac, Maja and Pešić, Milica",
year = "2023",
abstract = "Introduction: Multidrug resistance (MDR) significantly hampers nonsmall cell lung carcinoma (NSCLC) drugs’ efficacy. To evaluate the contribution of MDR markers to anticancer drugs’ sensitivity, we performed pharmacological screening on patient-derived NSCLC cells ex vivo and assessed the expression of MDR markers in cancer and stromal (non-cancer) cells.
Material and Methods: Primary patient-derived cultures were established from the NSCLC resections. After short-term culturing (2-3 weeks), a mixed population of cancer and non-cancer cells were treated with 8 chemotherapeutics (cisplatin, carboplatin, paclitaxel, docetaxel, etoposide, vinorelbine, gemcitabine, and pemetrexed). The maximum concentration reached in human plasma to which the patient is exposed during therapy (Cmax) was set as an upper limit and four lower concentrations were 
also applied during the study. Immunofluorescence assay enabling discrimination of epithelial cancer cells positive to a cocktail of antibodies against cytokeratin 8/18 vs. negative mesenchymal noncancer cells was conducted using high-content imager ImageXpress Pico (Molecular Devices) with CellReporterXpress 2.9 software. Within the same immunoassay, MDR markers (ABCB1, ABCC1, and ABCG2) were analyzed by corresponding antibodies.
Results and Discussions: Among all tested compounds, only gemcitabine increased the number of positive cancer cells to all MDR markers in all investigated primary cell cultures. Pemetrexed did not
change the number of MDR-positive cancer cells. In a patient sample IIIA stage bearing EGFR mutation
(L858R), the number of positive cancer cells to all MDR markers increased upon treatment with cisplatin, carboplatin, paclitaxel, docetaxel, etoposide, vinorelbine, and gemcitabine. Stromal (non-cancer) cells mainly followed the pattern of MDR observed in cancer cells.
Conclusion: Novel functional immunoassay can provide valuable information about the sensitivity of NSCLC to different drugs and possible treatment outcomes based on the
expression of MDR markers.",
publisher = "John Wiley and Sons Inc",
journal = "EACR 2023 Congress: Innovative Cancer Science; 2023 Jun 12-15; Torino, Italy",
title = "Novel functional immunoassay for identification of multidrug resistance markers in non-small cell lung carcinoma patient-derived cells",
doi = "10.1002/1878-0261.13469",
pages = "461-462"
}
Stepanović, A., Dinić, J., Podolski-Renić, A., Jovanović Stojanov, S., Dragoj, M., Jovanović, M., Lupšić, E., Milićević, A., Glumac, S., Marić, D., Ercegovac, M.,& Pešić, M.. (2023). Novel functional immunoassay for identification of multidrug resistance markers in non-small cell lung carcinoma patient-derived cells. in EACR 2023 Congress: Innovative Cancer Science; 2023 Jun 12-15; Torino, Italy
John Wiley and Sons Inc., 461-462.
https://doi.org/10.1002/1878-0261.13469
Stepanović A, Dinić J, Podolski-Renić A, Jovanović Stojanov S, Dragoj M, Jovanović M, Lupšić E, Milićević A, Glumac S, Marić D, Ercegovac M, Pešić M. Novel functional immunoassay for identification of multidrug resistance markers in non-small cell lung carcinoma patient-derived cells. in EACR 2023 Congress: Innovative Cancer Science; 2023 Jun 12-15; Torino, Italy. 2023;:461-462.
doi:10.1002/1878-0261.13469 .
Stepanović, Ana, Dinić, Jelena, Podolski-Renić, Ana, Jovanović Stojanov, Sofija, Dragoj, Miodrag, Jovanović, Mirna, Lupšić, Ema, Milićević, Aleksandar, Glumac, Sofija, Marić, Dragana, Ercegovac, Maja, Pešić, Milica, "Novel functional immunoassay for identification of multidrug resistance markers in non-small cell lung carcinoma patient-derived cells" in EACR 2023 Congress: Innovative Cancer Science; 2023 Jun 12-15; Torino, Italy (2023):461-462,
https://doi.org/10.1002/1878-0261.13469 . .

Biotinylated selenocyanates: Potent and selective cytostatic agents

Roldán-Peña, Jesús M.; Puerta, Adrián; Dinić, Jelena; Jovanović Stojanov, Sofija; González-Bakker, Aday; Hicke, Francisco J.; Mishra, Atreyee; Piyasaengthong, Akkharadet; Maya, Inés; Walton, James W.; Pešić, Milica; Padrón, José M.; Fernández-Bolaños, José G.; López, Óscar

(Academic Press Inc., 2023)

TY  - JOUR
AU  - Roldán-Peña, Jesús M.
AU  - Puerta, Adrián
AU  - Dinić, Jelena
AU  - Jovanović Stojanov, Sofija
AU  - González-Bakker, Aday
AU  - Hicke, Francisco J.
AU  - Mishra, Atreyee
AU  - Piyasaengthong, Akkharadet
AU  - Maya, Inés
AU  - Walton, James W.
AU  - Pešić, Milica
AU  - Padrón, José M.
AU  - Fernández-Bolaños, José G.
AU  - López, Óscar
PY  - 2023
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0045206823000706
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5487
AB  - Most of the currently available cytotoxic agents for tackling cancer are devoid of selectivity, thus causing severe side-effects. This situation stimulated us to develop new antiproliferative agents with enhanced affinity towards tumour cells. We focused our attention on novel chalcogen-containing compounds (thiosemicarbazones, disulfides, selenoureas, thio- and selenocyanates), and particularly on selenium derivatives, as it has been documented that this kind of compounds might act as prodrugs releasing selenium-based reactive species on tumour cells. Particularly interesting in terms of potency and selectivity was a pharmacophore comprised by a selenocyanato-alkyl fragment connected to a p-phenylenediamine residue, where the nature of the second amino moiety (free, Boc-protected, enamine-protected) provided a wide variety of antiproliferative activities, ranging from the low micromolar to the nanomolar values. The optimized structure was in turn conjugated through a peptide linkage with biotin (vitamin B7), a cellular growth promoter, whose receptor is overexpressed in numerous cancer cells; the purpose was to develop a selective vector towards malignant cells. Such biotinylated derivative behaved as a very strong antiproliferative agent, achieving GI50 values in the low nM range for most of the tested cancer cells; moreover, it was featured with an outstanding selectivity, with GI50 > 100 µM against human fibroblasts. Mechanistic studies on the mode of inhibition of the biotinylated selenocyanate revealed (Annexin-V assay) a remarkable increase in the number of apoptotic cells compared to the control experiment; moreover, depolarization of the mitochondrial membrane was detected by flow cytometry analysis, and with fluorescent microscopy, what supports the apoptotic cell death. Prior to the apoptotic events, cytostatic effects were observed against SW1573 cells using label-free cell-living imaging; therefore, tumour cell division was prevented. Multidrug resistant cell lines exhibited a reduced sensitivity towards the biotinylated selenocyanate, probably due to its P-gp-mediated efflux. Remarkably, antiproliferative levels could be restored by co-administration with tariquidar, a P-gp inhibitor; this approach can, therefore, overcome multidrug resistance mediated by the P-gp efflux system.
PB  - Academic Press Inc.
T2  - Bioorganic Chemistry
T1  - Biotinylated selenocyanates: Potent and selective cytostatic agents
VL  - 133
DO  - 10.1016/j.bioorg.2023.106410
SP  - 106410
ER  - 
@article{
author = "Roldán-Peña, Jesús M. and Puerta, Adrián and Dinić, Jelena and Jovanović Stojanov, Sofija and González-Bakker, Aday and Hicke, Francisco J. and Mishra, Atreyee and Piyasaengthong, Akkharadet and Maya, Inés and Walton, James W. and Pešić, Milica and Padrón, José M. and Fernández-Bolaños, José G. and López, Óscar",
year = "2023",
abstract = "Most of the currently available cytotoxic agents for tackling cancer are devoid of selectivity, thus causing severe side-effects. This situation stimulated us to develop new antiproliferative agents with enhanced affinity towards tumour cells. We focused our attention on novel chalcogen-containing compounds (thiosemicarbazones, disulfides, selenoureas, thio- and selenocyanates), and particularly on selenium derivatives, as it has been documented that this kind of compounds might act as prodrugs releasing selenium-based reactive species on tumour cells. Particularly interesting in terms of potency and selectivity was a pharmacophore comprised by a selenocyanato-alkyl fragment connected to a p-phenylenediamine residue, where the nature of the second amino moiety (free, Boc-protected, enamine-protected) provided a wide variety of antiproliferative activities, ranging from the low micromolar to the nanomolar values. The optimized structure was in turn conjugated through a peptide linkage with biotin (vitamin B7), a cellular growth promoter, whose receptor is overexpressed in numerous cancer cells; the purpose was to develop a selective vector towards malignant cells. Such biotinylated derivative behaved as a very strong antiproliferative agent, achieving GI50 values in the low nM range for most of the tested cancer cells; moreover, it was featured with an outstanding selectivity, with GI50 > 100 µM against human fibroblasts. Mechanistic studies on the mode of inhibition of the biotinylated selenocyanate revealed (Annexin-V assay) a remarkable increase in the number of apoptotic cells compared to the control experiment; moreover, depolarization of the mitochondrial membrane was detected by flow cytometry analysis, and with fluorescent microscopy, what supports the apoptotic cell death. Prior to the apoptotic events, cytostatic effects were observed against SW1573 cells using label-free cell-living imaging; therefore, tumour cell division was prevented. Multidrug resistant cell lines exhibited a reduced sensitivity towards the biotinylated selenocyanate, probably due to its P-gp-mediated efflux. Remarkably, antiproliferative levels could be restored by co-administration with tariquidar, a P-gp inhibitor; this approach can, therefore, overcome multidrug resistance mediated by the P-gp efflux system.",
publisher = "Academic Press Inc.",
journal = "Bioorganic Chemistry",
title = "Biotinylated selenocyanates: Potent and selective cytostatic agents",
volume = "133",
doi = "10.1016/j.bioorg.2023.106410",
pages = "106410"
}
Roldán-Peña, J. M., Puerta, A., Dinić, J., Jovanović Stojanov, S., González-Bakker, A., Hicke, F. J., Mishra, A., Piyasaengthong, A., Maya, I., Walton, J. W., Pešić, M., Padrón, J. M., Fernández-Bolaños, J. G.,& López, Ó.. (2023). Biotinylated selenocyanates: Potent and selective cytostatic agents. in Bioorganic Chemistry
Academic Press Inc.., 133, 106410.
https://doi.org/10.1016/j.bioorg.2023.106410
Roldán-Peña JM, Puerta A, Dinić J, Jovanović Stojanov S, González-Bakker A, Hicke FJ, Mishra A, Piyasaengthong A, Maya I, Walton JW, Pešić M, Padrón JM, Fernández-Bolaños JG, López Ó. Biotinylated selenocyanates: Potent and selective cytostatic agents. in Bioorganic Chemistry. 2023;133:106410.
doi:10.1016/j.bioorg.2023.106410 .
Roldán-Peña, Jesús M., Puerta, Adrián, Dinić, Jelena, Jovanović Stojanov, Sofija, González-Bakker, Aday, Hicke, Francisco J., Mishra, Atreyee, Piyasaengthong, Akkharadet, Maya, Inés, Walton, James W., Pešić, Milica, Padrón, José M., Fernández-Bolaños, José G., López, Óscar, "Biotinylated selenocyanates: Potent and selective cytostatic agents" in Bioorganic Chemistry, 133 (2023):106410,
https://doi.org/10.1016/j.bioorg.2023.106410 . .
8
4
4

Stochastic Fluctuations Drive Non-genetic Evolution of Proliferation in Clonal Cancer Cell Populations

Ortega-Sabater, Carmen; F. Calvo, Gabriel; Dinić, Jelena; Podolski-Renić, Ana; Pešić, Milica; Pérez-García, Víctor

(Springer, 2023)

TY  - JOUR
AU  - Ortega-Sabater, Carmen
AU  - F. Calvo, Gabriel
AU  - Dinić, Jelena
AU  - Podolski-Renić, Ana
AU  - Pešić, Milica
AU  - Pérez-García, Víctor
PY  - 2023
UR  - https://link.springer.com/10.1007/s11538-022-01113-4
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5357
AB  - Evolutionary dynamics allows us to understand many changes happening in a broad variety of biological systems, ranging from individuals to complete ecosystems. It is also behind a number of remarkable organizational changes that happen during the natural history of cancers. These reflect tumour heterogeneity, which is present at all cellular levels, including the genome, proteome and phenome, shaping its development and interrelation with its environment. An intriguing observation in different cohorts of oncological patients is that tumours exhibit an increased proliferation as the disease progresses, while the timescales involved are apparently too short for the fixation of sufficient driver mutations to promote explosive growth. Here, we discuss how phenotypic plasticity, emerging from a single genotype, may play a key role and provide a ground for a continuous acceleration of the proliferation rate of clonal populations with time. We address this question by combining the analysis of real-time growth of non-small-cell lung carcinoma cells (N-H460) together with stochastic and deterministic mathematical models that capture proliferation trait heterogeneity in clonal populations to elucidate the contribution of phenotypic transitions on tumour growth dynamics.
PB  - Springer
T2  - Bulletin of Mathematical Biology
T1  - Stochastic Fluctuations Drive Non-genetic Evolution of Proliferation in Clonal Cancer Cell Populations
IS  - 1
VL  - 85
DO  - 10.1007/s11538-022-01113-4
SP  - 8
ER  - 
@article{
author = "Ortega-Sabater, Carmen and F. Calvo, Gabriel and Dinić, Jelena and Podolski-Renić, Ana and Pešić, Milica and Pérez-García, Víctor",
year = "2023",
abstract = "Evolutionary dynamics allows us to understand many changes happening in a broad variety of biological systems, ranging from individuals to complete ecosystems. It is also behind a number of remarkable organizational changes that happen during the natural history of cancers. These reflect tumour heterogeneity, which is present at all cellular levels, including the genome, proteome and phenome, shaping its development and interrelation with its environment. An intriguing observation in different cohorts of oncological patients is that tumours exhibit an increased proliferation as the disease progresses, while the timescales involved are apparently too short for the fixation of sufficient driver mutations to promote explosive growth. Here, we discuss how phenotypic plasticity, emerging from a single genotype, may play a key role and provide a ground for a continuous acceleration of the proliferation rate of clonal populations with time. We address this question by combining the analysis of real-time growth of non-small-cell lung carcinoma cells (N-H460) together with stochastic and deterministic mathematical models that capture proliferation trait heterogeneity in clonal populations to elucidate the contribution of phenotypic transitions on tumour growth dynamics.",
publisher = "Springer",
journal = "Bulletin of Mathematical Biology",
title = "Stochastic Fluctuations Drive Non-genetic Evolution of Proliferation in Clonal Cancer Cell Populations",
number = "1",
volume = "85",
doi = "10.1007/s11538-022-01113-4",
pages = "8"
}
Ortega-Sabater, C., F. Calvo, G., Dinić, J., Podolski-Renić, A., Pešić, M.,& Pérez-García, V.. (2023). Stochastic Fluctuations Drive Non-genetic Evolution of Proliferation in Clonal Cancer Cell Populations. in Bulletin of Mathematical Biology
Springer., 85(1), 8.
https://doi.org/10.1007/s11538-022-01113-4
Ortega-Sabater C, F. Calvo G, Dinić J, Podolski-Renić A, Pešić M, Pérez-García V. Stochastic Fluctuations Drive Non-genetic Evolution of Proliferation in Clonal Cancer Cell Populations. in Bulletin of Mathematical Biology. 2023;85(1):8.
doi:10.1007/s11538-022-01113-4 .
Ortega-Sabater, Carmen, F. Calvo, Gabriel, Dinić, Jelena, Podolski-Renić, Ana, Pešić, Milica, Pérez-García, Víctor, "Stochastic Fluctuations Drive Non-genetic Evolution of Proliferation in Clonal Cancer Cell Populations" in Bulletin of Mathematical Biology, 85, no. 1 (2023):8,
https://doi.org/10.1007/s11538-022-01113-4 . .
1
5
3

Anti-melanoma effects of ingenanes isolated from Euphorbia species

Krstić, Gordana; Jadranin, Milka; Jovanović Stojanov, Sofija; Pešić, Milica; Tešević, Vele; Milosavljević, Slobodan

(Skopje: Macedonian Pharmaceutical Association, 2022)

TY  - CONF
AU  - Krstić, Gordana
AU  - Jadranin, Milka
AU  - Jovanović Stojanov, Sofija
AU  - Pešić, Milica
AU  - Tešević, Vele
AU  - Milosavljević, Slobodan
PY  - 2022
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/6594
AB  - In this research, from two species, E. palustris and E. lucida, four ingenane derivatives were isolated. Their anticancer effects were evaluated in the human melanoma – 518A2 cell line and compared with the effects of ingenolmebutate. Selectivity towards human melanoma cells was determined using normal human keratinocytes – HaCaT.
PB  - Skopje: Macedonian Pharmaceutical Association
C3  - 11th Conference on Medicinal and Aromatic Plants of Southeast European Countries 2022: CMAPSEEC 2022; 2022 Oct 6-10; Ohrid, Republic of North Macedonia
T1  - Anti-melanoma effects of ingenanes isolated from Euphorbia species
DO  - 10.33320/maced.pharm.bull.2022.68.04.006
SP  - 23
EP  - 24
ER  - 
@conference{
author = "Krstić, Gordana and Jadranin, Milka and Jovanović Stojanov, Sofija and Pešić, Milica and Tešević, Vele and Milosavljević, Slobodan",
year = "2022",
abstract = "In this research, from two species, E. palustris and E. lucida, four ingenane derivatives were isolated. Their anticancer effects were evaluated in the human melanoma – 518A2 cell line and compared with the effects of ingenolmebutate. Selectivity towards human melanoma cells was determined using normal human keratinocytes – HaCaT.",
publisher = "Skopje: Macedonian Pharmaceutical Association",
journal = "11th Conference on Medicinal and Aromatic Plants of Southeast European Countries 2022: CMAPSEEC 2022; 2022 Oct 6-10; Ohrid, Republic of North Macedonia",
title = "Anti-melanoma effects of ingenanes isolated from Euphorbia species",
doi = "10.33320/maced.pharm.bull.2022.68.04.006",
pages = "23-24"
}
Krstić, G., Jadranin, M., Jovanović Stojanov, S., Pešić, M., Tešević, V.,& Milosavljević, S.. (2022). Anti-melanoma effects of ingenanes isolated from Euphorbia species. in 11th Conference on Medicinal and Aromatic Plants of Southeast European Countries 2022: CMAPSEEC 2022; 2022 Oct 6-10; Ohrid, Republic of North Macedonia
Skopje: Macedonian Pharmaceutical Association., 23-24.
https://doi.org/10.33320/maced.pharm.bull.2022.68.04.006
Krstić G, Jadranin M, Jovanović Stojanov S, Pešić M, Tešević V, Milosavljević S. Anti-melanoma effects of ingenanes isolated from Euphorbia species. in 11th Conference on Medicinal and Aromatic Plants of Southeast European Countries 2022: CMAPSEEC 2022; 2022 Oct 6-10; Ohrid, Republic of North Macedonia. 2022;:23-24.
doi:10.33320/maced.pharm.bull.2022.68.04.006 .
Krstić, Gordana, Jadranin, Milka, Jovanović Stojanov, Sofija, Pešić, Milica, Tešević, Vele, Milosavljević, Slobodan, "Anti-melanoma effects of ingenanes isolated from Euphorbia species" in 11th Conference on Medicinal and Aromatic Plants of Southeast European Countries 2022: CMAPSEEC 2022; 2022 Oct 6-10; Ohrid, Republic of North Macedonia (2022):23-24,
https://doi.org/10.33320/maced.pharm.bull.2022.68.04.006 . .

Biodiversity: the overlooked source of human health

Linhares, Yuliya; Kaganski, Alexander; Agyare, Christian; Kurnaz, Isil A.; Neergheen, Vidushi; Kolodziejczyk, Bartlomiej; Kędra, Monika; Wahajuddin, Muhammad; El-Youssf, Lahcen; de la Cruz, Thomas Eddison; Baran, Yusuf; Pešić, Milica; Shrestha, Uttam; Bakiu, Rigers; Allard, Pierre-Marie; Rybtsov, Stanislav; Pieri, Myrtani; Siciliano, Velia; Flores Bueso, Yensi

(Oxford, UK : Elsevier Science Ltd., 2022)

TY  - JOUR
AU  - Linhares, Yuliya
AU  - Kaganski, Alexander
AU  - Agyare, Christian
AU  - Kurnaz, Isil A.
AU  - Neergheen, Vidushi
AU  - Kolodziejczyk, Bartlomiej
AU  - Kędra, Monika
AU  - Wahajuddin, Muhammad
AU  - El-Youssf, Lahcen
AU  - de la Cruz, Thomas Eddison
AU  - Baran, Yusuf
AU  - Pešić, Milica
AU  - Shrestha, Uttam
AU  - Bakiu, Rigers
AU  - Allard, Pierre-Marie
AU  - Rybtsov, Stanislav
AU  - Pieri, Myrtani
AU  - Siciliano, Velia
AU  - Flores Bueso, Yensi
PY  - 2022
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5337
AB  - Biodiversity is the measure of the variation of lifeforms in a given ecological system. Biodiversity provides ecosystems with the robustness, stability, and resilience that sustains them. This is ultimately essential for our survival because we depend on the services that natural ecosystems provide (food, fresh water, air, climate, and medicine). Despite this, human activity is driving an unprecedented rate of biodiversity decline, which may jeopardize the life-support systems of the planet if no urgent action is taken. In this article we show why biodiversity is essential for human health. We raise our case and focus on the biomedicine services that are enabled by biodiversity, and we present known and novel approaches to promote biodiversity conservation.
PB  - Oxford, UK : Elsevier Science Ltd.
T2  - Trends in Molecular Medicine
T1  - Biodiversity: the overlooked source of human health
DO  - 10.1016/j.molmed.2022.12.002
ER  - 
@article{
author = "Linhares, Yuliya and Kaganski, Alexander and Agyare, Christian and Kurnaz, Isil A. and Neergheen, Vidushi and Kolodziejczyk, Bartlomiej and Kędra, Monika and Wahajuddin, Muhammad and El-Youssf, Lahcen and de la Cruz, Thomas Eddison and Baran, Yusuf and Pešić, Milica and Shrestha, Uttam and Bakiu, Rigers and Allard, Pierre-Marie and Rybtsov, Stanislav and Pieri, Myrtani and Siciliano, Velia and Flores Bueso, Yensi",
year = "2022",
abstract = "Biodiversity is the measure of the variation of lifeforms in a given ecological system. Biodiversity provides ecosystems with the robustness, stability, and resilience that sustains them. This is ultimately essential for our survival because we depend on the services that natural ecosystems provide (food, fresh water, air, climate, and medicine). Despite this, human activity is driving an unprecedented rate of biodiversity decline, which may jeopardize the life-support systems of the planet if no urgent action is taken. In this article we show why biodiversity is essential for human health. We raise our case and focus on the biomedicine services that are enabled by biodiversity, and we present known and novel approaches to promote biodiversity conservation.",
publisher = "Oxford, UK : Elsevier Science Ltd.",
journal = "Trends in Molecular Medicine",
title = "Biodiversity: the overlooked source of human health",
doi = "10.1016/j.molmed.2022.12.002"
}
Linhares, Y., Kaganski, A., Agyare, C., Kurnaz, I. A., Neergheen, V., Kolodziejczyk, B., Kędra, M., Wahajuddin, M., El-Youssf, L., de la Cruz, T. E., Baran, Y., Pešić, M., Shrestha, U., Bakiu, R., Allard, P., Rybtsov, S., Pieri, M., Siciliano, V.,& Flores Bueso, Y.. (2022). Biodiversity: the overlooked source of human health. in Trends in Molecular Medicine
Oxford, UK : Elsevier Science Ltd...
https://doi.org/10.1016/j.molmed.2022.12.002
Linhares Y, Kaganski A, Agyare C, Kurnaz IA, Neergheen V, Kolodziejczyk B, Kędra M, Wahajuddin M, El-Youssf L, de la Cruz TE, Baran Y, Pešić M, Shrestha U, Bakiu R, Allard P, Rybtsov S, Pieri M, Siciliano V, Flores Bueso Y. Biodiversity: the overlooked source of human health. in Trends in Molecular Medicine. 2022;.
doi:10.1016/j.molmed.2022.12.002 .
Linhares, Yuliya, Kaganski, Alexander, Agyare, Christian, Kurnaz, Isil A., Neergheen, Vidushi, Kolodziejczyk, Bartlomiej, Kędra, Monika, Wahajuddin, Muhammad, El-Youssf, Lahcen, de la Cruz, Thomas Eddison, Baran, Yusuf, Pešić, Milica, Shrestha, Uttam, Bakiu, Rigers, Allard, Pierre-Marie, Rybtsov, Stanislav, Pieri, Myrtani, Siciliano, Velia, Flores Bueso, Yensi, "Biodiversity: the overlooked source of human health" in Trends in Molecular Medicine (2022),
https://doi.org/10.1016/j.molmed.2022.12.002 . .
47
9
9

Autophagy Inhibition Enhances Anti-Glioblastoma Effects of Pyrazolo[3,4-d]pyrimidine Tyrosine Kinase Inhibitors

Jovanović Stojanov, Sofija; Stepanović, Ana; Ljujić, Mila; Lupšić, Ema; Schenone, Silvia; Pešić, Milica; Dinić, Jelena

(Basel : MDPI, 2022)

TY  - JOUR
AU  - Jovanović Stojanov, Sofija
AU  - Stepanović, Ana
AU  - Ljujić, Mila
AU  - Lupšić, Ema
AU  - Schenone, Silvia
AU  - Pešić, Milica
AU  - Dinić, Jelena
PY  - 2022
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5043
AB  - Drug resistance presents a major obstacle to the successful treatment of glioblastoma. Autophagy plays a key role in drug resistance, particularly in relation to targeted therapy, which has prompted the use of autophagy inhibitors to increase the effectiveness of targeted therapeutics. The ability of two Src tyrosine kinase inhibitors, Si306 and its prodrug pro-Si306, to induce autophagy was evaluated in the human glioblastoma cell line U87 and its multidrug-resistant counterpart U87-TxR. Autophagy markers were assessed by flow cytometry, microscopy, and Western blot, and induction of autophagy by these compounds was demonstrated after 3 h as well as 48 h. The effects of Si306 and pro-Si306 on cell proliferation and cell death were examined in the presence or absence of autophagy inhibition by bafilomycin A1. Combined treatments of Si306 and pro-Si306 with bafilomycin A1 were synergistic in nature, and the inhibition of autophagy sensitized glioblastoma cells to Src tyrosine kinase inhibitors. Si306 and pro-Si306 more strongly inhibited cell proliferation and triggered necrosis in combination with bafilomycin A1. Our findings suggest that modulation of Si306- and pro-Si306-induced autophagy can be used to enhance the anticancer effects of these Src tyrosine kinase inhibitors and overcome the drug-resistant phenotype in glioblastoma cells.
PB  - Basel : MDPI
T2  - Life
T1  - Autophagy Inhibition Enhances Anti-Glioblastoma Effects of Pyrazolo[3,4-d]pyrimidine Tyrosine Kinase Inhibitors
IS  - 10
VL  - 12
DO  - 10.3390/life12101503
SP  - 1503
ER  - 
@article{
author = "Jovanović Stojanov, Sofija and Stepanović, Ana and Ljujić, Mila and Lupšić, Ema and Schenone, Silvia and Pešić, Milica and Dinić, Jelena",
year = "2022",
abstract = "Drug resistance presents a major obstacle to the successful treatment of glioblastoma. Autophagy plays a key role in drug resistance, particularly in relation to targeted therapy, which has prompted the use of autophagy inhibitors to increase the effectiveness of targeted therapeutics. The ability of two Src tyrosine kinase inhibitors, Si306 and its prodrug pro-Si306, to induce autophagy was evaluated in the human glioblastoma cell line U87 and its multidrug-resistant counterpart U87-TxR. Autophagy markers were assessed by flow cytometry, microscopy, and Western blot, and induction of autophagy by these compounds was demonstrated after 3 h as well as 48 h. The effects of Si306 and pro-Si306 on cell proliferation and cell death were examined in the presence or absence of autophagy inhibition by bafilomycin A1. Combined treatments of Si306 and pro-Si306 with bafilomycin A1 were synergistic in nature, and the inhibition of autophagy sensitized glioblastoma cells to Src tyrosine kinase inhibitors. Si306 and pro-Si306 more strongly inhibited cell proliferation and triggered necrosis in combination with bafilomycin A1. Our findings suggest that modulation of Si306- and pro-Si306-induced autophagy can be used to enhance the anticancer effects of these Src tyrosine kinase inhibitors and overcome the drug-resistant phenotype in glioblastoma cells.",
publisher = "Basel : MDPI",
journal = "Life",
title = "Autophagy Inhibition Enhances Anti-Glioblastoma Effects of Pyrazolo[3,4-d]pyrimidine Tyrosine Kinase Inhibitors",
number = "10",
volume = "12",
doi = "10.3390/life12101503",
pages = "1503"
}
Jovanović Stojanov, S., Stepanović, A., Ljujić, M., Lupšić, E., Schenone, S., Pešić, M.,& Dinić, J.. (2022). Autophagy Inhibition Enhances Anti-Glioblastoma Effects of Pyrazolo[3,4-d]pyrimidine Tyrosine Kinase Inhibitors. in Life
Basel : MDPI., 12(10), 1503.
https://doi.org/10.3390/life12101503
Jovanović Stojanov S, Stepanović A, Ljujić M, Lupšić E, Schenone S, Pešić M, Dinić J. Autophagy Inhibition Enhances Anti-Glioblastoma Effects of Pyrazolo[3,4-d]pyrimidine Tyrosine Kinase Inhibitors. in Life. 2022;12(10):1503.
doi:10.3390/life12101503 .
Jovanović Stojanov, Sofija, Stepanović, Ana, Ljujić, Mila, Lupšić, Ema, Schenone, Silvia, Pešić, Milica, Dinić, Jelena, "Autophagy Inhibition Enhances Anti-Glioblastoma Effects of Pyrazolo[3,4-d]pyrimidine Tyrosine Kinase Inhibitors" in Life, 12, no. 10 (2022):1503,
https://doi.org/10.3390/life12101503 . .
1
5
3

Decreased TSPAN14 Expression Contributes to NSCLC Progression

Jovanović, Mirna; Stanković, Tijana; Stojković Burić, Sonja; Banković, Jasna; Dinić, Jelena; Ljujić, Mila; Pešić, Milica; Dragoj, Miodrag

(Basel : MDPI, 2022)

TY  - JOUR
AU  - Jovanović, Mirna
AU  - Stanković, Tijana
AU  - Stojković Burić, Sonja
AU  - Banković, Jasna
AU  - Dinić, Jelena
AU  - Ljujić, Mila
AU  - Pešić, Milica
AU  - Dragoj, Miodrag
PY  - 2022
UR  - http://radar.ibiss.bg.ac.rs/handle/123456789/5041
AB  - Tspan14 is a transmembrane protein of the tetraspanin (Tspan) protein family. Different members of the Tspan family can promote or suppress tumor progression. The exact role of Tspan14 in tumor cells is unknown. Earlier, mutational inactivation of the TSPAN14 gene has been proposed to coincide with a low survival rate in NSCLC patients. This study aimed to investigate the correlation of TSPAN14 lack of function with clinicopathological features of NSCLC patients, and to elucidate the role TSPAN14 might have in NSCLC progression. TSPAN14 expression was lower in tumor cells than non-tumor cells in NSCLC patients’ samples. The decreased gene expression was correlated with a low survival rate of patients and was more frequent in patients with aggressive, invasive tumor types. Additionally, the role of decreased TSPAN14 expression in the metastatic potential of cancer cells was confirmed in NSCLC cell lines. The highly invasive NSCLC cell line (NCI-H661) had the lowest TSPAN14 gene and protein expression, whereas the NSCLC cell line with the highest TSPAN14 expression (NCI-H460) had no significant metastatic potential. Finally, silencing of TSPAN14 in these non-metastatic cancer cells caused an increased expression of matrix-degrading enzymes MMP-2 and MMP-9, followed by an elevated capacity of cancer cells to degrade gelatin. The results of this study propose TSPAN14 expression as an indicator of NSCLC metastatic potential and progression.
PB  - Basel : MDPI
T2  - Life
T1  - Decreased TSPAN14 Expression Contributes to NSCLC Progression
IS  - 9
VL  - 12
DO  - 10.3390/life12091291
SP  - 1291
ER  - 
@article{
author = "Jovanović, Mirna and Stanković, Tijana and Stojković Burić, Sonja and Banković, Jasna and Dinić, Jelena and Ljujić, Mila and Pešić, Milica and Dragoj, Miodrag",
year = "2022",
abstract = "Tspan14 is a transmembrane protein of the tetraspanin (Tspan) protein family. Different members of the Tspan family can promote or suppress tumor progression. The exact role of Tspan14 in tumor cells is unknown. Earlier, mutational inactivation of the TSPAN14 gene has been proposed to coincide with a low survival rate in NSCLC patients. This study aimed to investigate the correlation of TSPAN14 lack of function with clinicopathological features of NSCLC patients, and to elucidate the role TSPAN14 might have in NSCLC progression. TSPAN14 expression was lower in tumor cells than non-tumor cells in NSCLC patients’ samples. The decreased gene expression was correlated with a low survival rate of patients and was more frequent in patients with aggressive, invasive tumor types. Additionally, the role of decreased TSPAN14 expression in the metastatic potential of cancer cells was confirmed in NSCLC cell lines. The highly invasive NSCLC cell line (NCI-H661) had the lowest TSPAN14 gene and protein expression, whereas the NSCLC cell line with the highest TSPAN14 expression (NCI-H460) had no significant metastatic potential. Finally, silencing of TSPAN14 in these non-metastatic cancer cells caused an increased expression of matrix-degrading enzymes MMP-2 and MMP-9, followed by an elevated capacity of cancer cells to degrade gelatin. The results of this study propose TSPAN14 expression as an indicator of NSCLC metastatic potential and progression.",
publisher = "Basel : MDPI",
journal = "Life",
title = "Decreased TSPAN14 Expression Contributes to NSCLC Progression",
number = "9",
volume = "12",
doi = "10.3390/life12091291",
pages = "1291"
}
Jovanović, M., Stanković, T., Stojković Burić, S., Banković, J., Dinić, J., Ljujić, M., Pešić, M.,& Dragoj, M.. (2022). Decreased TSPAN14 Expression Contributes to NSCLC Progression. in Life
Basel : MDPI., 12(9), 1291.
https://doi.org/10.3390/life12091291
Jovanović M, Stanković T, Stojković Burić S, Banković J, Dinić J, Ljujić M, Pešić M, Dragoj M. Decreased TSPAN14 Expression Contributes to NSCLC Progression. in Life. 2022;12(9):1291.
doi:10.3390/life12091291 .
Jovanović, Mirna, Stanković, Tijana, Stojković Burić, Sonja, Banković, Jasna, Dinić, Jelena, Ljujić, Mila, Pešić, Milica, Dragoj, Miodrag, "Decreased TSPAN14 Expression Contributes to NSCLC Progression" in Life, 12, no. 9 (2022):1291,
https://doi.org/10.3390/life12091291 . .
1
5
4